ECMWF — DESTINATION
EARTH

MASSIVELY PARALLEL COMPUTING
FOR NWP AND CLIMATE

Andreas Muller, ECMWEF

Funded by

the European Union DEStination Earth implemented by _CECMWF @esa G EUMETSAT

*
x F
* *
LI

Announcement

Virtual machines (traininglab™*.ecmwf.europeanweather.cloud)
will be deleted on Monday morning!

Option 1: Option 2:

 Inside Jupyterlab start X11 Desktop * |og in to Jupyterlab from your
connection personal laptop

* open Web Browser (Earth icon in the dock) * drag and drop from the file

browser in Jupyterlab (left panel)

* |log in to some online account that you own
to your laptop

(Google drive, Dropbox, webmall, ...)

* drag and drop files into your online account

~ ECMWF 2

Overview

* Why do scientists need to know so much
about computer hardware?

 What do we need to be aware of to write
efficient code?

* How good are we?

~ ECMWF 3

Why do we as scientists need to know so
much about computer hardware?

~ ECMWF 4

Why do we as scientists need to know so much about computer hardware?

*Excuse 1: let the software engineers take care of it

*Response: software engineers cannot do everything because
they do not know about different numerical methods

~ ECMWF 5

Why do we as scientists need to know so much about computer hardware?

*Excuse 1: let the software engineers take care of it

*Response: software engineers cannot do everything because
they do not know about different numerical methods

*Excuse 2: just buy a faster computer if the code is not fast enough

*Response: we (and the environment) cannot afford wasting
that much energy!

computer electricity cost per year
ECMWF ~5 million £
fastest current supercomputers ~20 million S

~ ECMWF 5

Supercomputer/Cluster

nodes

network

Node

memory (DRAM) CPU

central processing unit;
CPU CPU CPU dOES one instruction like
c=a+tb per clock cycle

< ECMWF o

CPU clock rate over time

x e
: .
10 o

1 GHz
0.1
]
a -
o 8
a
0.01 &
S
(]
O
0.001
B O
]
0.0001

1971 1976 1981 1986 1991 1996 2001 2006 2011 2016

c ECMWF source: James Reinders, Intel Xeon Phi

Number of cores per chip over time
e \d M// p

256
Threads

.| Cores
128

64 - —'

32 =

16 -

14 [D D e oo
1971 1976 1981 1986 1991 1996 2001 2006 2011 2016

c ECMWF source: James Reinders, Intel Xeon Phi 8

http://top500.0rg

Rmax Rpeak Powe >
Rank System Cores (PFlop/s) (PFlop/s) (kW)
1 Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation 8,699,904 1,206.00 1,714.81 22,786
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
DOE/SC/0Oak Ridge National Laboratory
United States
2 Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon 9,264,128 1,012.00 1,980.01 38,698
CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max,
Slingshot-11, Intel
DOE/SC/Argonne National Laboratory
United States
3 Eagle - Microsoft NDv9, Xeon Platinum 8480C 48C 2GHz, 2,073,600 561.20 846.84

NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure

Microsoft Azure
United States

4 Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 7,630,848 442.01 o)
2.2GHz, Tofu interconnect D, Fujitsu

500

RIKEN Center for Computational Science

Japan The List.
5 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 2,752,704 379.70 531.51 7,107
64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
~~ ECMWF EuroHPC/CSC 9

Finland

What comes next?

finer resolution
computing/energy

resources

add more processes (e.g.
chemistry)

more ensemble
members

< ECMWF 10

What comes next?

finer resolution

X 10 in each computing/energy add more processes (e.g.
direction and time resources chemistry)
=10,000

1,000,00(1

more ensemble
members

x 10
& ECMWF 1

n
<
=
O
LL]
©
o
=
5
o)
-
O
O

12

(S/d0141L) @>uewuopiad pauieisng

_105

M — | |

(- - o o o o

L L w— w— w— L
| | | | I |

2030

Atos Sequana XH2000
WX 6

Cray XC40

Cray XC30
WX 91 IBM Power7 775

IBM Power6 575

2020

2010

IBM Power5+ 575

IBM Power4d+ 690
IBM Power4 690

Year

Fujitsu VPP5000/100

2000

Cray Y-MP8/8-64

Cray X-MP/48

Cray X-MP/22

1990

1980

102_
100_

_ ! _

00 e <
- - -
L h

N

1010_

sjulod plI8 [opow Jo JaquinN

ECMWF

 aa
\ 4

What do we need to be aware of to write efficient code?

