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a) Input weather state b) Predict the next state c) Roll out a forecast
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Refresher on graphs

We define a graph as the pair G = (V,€) of verticesv € V and
edges ¢;; = (v;,v;) € £ with & C V x V. The graph connectivity is
encoded as an adjacency matrix A € RIVI*VI with
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Figure from Battaglia et al., 2018



Graph neural networks

We endow the graph nodes with features - namely for each u € V

we define a node feature tensor x € R*. This defines a matrix X €
R!VIxk.

X = [xl,xz, .o .,x|v|]

We also define edge features x,, € R! and global graph features
xXg € R™.

GNNs are neural networks built to operate on this “graph data”.
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Quick detour: MLPs

Multi-layer perceptrons

LayerNorm(Activation(Linear(x)))

from torch import nn

def generate_mlp_module(num_inputs: int = 32, hidden_dim: int = 64, num_outputs: int = 32):

mlp = nn.Sequential(
nn.Linear(num_inputs, hidden_dim),
nn.LeakyRelLU(0.1),
nn.Linear(hidden_dim, hidden_dim),
nn.LeakyRelLU(0.1),
nn.Linear(hidden_dim, num_outputs),
nn.LeakyRelLU(0.1),
nn.LayerNorm(num_outputs)

)

return mlp

MLPs will be denoted by Greek letters ¢, ¥ and p
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What inductive biases should a GNN have?
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Locality

We want the GNN signal to be stable under small domain deformations.

Standard deep NNs (e.g., CNNs) build large-scale ops from small-scale building blocks (e.g. 3x3
convolutions).

GNN layers should operate locally, too (in neighborhoods).

We can extract neighborhood features and define local functions ¢ (MLPs) operating on them:

Xy, ={{x;:JEN }}

d(Xi, X))

) o)
-y ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Permutation invariance and equivariance

The specific ordering of nodes / edges should not matter!

Invariance f(PX, PAPT) — f(X, A)

Examples: max, sum, min, avg

@ = any permutation-invariant aggregation op acting on one or more graph nodes / edges
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Permutation equivariance

What if we wanted to distinguish between outputs at different nodes?

A permutation-invariant aggregator would not allow us to do that ®
Instead, we may use a functions that don’t change the node ordering.
That is, if we permute nodes using a permutation matrix P, it doesn’t matter if we do it before or after! ©

= d(X, Xy,)

F(X, A) _ _ qb(xztx]\fz) _

- P Xy) -

F(PX,PAP!) = PF(X,A)
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We then stack multiple equivariant GNN layers to build large-scale operators:

F(X,A):=¢ | D v(xu 20, Xu0)
veNy

@ = any permutation-invariant aggregation op acting on one or more graph nodes / edges
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We've just defined a GNN layer!

F(X,A):=¢ | D ¢(xu x0, Xuv)
t \veN,

Trainable, shared MLPs

GNN layers are defined by the shared application of local, differentiable and permutation invariant MLPs

The per-edge and per-node functions ¢ and ¢ are reused across
all edges and all nodes, respectively. This means a GNN can
operate on graphs of different sizes (|V| or |£|) and shapes (A).
This is crucial if your graph is dynamic, e.g. it varies with time.
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Flavors of GNNs
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Message-passing

hi = ¢(xi, P p(xi,xj eif))
JEN;
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Message-passing GNNs
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Features (= information associated with elements of our graph)

Xg Graph-level (global) features

Node features Rt

X,»  Edge features

N GNN diagrams taken from (Velickovic, 2022): Geometric deep learning - lecture 7: Graphs
ECMWF and sets (Il). https://geometricdeeplearning.com/lectures/
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The message-passing algorithm
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Step 1: Edge updates
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Step 2:

Node updates

Xg

Xu \
Xuwv ” ’d) =N huv
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Xy > ¢ — h,
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Step 3: Graph feature updates

@hlll @ huv,xg

hg = ( )
uey
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The message-passing algorithm

Input: Graph G(V, €) with {xg, hy, huo}.
for each edge ¢, do
Gather sender and receiver nodes x;,, x;
Update edge hyo < ¢ (xu, X0, Xuv, xg)
end for
for each node u do
Aggregate all incoming edges to u: Iy, := @, (v,u)eg Mou
Compute node-wise features h,, < ¢ (x,, I}, xg)
end for
Aggregate all edges and nodes u™ := @,y hy, e* 1= @(u,v)ee | -
Compute global features hg < p(xg,u*,e*)
Output: Graph G with new {xg, I, hyo }.
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Message passing: information propagation

SRS I8
c ® &3 2

NB: This happens simultaneously for all nodes in the graph!

Figure from (Battaglia et al., 2018)
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https://arxiv.org/abs/1806.01261

g) Simultaneous multi-mesh message-passing

The multi-mesh allows information to propagate faster, across longer distances
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GN block structures

L ’

x M
vV
GNenc GNdCC
]
M
- Ginp Gout anp Gout
(a) Composition of GN blocks (b) Encode-process-decode (c¢) Recurrent GN architecture

Graphcast and AIFS use both (a) and (b)
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Software

»
& PyG

https://qgithub.com/pyg-team/pytorch_geometric https://www.dgl.ai/

m Spektral

https://graphneural.network/

T

TensorFlow GNN

https://github.com/tensorflow/gnn

Jraph

https://github.com/google-deepmind/jraph
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pytorch-geometric: MessagePassing

Pytorch geometric’s MessagePassing class implements message
passing as follows:

1. message() implements the MLP ¢ that is to say, it constructs a
message u; — u; for each edge in the edge index

2. update() implements ¢); it concatenates all inputs before passing

them through the MLP

index [0]0|1[0]2]|2

3
3. aggregate() implements the aggregation logic over a neighbor- 1 o i e s M
Input [ESEEE

hood, i.e. the ;¢ p; operator using a GPU-accelerated scatter

operation

4. propagate() is the initial call to start propagating a message output 8|17([5]4
through the graph
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Transformers are fully connected GNNs (+ a positional embedding)

u =

A =117

¢\ xu, @ o (Xu, X0)P(x0)

veyY
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Chaitanya Joshi. Transformers are graph neural networks. The Gradient, 2020.
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Further references

(Velickovi¢, 2023) https://arxiv.org/pdf/2301.08210.pdf

(Keisler, 2022) https://arxiv.org/abs/2202.07575

(Lam et al., 2023) https://arxiv.org/abs/2212.12794

(Sanchez-Lengeling et al., 2021) https://distill.pub/2021/gnn-intro/

(Velickovi¢, 2023) https://geometricdeeplearning.com/lectures/

(Battaglia et al., 2018) https://arxiv.org/abs/1806.01261

(Sanchez-Gonzalez et al., 2020) https://arxiv.org/abs/2002.09405
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