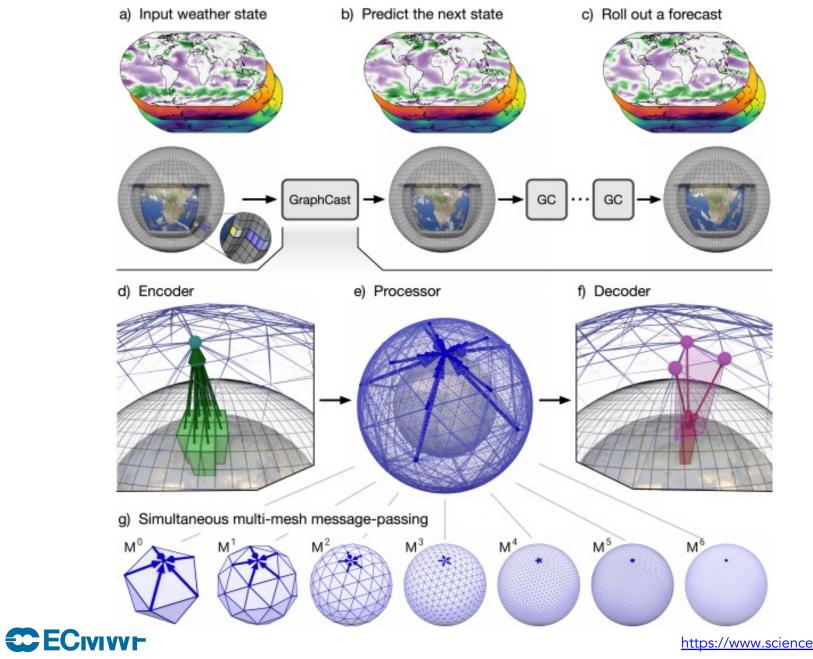
Graph Neural Networks

Mihai Alexe ECMWF Bonn first.lastname@ecmwf.int



© ECMWF March 20, 2024

A very fast and evolving landscape

Defining the dataset, split, headline fields and metrics	0.25° produ "More	aWeather hourly lict accurate " than S.	Microsoft ClimaX Forecastin various lea times at va resolution both glob and regior	ng ad- arious s, ally	NVIDIA – SFNO 0.25° 6-hour product Extension of FourCastNet to Spherical harmonics, improved stability	
2020 WeatherBench		ov 2022 al cyclones <mark>Glob</mark>	Jan 20 al & Lim		Spherical harmonics	
					Jun 2023	
2018 Exploring the concept	Feb 2022 Full medium-range NWP	· · ·		Apr 2023 7-day+ scores improv		
ECMWF staff ~500km_ERA5 to predict future z500. Similar work from Rasp and Weyn.	Keisler - GraphNN 1°, competitive with GFS NVIDIA – FourCastNet Fourier+, 0.25° O(10 ⁴) faster & more energy	Deepmind – GraphCast 0.25° 6-hour Many variable and pressure levels with comparable		FengWu – China academia + Shanghai Met Bureau 0.25° 6-hour product Improves on	Alibaba – SwinRDM 0.25° 6-hour product Sharp spatial features	Last months AIFS FuXi AtmoRep FuXi-extreme NeuralGCM GenCast
	efficient than IFS	skill to IFS.		GraphCast for longer leadtimes (still deterministic)		 impossible to keep this figure up

CECM

https://www.science.org/doi/10.1126/science.adi2336 https://arxiv.org/abs/2212.12794

Refresher on graphs

We define a *graph* as the pair $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ of vertices $v \in \mathcal{V}$ and edges $e_{ij} = (v_i, v_j) \in \mathcal{E}$ with $\mathcal{E} \subseteq V \times V$. The graph connectivity is encoded as an *adjacency matrix* $A \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$, with

$$a_{ij} = \begin{cases} 1, & e_{ij} \in \mathcal{E} \\ 0, & e_{ij} \notin \mathcal{E} \end{cases}$$