< ECMWF 13

Recommendations

< ECMWF 14

Libraries

* there are well optimised libraries
for many tasks

 BLAS for vector-matrix product or
matrix-matrix product (if matrices
are large)

Intel’

Math Kernel
Library

» Lapack for matrix factorisation (e.g.
LU decomposition)

2
Kl
—
3
o
-
7
3
-
s
<

e FFTW for Fast Fourier Transform

e some hardware vendors have
special math libraries, e.g. MKL by
Intel

» there are some cases in which
libraries are fairly slow (e.g. BLAS
with very small matrices)

< ECMWF 15

Recommendations

* try to use well optimized libraries

< ECMWF 16

Compiler optimisation

- compilers have optimisation flag -On (O0: no optimisation, O3: strong
compiler optimisation)

* O3 is usually much faster than O2, but it can also be slower than O2

* O3 can produce completely wrong results!

*you can use different compiler flags for different files

» different compiler versions can have very different performance

» check compiler messages (Intel: ifort -O2 -qopt-report=2 code.f90 -0 program)

* make sure that your code runs correctly with different compilers

< ECMWF 17

Recommendations

* try to use well optimized libraries
* try to use compiler optimisation (be careful!)

< ECMWF 18

Supercomputer/Cluster

nodes

network

Node

memory (DRAM)

I CPU I CPU I CPU I

< ECMWF

Bottlenecks

e network (connection
between nodes)

e connection between
DRAM and processor

19

Recommendations

* try to use well optimized libraries
» try to use compiler optimisation (be careful!)
- avoid unnecessary computation and communication

< ECMWF 20

Shared memory:. OpenMP

* many threads of a process run on a without OpenMP:
single node g N - ab
e all threads can access the same data Eﬁgeéer,l??nil;n() 1,
» data may be physically distributed, do i=1,N |
but logically shared a(i) = a(i) + b(i)
end do

with OpenMP:

real, dimension(N) :: a,b
integer :: 1,N

1$omp parallel do private(i)
do 1=1,N

a(1) = a(1) + b(1)

end do

1$omp end parallel do

< ECMWF 21

Shared memory:. OpenMP

without OpenMP:
faster for bigger codes:

real, dimension(N) :: a,b
real, dimension(N) :: a,b integer :: 1,N
integer :: i, N, iStart, iEnd, do 1=1,N |
myid, numthreads a(i) = a(i) + b(1)

end do

1$omp parallel private(i,iStart,iEnd)
myid = omp_get_thread_num()
numthreads = omp_get_num_threads()

with OpenMP:

1Start = ... real, dimension(N) :: a,b
1End = ... integer :: 1,N

do i=1iStart,iEnd 1$omp parallel do private(i)
a(i) = a(i) + b(i) do i=1,N

end do a(1) = a(1) + b(1)

I$omp end parallel end do

l$omp end parallel do

~ ECMWF 2

Recommendations

* try to use well optimized libraries

» try to use compiler optimisation (be careful!)

 avoid unnecessary computation and communication
 give each thread as much work as possible

< ECMWF 23

Shared memory:. OpenMP

without OpenMP:

real, dimension(N) :: a
real :: sum

integer :: 1,N

do 1=1,N

sum = sum + a(i)

end do

with OpenMP (wrong!):

real, dimension(N) :: a

real :: sum

integer :: 1,N

1$omp parallel do private(i)
do 1=1,N

sum = sum + a(1)

end do

1$omp end parallel do

< ECMWF

working, but slow:

real, dimension(N) :: a
real :: sum

1$omp parallel do private(i)
do 1=1,N

1 $omp atomic

sum = sum + a(1)
end do

l$omp end parallel do

faster:
real, dimension(N) :: a
real :: sum

1$omp parallel do private(i’
reduction (+: sum)

do 1=1,N

sum = sum + a(1)

end do

I$omp end parallel do

24

Shared memory:. OpenMP

Example 2: race conditions

best: arrange work such that different threads work on different data

orange (nhon-
EECMWF :

Recommendations

* try to use well optimized libraries

» try to use compiler optimisation (be careful!)

