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The importance of data assimilation in data-driven weather forecasting

• Training data
– Sequences of gridded atmospheric and 

surface state variables

– E.g. Graphcast was trained on ERA5 
from 1978 to 2018 

• Initial conditions
– The current state of the atmosphere, 

from which we can start a forecast

– E.g. to forecast the week ahead, we 
need to know the current state of the 
atmosphere and surface right now.
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Train a data 
driven model
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Why data assimilation?



Making a map of the atmosphere from irregularly spaced observations
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• What can we use to help?

– Physics: the known 
equations of the 
atmosphere

– Prior knowledge: the 
previous forecast for today

– Statistics: the relative size 
of errors in the 
observations and the 
previous forecast



Making a map of the atmosphere from irregularly spaced observations
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Analysis (best estimate of the 
current state of the 

atmosphere)
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The closest to a step-
change in ECMWF forecast 
skill: a few years following 
the introduction of 3D and 
4D variational data 
assimilation (4D-Var)

• The ability to assimilate 
satellite radiances directly 
as radiances (rather than 
retrievals)

• The use of a physical 
forecast model trajectory 
as part of the data 
assimilation process



The inverse problem: using indirect observations of the state
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Ocean surface

Layers of 
atmosphere 

with different 
temperatures

At its simplest – a 
satellite radiance 
observation is a 
weighted average 
of the temperature 
in different 
atmospheric and 
surface temperature 
layers

Contribution of 
temperature in each level



The inverse problem

8EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

𝑦 = ℎ

𝑥!
𝑥"
𝑥#
𝑥$
𝑥%
𝑥…

One observation Depends on many state 
variables of the earth system



Observations used in operational data assimilation – by 
relative impact on the 24 hour forecast quality (FSOI)
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Indirect observations 
provide the majority of 
the forecast impact



Number and diversity of observations
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Surface based 
(“conventional”) 
observation types – 
balloons, ground 
stations, aircraft, 
ships…

Number of new 
observations used 
every 12 hours



Number and diversity of observations
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Satellites part I: 
winds from lidar, 
image tracking 
(AMV) and ocean 
surface 
scatterometry,
Radio occultation 
(GPSRO)

Number of new 
observations used 
every 12 hours



Number and diversity of observations
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Satellites part 2: 
Radiances at 
microwave and 
infrared 
wavelengths

Number of new 
observations used 
every 12 hours

… approximately 16 
million across all 
observation types

… about 10 days of 
observations are needed to 
make the best analysis: 
approximately 300 million 
observations
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What is data assimilation?



Data assimilation ↔ dynamical systems, control theory, statistical physics etc.
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synchronise (e.g. DA) predict

True system (e.g. Lorenz ’63)

Imperfectly known model 



Data assimilation
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Data assimilation
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atmosphere



© ECMWF March 22, 2024

The inverse problem



Atmospheric temperature, water vapour, 
wind, cloud, precipitation

Skin and substrate temperature and 
moisture

Ocean wind, waves, foam

Sea-ice

Snowpack

Ice

Vegetation

Soil 
SSMIS F-17 channel 13 (19 GHz, v)
Microwave brightness temperatures

3rd December 2014

Physical forward model

𝑦 = ℎ

𝑥!
𝑥"
𝑥#
𝑥$
𝑥%
𝑥…

Satellite observations                                                                      Geophysical variables

Forward 
function / 
observation 
operator / 
observation 
model



Gas spectroscopy

Scattering from hydrometeors

Cloud and precipitation micro and 
macro-structure

Snow / ice grain size and structure

…..

SSMIS F-17 channel 13 (19 GHz, v)
Microwave brightness temperatures

3rd December 2014

𝑦 = ℎ

𝑥!
𝑥"
𝑥#
𝑥$
𝑥%
𝑥…

,

𝑤!
𝑤"
𝑤#
𝑤$
𝑤%
𝑤…

	

Physical forward model

Satellite observations                      Geophysical variables

Forward 
function

Equations & parameters – 
where sometimes knowledge 
is quite uncertain



The forward and 
inverse problem
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𝑥, 𝑤 = ℎ!"	(𝑦) Inverse model

The best that observations can do is to provide a 
statistical improvement in our knowledge of x and w

No unique solution: ill-posed

𝑦 = ℎ(𝑥, 𝑤)
Forward model

Geophysical 
state

Model 
parameters

Observations



The inverse problem solved by Bayes theorem
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𝑃(𝑥, 𝑤|𝑦) = 𝐾	(𝑦, 𝑃 𝑦|𝑥, 𝑤 , 𝑃(𝑥, 𝑤))
Probabilistic equivalent of 

the forward model h()