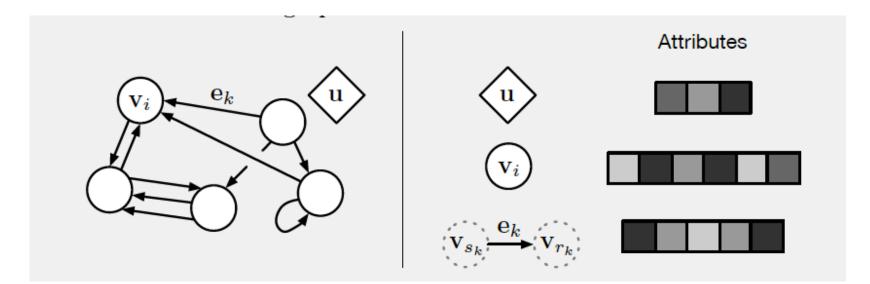


Figure from Battaglia et al., 2018

Graph neural networks

We endow the graph nodes with features - namely for each $u \in \mathcal{V}$ we define a *node feature tensor* $x \in \mathbb{R}^k$. This defines a matrix $X \in \mathbb{R}^{|\mathcal{V}| \times k}$:

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_{|\mathcal{V}|} \end{bmatrix}$$

We also define *edge features* $x_{uv} \in \mathbb{R}^l$ and global *graph features* $x_{\mathcal{G}} \in \mathbb{R}^m$.

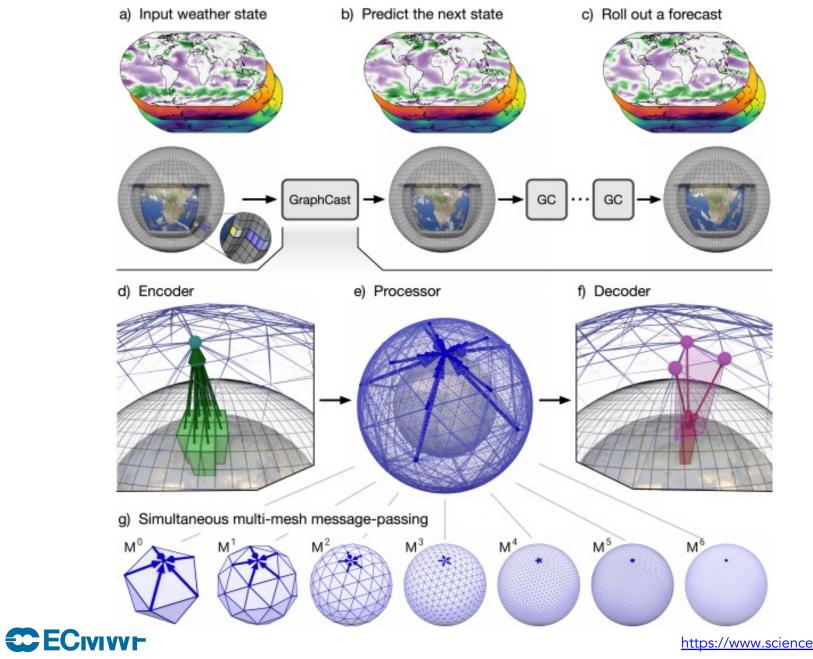
GNNs are neural networks built to operate on this "graph data".

Quick detour: MLPs

Multi-layer perceptrons

LayerNorm(Activation(Linear(x)))

```
from torch import nn


def generate_mlp_module(num_inputs: int = 32, hidden_dim: int = 64, num_outputs: int = 32):
    mlp = nn.Sequential(
        nn.Linear(num_inputs, hidden_dim),
        nn.LeakyReLU(0.1),
        nn.Linear(hidden_dim, hidden_dim),
        nn.LeakyReLU(0.1),
        nn.Linear(hidden_dim, num_outputs),
        nn.LeakyReLU(0.1),
        nn.LayerNorm(num_outputs)
    )
    return mlp
```

MLPs will be denoted by Greek letters ϕ , ψ and ρ

What inductive biases should a GNN have?

https://www.science.org/doi/10.1126/science.adi2336 https://arxiv.org/abs/2212.12794

Locality

We want the GNN signal to be stable under small domain deformations.

Standard deep NNs (e.g., CNNs) build large-scale ops from small-scale building blocks (e.g. 3x3 convolutions).

GNN layers should operate locally, too (in neighborhoods).