 avoid unnecessary computation and communication

* give each thread as much work as possible

* let the threads do work that does not affect others

< ECMWF 26

Distributed memory: MPI

\ e
i 7

* many processes run on mu|tip|e integer :: len, destination, tag, nreg
nodes comm = mpi_comm_world

call mpi_init(ierr)
call mpi_comm_rank(comm, myid, 1ierr)
call mpi_comm_size(comm, numproc, ierr)

* process can access only data on the
node it Is running on

* use communication library MPI nreq = 0
(Message Passing Interface) to access .
data on other nodes do i=1,N ! loop over processors with which we
want to communicate

destination = ...
nreq = nreq + 1
call mpi_irecv(recvdata, len, mpi_real,
destination, tag, comm, request(nreq), 1ierr)
nreq = nreq + 1
call mpi_isend(senddata, len, mpi_real,
destination, tag, comm, request(nreq), 1err)
end do
. do some work ...
call mpi_waitall(nreq, request, status, ierr)
call mpi_finalize(ierr)

< ECMWF 27

Overlap communication and computation

« Example: grid point method with only
next neighbour communication:

1. Initlate communicationtosendand = @l Al el el i
receive data for boundary points
(orange)

2. compute interior points while the
data is on its way (green)

3. compute boundary points (orange)
once data has arrived

* try to reduce the physical distance that
data needs to travel (difficult)

< ECMWF 28

Overlap communication and computation

« Example: grid point method with only
next neighbour communication:

1. Initlate communicationtosendand = @l Al el el i
receive data for boundary points
(orange)

2. compute interior points while the
data is on its way (green)

3. compute boundary points (orange)
once data has arrived

* try to reduce the physical distance that
data needs to travel (difficult)

< ECMWF 28

Recommendations

* try to use well optimized libraries

» try to use compiler optimisation (be careful!)

 avoid unnecessary computation and communication
» give each thread as much work as possible

* let the threads do work that does not affect others

» overlap computation and communication

< ECMWF 20

Use data once per time-step

bad example: good:
real, dimension(N) :: a,b real, dimension(N) :: a,b
real :: sum real :: sum
integer :: 1i,N 1nteger :: 1,N
sum = 0.0 sum = 0.0
a=.0 dO 'i_=1,N
30=i®i®N atr) = 2.9
S b(1) =1
b(1) =1 a(1) = a(1) + b(1)
end do B (1)
do i=1.N SEPCF sum + a(i
a(i) = a(i) + b(i) =ne a9
end do print*,sum
do 1=1,N
sum = sum + a(1)
end do

S ECMWF print*,sum 30

Recommendations

* try to use well optimized libraries

» try to use compiler optimisation (be careful!)

 avoid unnecessary computation and communication
* give each thread as much work as possible

* let the threads do work that does not affect others

» overlap computation and communication

* use data only once per time-step

< ECMWF 3

Contiguous memory access

memory

JITTTITTTITTTITTITITTITT

+ cache line
(often |28 Bytes)

HENEEEEEEEEEEEEEE

store data in the order in which you need it
and use it in this order!

< ECMWF

ShEaCE

7 A
\a 5

Fortran (column major ordef):

real, dimension(N,M) :: a,b
integer :: 1,3j,N,M

do j=1,M

do 1=1,N

G(i,j) — G(i,j) + b(i,j)
| fast i1ndex should be 1
end do
end do

C (row major order):

int 1,3,N,M;

for (1=0; 1<N; 1++) {

for (3=0; J<M; J++) {
al1][3J] = al1][3] + b[1]1[3]
// fast index should be j

5

5

32

Recommendations

* try to use well optimized libraries

» try to use compiler optimisation (be careful!)

 avoid unnecessary computation and communication
» give each thread as much work as possible

* let the threads do work that does not affect others

» overlap computation and communication

* use data only once per time-step

» contiguous memory access

< ECMWF 33

Supercomputer/Cluster

nodes

network

Node

memory (DRAM) CPU

central processing unit;
CPU CPU CPU dois one instruction like
c=atb per clock cycle

< ECMWF y

Memory hierarchy inside one node

< ECMWF

Socket 1

Registers/Buffers
~1 cycle <1ns

Socket 2

~3 cycles ~1ns
w ~12 cycles ~3ns
L3 ~38 cycles ~12ns L3
| ‘ QPI ~40ns ‘ |
DRAM DRAM
DRAM DRAM
~B5ns
DRAM DRAM
DRAM DRAM