Geophysical 
state

Model 
parameters

Bayes 
theorem

Observations

(Posterior) Probability of x and w given y Prior probability of x and w 



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Cost function for variational DA

22

Cost function

Assume Gaussian errors (error standard deviation 𝜎) 
and for clarity here simplify to scalar variables
and ignore any covariance between observation, model or state error

Observation termDA Prior knowledge of 
state

Prior knowledge of 
model



© ECMWF March 22, 2024

Links to machine learning
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Cost / loss function equivalence of ML and variational DA

24

Cost function

Assume Gaussian errors (error standard deviation 𝜎) 
and for clarity here simplify to scalar variables
and ignore any covariance between observation, model or state error

Loss function

Observation termDA

ML
Basic loss 
function

Prior knowledge of 
state

Weights 
regularisation

Prior knowledge of 
model

Feature 
error?



Machine learning (e.g. NN)                        Variational data assimilation
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Labels y Observations y!

Features x State x

Neural network or other 
learned models

y′ = 𝑊 x Physical forward 
model

y = 𝐻 x

Objective or loss  
function

y − y′ " Cost function 𝐽 = 𝐽# + y! − 𝐻 x $R%& y! − 𝐻 x

Regularisation w Background term 𝐽# = x − x' $B%& x − x'

Iterative gradient descent Conjugate gradient method (e.g.)

Back propagation Adjoint model 𝜕𝐽
𝜕x

= H$
𝜕𝐽
𝜕y

Train model and then apply it Optimise state in an update-forecast cycle



Bayesian equivalence of ML and DA
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https://doi.org/10.1162/neco_a_01094

https://arxiv.org/abs/2001.06270

https://doi.org/10.1175/1520-0477(1998)079%3C1855:ANNMTP%3E2.0.CO;2

https://doi.org/10.21957/7fyj2811rGeer (2021)
Bocquet et al. (2020)

Abarbanel et al. (2018)
Hsieh and Tang (1998)

Goodfellow et al. (2016) https://www.deeplearningbook.org

As a Bayesian network

𝑦 = ℎ(𝑥, 𝑤)

https://doi.org/10.1162/neco_a_01094
https://arxiv.org/abs/2001.06270
https://doi.org/10.1175/1520-0477(1998)079%3C1855:ANNMTP%3E2.0.CO;2
https://doi.org/10.21957/7fyj2811r
https://www.deeplearningbook.org/
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How can machine learning and data 
assimilation help each other?



Use ML to extend data assimilation capabilities
• In variational data assimilation:

– Use machine learning emulators as an alternative numerical differentiation 
method to create tangent-linear (TL) and adjoint (AD) operators

• e.g. Hatfield et al., 2021, https://doi.org/10.1029/2021MS002521, emulate a gravity 
wave drag scheme for use in TL and AD only

• In ensemble data assimilation
– Use machine learning emulators to generate very large ensembles

• E.g. Chattopadhyay et al. , 2021, GMDD, https://doi.org/10.5194/gmd-2021-71, 
generate a 1000-member ensemble

• Data assimilation in the latent space of an encoder-decoder
– E.g. Amendola et al., 2020, Data assimilation in the latent space of a neural 

network, https://arxiv.org/abs/2012.12056

– E.g. Peyron et al., 2021, Latent space data assimilation by using deep learning 
https://arxiv.org/abs/2104.00430 
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https://doi.org/10.1029/2021MS002521
https://doi.org/10.5194/gmd-2021-71
https://arxiv.org/abs/2104.00430


Use data assimilation to learn directly from observations

29
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m() m()x2x1 x3

h()

y1 y2

h()

Physical observation 
operator and physical 
data assimilation 
framework

Data driven model for the atmosphere 
which is learned simultaneously with 
the atmospheric state

• Simultaneous estimation of the initial conditions, NN 
parameters and dynamical parameters of a model (e.g. 
Lorenz ’63) using data assimilation (Hsieh and Tang, 2001, 
https://doi.org/10.1175/1520-0493(2001)129<0818:CNNTID>2.0.CO;2)

• Use iterative cycles of data assimilation followed by 
neural network training (Brajard et al., 2020, 
https://doi.org/10.1016/j.jocs.2020.101171)

https://doi.org/10.1175/1520-0493(2001)129%3c0818:CNNTID%3e2.0.CO;2
https://doi.org/10.1016/j.jocs.2020.101171


Use machine learning to replace data assimilation altogether
• Stephan Rasp’s “big shark” at ISDA online - https://www.youtube.com/watch?v=CoiVfwJU4TY
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https://www.youtube.com/watch?v=CoiVfwJU4TY