We can extract neighborhood features and define local functions ϕ (MLPs) operating on them:

$$\mathbf{X}_{\mathcal{N}_i} = \{\{\mathbf{x}_j : j \in \mathcal{N}_i\}\}\$$

 $\phi(\mathbf{x}_i, \mathbf{X}_{\mathcal{N}_i})$

Permutation invariance and equivariance

The specific <u>ordering</u> of nodes / edges should not matter!

Invariance

 $f(PX, PAP^T) = f(X, A)$

$$f\left(\xrightarrow[\mathbf{x}_{3}]{\mathbf{x}_{3}}{\mathbf{x}_{3}}\right) = \mathbf{y} = f\left(\xrightarrow[\mathbf{x}_{3}]{\mathbf{x}_{3}}{\mathbf{x}_{3}}{\mathbf{x}_{3}}\right)$$

Examples: max, sum, min, avg

= any permutation-invariant aggregation op acting on one or more graph nodes / edges

Permutation equivariance

What if we wanted to distinguish between outputs at different nodes?

A permutation-invariant aggregator would not allow us to do that 🙁

Instead, we may use a functions that don't change the node ordering.

That is, if we permute nodes using a *permutation matrix P*, it doesn't matter if we do it before or after! ③

$$\mathbf{F}(\mathbf{X}, \mathbf{A}) = \begin{bmatrix} - & \phi(\mathbf{X}_1, \mathbf{X}_{\mathcal{N}_1}) & - \\ - & \phi(\mathbf{X}_2, \mathbf{X}_{\mathcal{N}_2}) & - \\ & \vdots \\ - & \phi(\mathbf{X}_n, \mathbf{X}_{\mathcal{N}_n}) & - \end{bmatrix}$$

 $F(PX, PAP^T) = PF(X, A)$

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

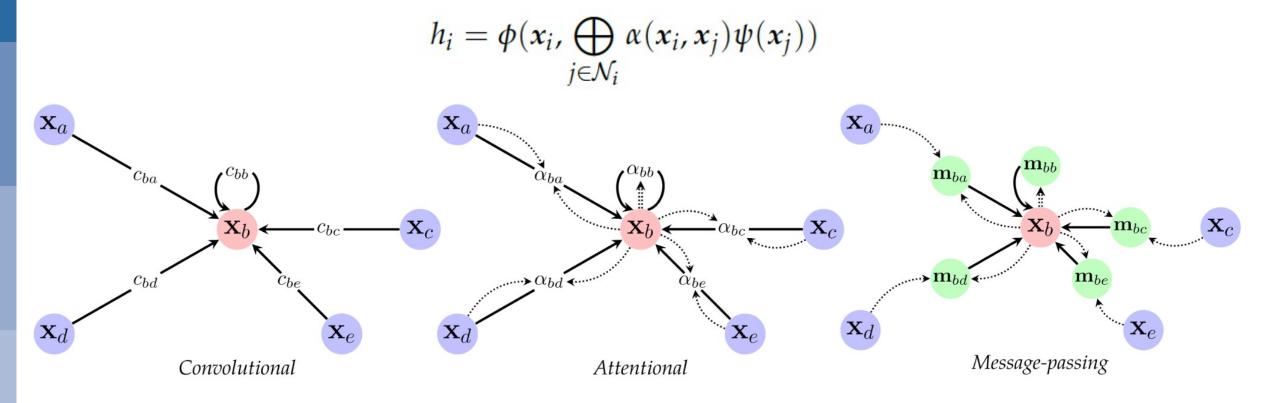
We then stack multiple <u>equivariant</u> GNN layers to build large-scale operators:

$$\mathbf{F}(\mathbf{X}, \mathbf{A}) := \phi\left(\bigoplus_{v \in \mathcal{N}_u} \psi(\mathbf{x}_u, \mathbf{x}_v, \mathbf{x}_{uv})\right)$$

 \bigoplus = any permutation-invariant aggregation op acting on one or more graph nodes / edges

We've just defined a GNN layer!

$$\mathbf{F}(\mathbf{X}, \mathbf{A}) := \phi \left(\bigoplus_{v \in \mathcal{N}_u} \psi(\mathbf{x}_u, \mathbf{x}_v, \mathbf{x}_{uv}) \right)$$