35

CPU

4
e ————————————— -

Size of memory

< ECMWF

Increasing distance from CPU = larger access time

/Example: \

L1: 32 kB, latency 3 cycles

L2: 256 kB, latency 10 cycles

L3: 8MB, latency 40 cycles
DRAM: 16GB, latency 200 cycles

DISK: 1TB, latency 1.000.000 cycles

36

Recommendations

* try to use well optimized libraries

» try to use compiler optimisation (be careful!)

 avoid unnecessary computation and communication
» give each thread as much work as possible

* let the threads do work that does not affect others

» overlap computation and communication

* use data only once per time-step

* contiguous memory access

* try to fit data into cache

< ECMWF 37

Supercomputer/Cluster

nodes

network

Node

memory (DRAM)

I CPU I CPU I CPU I

< ECMWF

Bottlenecks

e network (connection
between nodes)

e connection between
DRAM and processor

38

Fast and slow operations

* |n terms of cost

» Fast and inexpensive: add, multiply, sub, fma (fused multiply add)
* Medium: divide, modulus, sqrt

» Slow: power, trigonometric functions

* try linear algebra (BLAS, LAPACK) and math libraries (Intel MKL)

< ECMWF 30

Vectorisation

SIMD = single instruction multiple data

Scalar Operation SIMD Operation

o-3- &

important: data needs to be
contiguous in memory

~ ECMWF 40

Vectorisation

Initial version:

|l real :: rho, rho_x, rho_y, rho_z, u, v, w, rhs
do e=1,num_elem ! loop through all elements

do 1=1,num _points_e ! loop through all points of

the element e
' compute derivatives rho_x, rho_y, rho_z
rhs = uxrho_x + vxrho_y + wxrho_z +

end do !1

end do !e

UNIN\

~N O\ D &

optimised for compiler vectorisation:

real, dimension (num_points_e) :: rho, rho_x, rho_vy, &
rho z, u, v, w, rhs
do e=1,num_elem ! loop through all elements
' compute derivatives 1like rho_x, rho_y, rho_z
rhs = uxrho_x + v*rho_y + wxrho_z +
end do '!e

< ECMWF #

AN D B W =

Vectorisation

Initial version:

|l real :: rho, rho_x, rho_y, rho_z, u, v, w, rhs
do e=1,num_elem ! loop through all elements
do 1=1,num _points_e ! loop through all points of
the element e
' compute derivatives rho_x, rho_y, rho_z v T
rhs = uxrho_x + vxrho_y + wxrho_z + ... ,z%“"w ""

end do !i _ 945
end do !e ‘4.4% VeCtOr

UNIN\

~N O\ D &

optimised for compiler vectorisation: e S

real, dimension (num_points_e) :: rho, rho_x, rho_vy, &
rho z, u, v, w, rhs
do e=1,num_elem ! loop through all elements
' compute derivatives 1like rho_x, rho_y, rho_z
rhs = uxrho_x + v*rho_y + wxrho_z +
end do '!e

AN D B W =

< ECMWF

measurements: spectral element model NUMA, NPS

vector intrinsics (here for BG/Q)

| real, dimension(4,4,4) rho, rho_x, rho_y, &

2 rho_z, u, v, w, Uu_X, V._y, W_z, rhs

3 'TBM* align (32, rho, rho_x, rho_y, rho_z, u, v, w,
u_xXx, VvV_y, W_Z, rhs)

4 ' declare variables representing reglsters: (each

contains four double precision floating point
numbers)

5 wvector(real(8)) vct_rho, vct_rhox, vct_rhoy, vct_rhoz
6 vector(real(8)) wvct_u, vct_ v, vct_w, vct _rhs
7 if (iand(loc(rho), z’"1F’) .ne. 0) stop ’'rho is not
aligned’
3 ' check alignment of other variables
9 do e=1,num_elem ! loop through all elements
10 do k=1,4 ! loop over points in z-direction
11 do j=1,4 ! loop over points in y-direction
12 | compute derivatives rho_x,
13 ' load always four floating point numbers:
14 vct_u = vec_1d (0, u(l, j,k))
15 vct_v = vec_1d(0, v(1,3,k))
16 vct_w = vec_1d(0, w(l,j,k))
17 vct_rhox = vec_1d (0, rho_x(1,3,k))
18 vct_rhoy = vec_1d(0, rho_v (1, j,k))
< ECMWF 9 vet_rhoz = vec_1d(0, rho_z(1,73,k))
20 ' rhs = u*xrho x

vector intrinsics (here for BG/Q)