Direct observation prediction – a new project at ECMWF

Tony McNally et al. (2024, ECMWF newsletter) - https://www.ecmwf.int/en/newsletter/178/earth-system-science/red-sky-night-producing-weather-forecasts-directly
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12 UTC 22nd Mar 2024  00 UTC 23rd Mar 2024  

https://www.ecmwf.int/en/newsletter/178/earth-system-science/red-sky-night-producing-weather-forecasts-directly


© ECMWF March 22, 2024

Hybrid empirical-physical modelling



Combine physical and empirical models: Physically constrained ML
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https://github.com/maziarraissi/PINNs
Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis. "Physics Informed Deep 
Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations." 
arXiv preprint arXiv:1711.10561 (2017)

Custom loss function

Neural network

Burger’s equation 𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 − 𝜐

𝜕"𝑢
𝜕𝑥" = 0

Gradients of the network

https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10561


Hybrid physics – machine learning: "Neural GCM"
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Kochkov et al. (2023) Neural General Circulation Models https://doi.org/10.48550/arXiv.2311.07222

Trained on data assimilation outputs (ERA5)

m() x2x1

Physical dynamical 
core

nn()

ODE 
solver

Neural network to 
represent model 

physics (and correct 
model error)

https://doi.org/10.48550/arXiv.2311.07222


Hybrid physics – machine learning: ”Model error correction"
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See Massimo Bonavita’s lecture

m() x2x1

Complete physical 
forecast model

nn()

+

Neural network to 
correct model error



Combine physical and empirical models: parameter estimation
• Parameter estimation in data assimilation

– E.g. Kotsuki et al. (2020, 
https://doi.org/10.1029/2019JD031304)  
estimation of autoconversion parameter in 
atmospheric GCM 
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https://doi.org/10.1029/2019JD031304
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Hybrid empirical-physical modelling
A more granular (network) approach



Inside an atmospheric model & data assimilation timestep
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One model 
time-step



Learning an improved model of cloud physics (ML or DA)
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We want to train a model against observations, but we 
cannot directly observe gridded intermediate states 𝑥&.&
and 𝑥&." … or more precisely model tendencies …



Inside an atmospheric model
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… so train the model inside 
the data assimilation system
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Hybrid data assimilation and 
machine learning
Sea ice example
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A trainable empirical-physical network for sea ice assimilation
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Fixed parameter

Dependent parameter

Trainable parameter

AMSR2 observations

Mixed surface 
emissivity

Known atmosphere 
radiative transfer

Map of sea ice 
fraction to be 

estimated

Maps of empirical 
parameters 

representing 
unknown sea ice 

state including 
microstructure h() Interpolation operator: map to 

observation location in time and 
space

w – trainable weights of NN 
model for sea ice

Known water surface emissivity

Geolocation
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Built in Python and Tensorflow
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https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py

A standard dense neural network layer with 
linear activations

Custom loss functions to regularise / constrain the solution

https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
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Empirical sea ice emissivity model used to retrieve sea ice concentration 
in atmospheric 4D-Var and to allow radiance assimilation over sea ice
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RTTOV all-sky 
radiative 
transfer model

AMSR2 and 
GMI microwave 
imager 
observations

Neural network weights trained in 
previous step are now held fixed

Sea ice 
concentration and 
three empirical 
parameters 
retrieved at 
observation 
locations

Atmosphere is also updated in 4D-Var, also 
with the benefit of all other observations, and 
can be improved by observations over sea ice
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Forecast impact - temperature
(blue = reduced error; +++ = statistical significance)

45

Improved temperature 
forecasts out to 72 hours in 
the Southern Ocean



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Sea ice fraction retrieval: rapid freezing 7th Nov 2020
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New retrieval from 
AMSR2 using a hybrid 
physical – empirical 
observation operator

Current IFS (OCEAN5)

Sea ice 
concentration

Difference in sea ice 
concentration

Existing ECMWF sea 
ice analysis



Summary: generating new empirical models using ML and DA

• Typical machine learning and variational data assimilation are similar implementations of Bayes’ theorem
• Including known physics into a trainable network is a way of adding prior information in a Bayesian sense
• Existing data assimilation approaches can be very helpful in machine learning:

• Physically-based loss functions
• Physically-based observation (label) and background (feature) errors
• Observation operators to map from grid to irregular and transformed observation space (e.g. satellite radiances)

• Data assimilation frameworks (e.g. weather forecasting) are evolving to be able to train and update empirical models 
(e.g. neural networks) as part of routine data assimilation activities

– E.g. model error correction: don’t throw away the physical model – improve it!
– E.g. assimilation of microwave observations sensitive to sea ice – a hybrid ML-DA component in cycle 49r1 
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Machine learning 
with physical 
constraints

Data assimilation 
with parameter 

estimation
Machine learning 

and data 
assimilation: hybrid 
physical-empirical 

networks