Trainable, shared MLPs

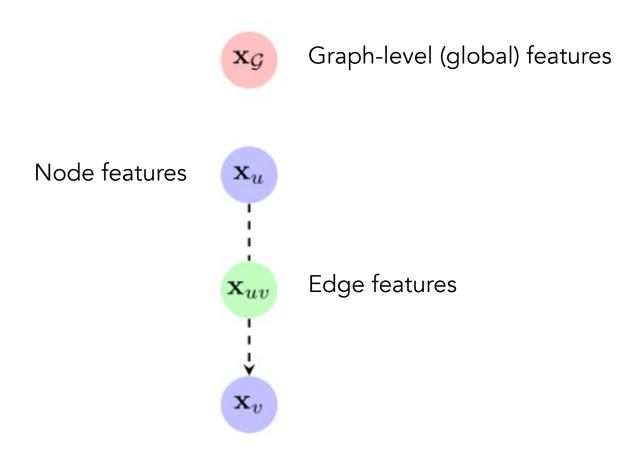
GNN layers are defined by the shared application of local, differentiable and permutation invariant MLPs

The per-edge and per-node functions ϕ and ψ are reused across all edges and all nodes, respectively. This means a GNN can operate on graphs of different sizes ($|\mathcal{V}|$ or $|\mathcal{E}|$) and shapes (A). This is crucial if your graph is dynamic, e.g. it varies with time.

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Flavors of GNNs

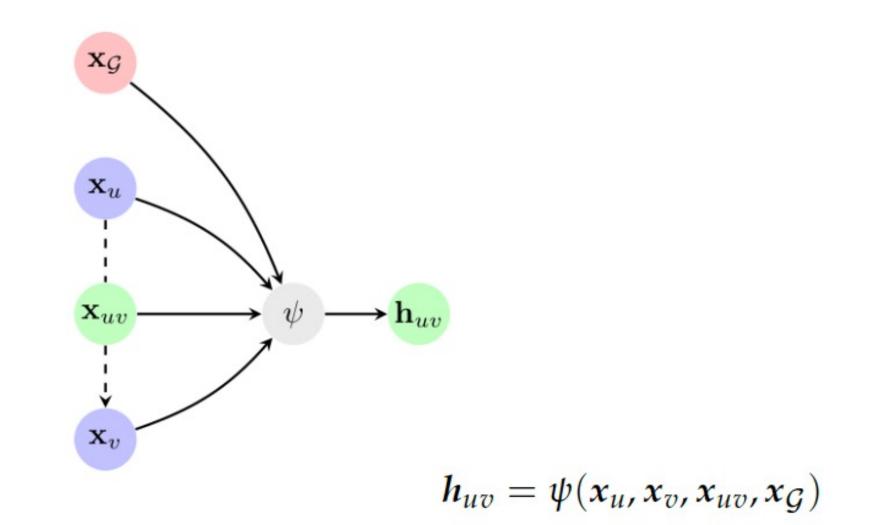
$$h_i = \phi(\mathbf{x}_i, \bigoplus_{j \in \mathcal{N}_i} c_{ij} \psi(\mathbf{x}_j))$$