NN e A S/ 8y

11 do 3J=1,4 ! loop over polnts 1n y—-direction e E
12 | compute derivatives rho_Xx,

13 l load always four floating point numbers:
14 vct_u = vec_1d(0, u(l, j,k))

15 vct_v = vec_1d(0, v (1, 7,k))

16 vct_w = vec_1d(0, w(l,], k))

17 vct_rhox = vec_1d(0, rho_x(1,3,k))

18 vct_rhoy = wvec_1d(0, rho_vy (1, j,k))

19 vct_rhoz = vec_1d (0, rho_z (1, 3j,k))

20 l rhs = u*rho x

21 vct_rhs = vec _mul (vct_u,vct _rhox)

22 ' rhs = rhs + v*rho_ vy

23 vct_rhs = vec_madd(vct_v,vct_rhoy,vct_rhs)
24 l rhs = rhs + wxrho z

25 vct _rhs = vec _madd(vct_w,vct rhoz,vct _rhs)
26 l write result from register into cache:
27 call vec_st (vct_rhs, 0, rhs(1l, 3,k))

28 . ..

29 end do !j

30 end do 'k

31 end do !e

c ECMWF measurements: spectral element model NUMA, NPS 44

Vectorization in IFS

horizontal grid columns often independent of each other

=> idea: use block of NPROMA columns for vectorization
RAPS18 45R1 tco399

NPROMA: block size b
NBLOCK: block number
total number of grid columns: 1.4 -
NGPTOT = NPROMA * NBLOCK -
real :: array(NPROMA ,NLEVELS ,NBLOCK) 3 13-
do bl = 1, NBLOCKS i
do lev = 1, NLEVELS =
do jl = 1, NPROMA 2
array(jl, leyv, bl) = <expression > 1.1
end do
end do sl I I A A N B A
end do - 8 12 16 32 64 128 256 512

NPROMA

~ ECMWF 4

GPU (Graphics Processing Unit)

* small number of instructions => requires host CPU

 GPU/CPU interface (PCle up to 16GB/sec, NVLINK
up to 300GB/sec between GPUs in same node)

* more energy efficient than CPUs

* high performance GPUs today mainly supplied by
NVIDIA but supercomputers based on AMD GPUs
are currently built

* lots of cores share one control unit

* very little memory inside the GPU

< ECMWF

,'/ s =
0% 3 3
/ ! [4
\‘ }
. R OSSN L B
LA
\NEEe
R G) 4 BRI
N
‘.\\\4.4.,‘ Ny L 4+ TSNS RS
NN et L | A L8
o\ =

GPU
Control ALU ALU
ALU ALU
CPU "

Recommendations

* try to use well optimized libraries

» try to use compiler optimisation (be careful!)

 avoid unnecessary computation and communication
* give each thread as much work as possible

* let the threads do work that does not affect others

» overlap computation and communication

* use data only once per time-step

* contiguous memory access

* try to fit data into cache

* make good use of vectorisation

< ECMWF a

How good are we?

~ ECMWF 48

Hardware performance counters

* set of special-purpose hardware
registers to store counts of hardware-
related activities

 can help in spotting the application
bottlenecks

» allow for low-level performance analysis
and tuning, though implementation may
be somehow difficult

» tools: PAPI, VTUNE, HPCToolkit, Nsight,
Rocprof, ...