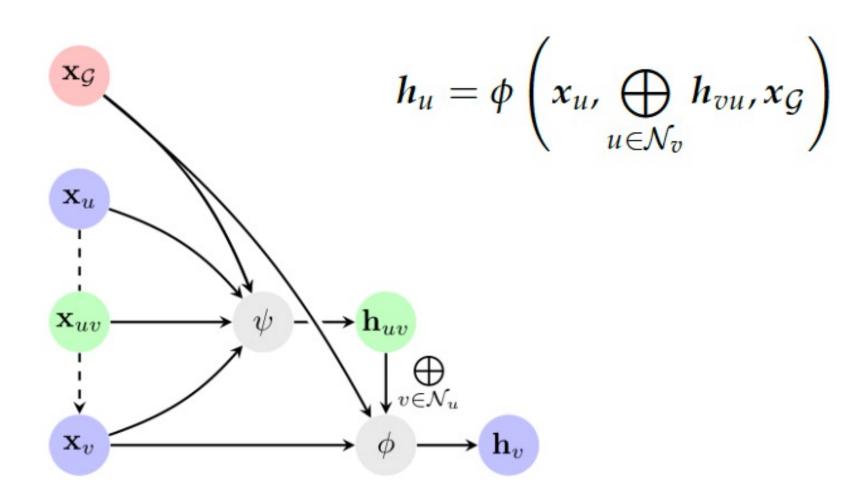


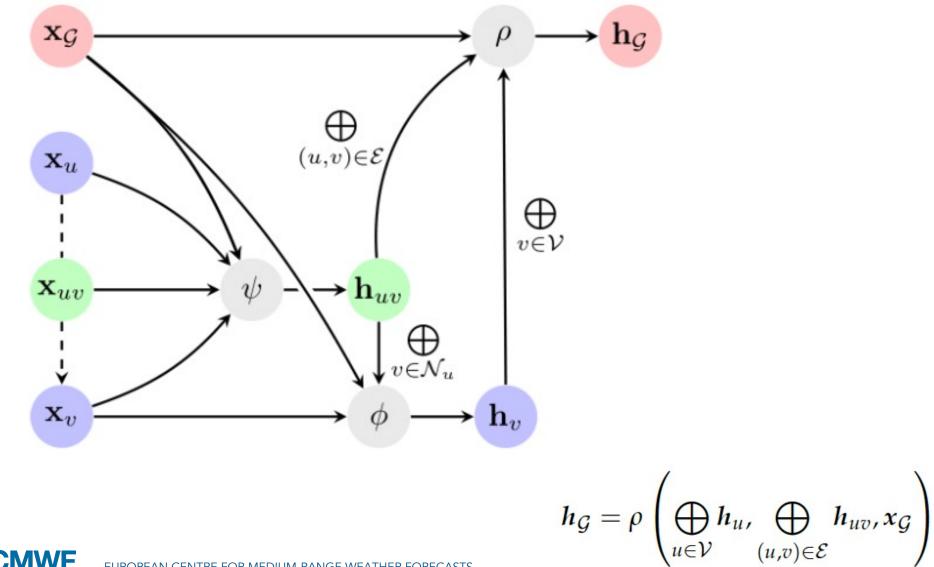
$$h_{i} = \phi(\mathbf{x}_{i}, \bigoplus_{j \in \mathcal{N}_{i}} \psi(\mathbf{x}_{i}, \mathbf{x}_{j}, e_{ij}))$$
$$\mathbf{m}_{ij} := \psi(\mathbf{x}_{i}, \mathbf{x}_{j}, e_{ij}).$$

Message-passing GNNs

Features (= information associated with elements of our graph)

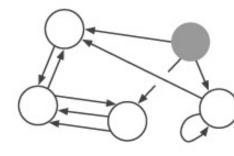


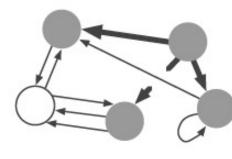

The message-passing algorithm

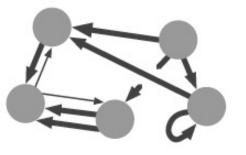

Step 1: Edge updates

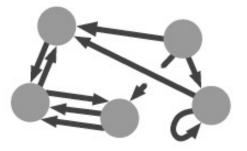
Step 2: Node updates

Step 3: Graph feature updates

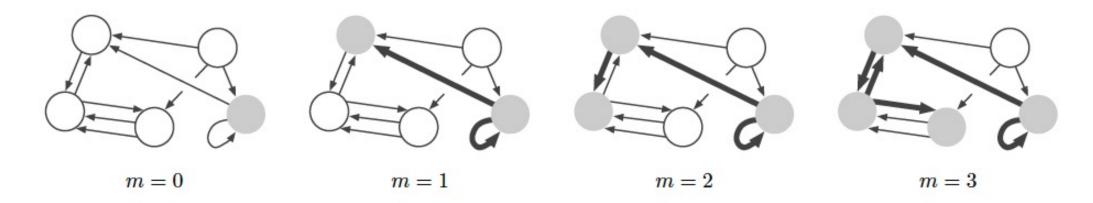





EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS


Input: Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with $\{x_{\mathcal{G}}, h_u, h_{uv}\}$. **for** each edge e_{uv} **do** Gather sender and receiver nodes x_u , x_v Update edge $h_{uv} \leftarrow \psi(x_u, x_v, x_{uv}, x_G)$ end for for each node *u* do Aggregate all incoming edges to $u: h_u^* := \bigoplus_{v,(v,u) \in \mathcal{E}} h_{vu}$ Compute node-wise features $h_u \leftarrow \phi(x_u, h_u^*, x_G)$ end for Aggregate all edges and nodes $u^* := \bigoplus_{u \in \mathcal{V}} h_u$, $e^* := \bigoplus_{(u,v) \in \mathcal{E}} h_{uv}$ Compute global features $h_G \leftarrow \rho(x_G, u^*, e^*)$ **Output:** Graph \mathcal{G} with new $\{x_{\mathcal{G}}, h_u, h_{uv}\}$.

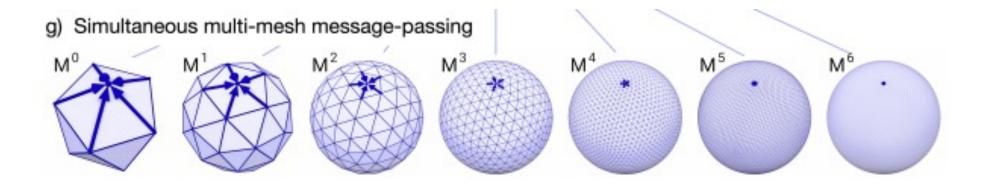
Message passing: information propagation



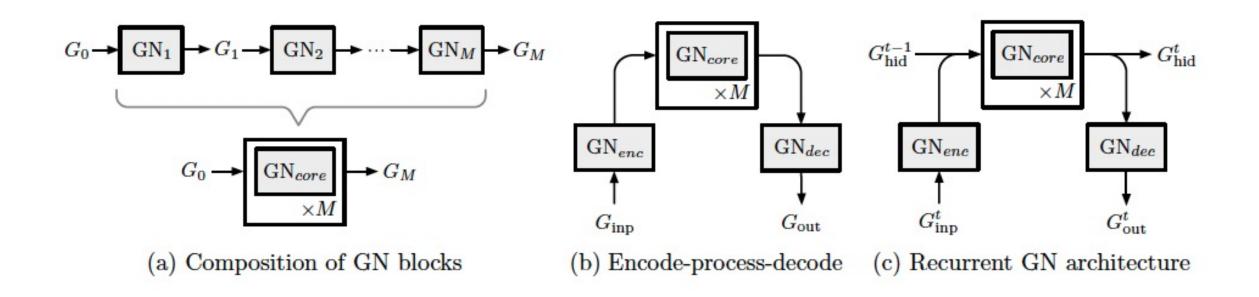
m = 0

m = 1

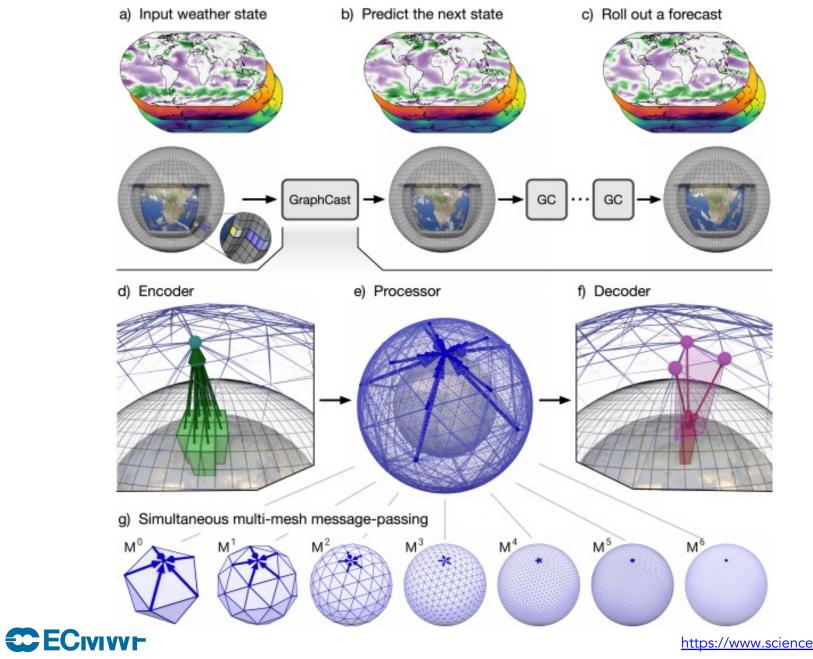
m = 2


m = 3

NB: This happens simultaneously for all nodes in the graph!



The multi-mesh allows information to propagate faster, across longer distances



GN block structures

Graphcast and AIFS use both (a) and (b)

https://www.science.org/doi/10.1126/science.adi2336 https://arxiv.org/abs/2212.12794

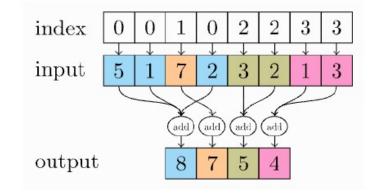
Software

https://github.com/pyg-team/pytorch_geometric

https://www.dgl.ai/

https://graphneural.network/

https://github.com/google-deepmind/jraph


https://github.com/tensorflow/gnn

pytorch-geometric: MessagePassing

Pytorch geometric's MessagePassing class implements message passing as follows:

- 1. message() implements the MLP ϕ that is to say, it constructs a message $u_i \rightarrow u_i$ for each edge in the edge index
- update() implements φ; it concatenates all inputs before passing them through the MLP
- 3. aggregate() implements the aggregation logic over a neighborhood, i.e. the $\bigoplus_{j \in N_i}$ operator using a GPU-accelerated *scatter* operation
- propagate() is the initial call to start propagating a message through the graph

Transformers are fully connected GNNs (+ a positional embedding)

 $h_u = \phi\left(x_u, \bigoplus_{v \in \mathcal{V}} \alpha(x_u, x_v)\psi(x_v)\right)$

 $A = 11^{T}$

 $\mathcal{N}_u = \mathcal{V}_u$

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Chaitanya Joshi. Transformers are graph neural networks. The Gradient, 2020.

is	is		
in	in		
this	this		
spirit	spirit		
that	that		
a	a		
majority	majority		
of	of		
American	American		
governments	governments		
have	have		
passed	passed		
new	new		
laws	laws		
since	since		
2009	2009		
making	making		
making	making the		
the	the		
the registration	the registration		
the registration or	the registration or		
the registration or voting	the registration or voting		
the registration or voting process	the registration or voting process		
the registration or voting process	the registration or voting process more		
the registration or voting process	the registration or voting process more		
the registration or voting process more difficult	the registration or voting process more difficult		
the registration or voting process more difficult <eos></eos>	the registration or voting process more difficult		
the registration or voting process more difficult <eos> <pad></pad></eos>	the registration or voting process more difficult <eos> <pad></pad></eos>		
the registration or voting process more difficult <eos> <pad> <pad></pad></pad></eos>	the registration or voting process more difficult <eos> <pad> <pad></pad></pad></eos>		
the registration or voting process more difficult <eos> <pad> <pad> <pad></pad></pad></pad></eos>	the registration or voting process more difficult <eos> <pad> <pad> <pad></pad></pad></pad></eos>		
the registration or voting process more difficult <eos> <pad> <pad> <pad> <pad> <pad></pad></pad></pad></pad></pad></eos>	the registration or voting process more difficult <eos> <pad> <pad> <pad> <pad> <pad></pad></pad></pad></pad></pad></eos>		

It

lt

Further references

(Veličković, 2023) https://arxiv.org/pdf/2301.08210.pdf

(Keisler, 2022) <u>https://arxiv.org/abs/2202.07575</u>

(Lam et al., 2023) <u>https://arxiv.org/abs/2212.12794</u>

(Sanchez-Lengeling et al., 2021) <u>https://distill.pub/2021/gnn-intro/</u>

(Veličković, 2023) https://geometricdeeplearning.com/lectures/

(Battaglia et al., 2018) https://arxiv.org/abs/1806.01261

(Sanchez-Gonzalez et al., 2020) <u>https://arxiv.org/abs/2002.09405</u>