~ ECMWF 49

Hardware performance counters

* set of special-purpose hardware
registers to store counts of hardware-

related activities T -
?!TraceVive @ % el >3 9> HGE =’S§§1Caupath$ = 0|
) Can hel In S Ottln the a Ilcatlon Time Range: [0.0s ,0.474s] Rank Range: [36,48] Cross Hair: (0.214s, 43) g | 2
o SPORS T AP BRI TE TR T I
O eneC S lpmpi_;cast_
M PMP|_Bcast

M intra_shmem_Bce

» allow for low-level performance analysis intr_Bast

and tuning, though implementation may M| | (L] (0 N L L] S

- B MPID_PSM_Recv(|
be somehow difficult

+ tools: PAPI, VTUNE, HPCToolkit, Nsight, * 1l
Rocprof, ... ‘

M psmi_timer_cance
psmi_am_reqq_dri |
M psmi_epaddr_kcof |

M psmi_am_mq_han
M psmi_timer_cance |

% pepth View Ll Summary View = B | Mini Map

JL J

7M of 38M i

~ ECMWF 49

Roofline plot

3

1071
_ —attainable O timeloop A createrhs|
peak GFlops - blue
(LINPACK) entire
o | / timeloop
0 10°} N :
- x | red: main
o computational
3 kernel
O
L 1L .
O 107 data points:
g different
@ | optimization
NUMAa stages
10™ 10 10" 10
arithmetic intensity (Flops/Byte)
<> ECMWF 50

measurements: spectral element model NUMA, NPS

Strong scaling efficiency

baroclinic instability, p=3, 3.0km horizontal resolution

450 _I 1 1T 1T 1T 1T 1T 1 | 1T 1T 1T 1T 1T 1T 1T"1 | 1T 1T 1T 1T 1T 1T 1T"1 | 1T 1T 1T 1T 1T 1T 1T"1 | 1 1T 17T 1T 1T 1T 11 | 1 1T 17T 1T 1T 1T 1T"1 | 1 1 1T 1T 1T 1T 11 1T 1T 1T 1T 1T 1 I,I_‘

N ” _

.ol strong scaling: fixed total - :

B . -

l amount of work - :

.o Weak scaling: fixed amount of e -

' work per processor 7 -

3 | PELP 7 [UIMO -
g 300 _— _ = b/ __
S I F :
© 250 _Z _
= . -, ° i
8 1 ¥ 99.1% :
u>)’200 — _
© - N . -
S A strong scaling :
3 150 - g , -
2 , efficiency :
100 - ” N
201 ’ 3.14M threads -

O i I | 1 1 1 1 1 | ! 1 1 1 1 1 1 1 1 | ! 1 1 1 1 1 1 1 1 | ! 1 1 1 1 1 1 1 1 | I N N AN [N N N | | ! 1 1 1 1 1 1 1 1 | | I | 1 1 1 1 1 | | I N N A I N I | I_

0 0.5 1 1.5 2 2.5 3 3.5 4
number of threads «10°

3

51

¢
,
s

measurements: spectral element model NUMA, NPS

Create performance model

example code:

real, dimension(N,M) :: a,b,cC
lnteger :: 1,Jj,N,M
do timestep=1,nstep
do j=1,M
do 1=1,N
a(i,j) = a(i,j> + b(i,j) * C(i,j)
end do
end do
end do

52

< ECMWF

Create performance model

example code:
real, dimension(N,M) :: a,b,c parameters:

integer :: 1,3j,N,M

do timestep=1,nstep

dgoj:EiMN 1E+04
.2 1E+05
a(i,j) = a(i,j) + b(i,3d * <, D% 150
end do
end do 20
end do GFIOPS/S 200

52

< ECMWF

Create performance model

example code:

real, dimension(N,M) :: a,b,c parameters: floating point operations:

integer :: 1,3j,N,M

RN D 1Ee04
2 2*N*M 2E+11
LN AN+ Rl main

eﬂgla? aCt,3) + b(1,3) CCI’JD 100 total GFlops for 50000
end do 20 all steps
end do GFlops/s WIVNMl runtime | | 1000 _

£ ECMWF)

Create performance model

example code:
real, dimension(N,M) :: a,b,cC parameters: floating point operations:

integer :: 1,3j,N,M
operations per step

do timestep=1,nstep
1E+04
2*N*M 2E+11

do j=1,M
nstep 100 total GFlops for _ 20000
. GB/s all steps

do 1=1.N
.2 lllllﬂlllll 1E+05
a(i,j) = a(i, i) + b(i,j) * c(i, J) i

end do
end do :
end do Griopss [T runime | | 1000 _
memory.
bits per #read per | #write per | total bits | total bits
variable
entry step step read written
N*M 6,4E+12 6,4E+12
N*M 6,4E+12 OE+00
_ 6,4E+12 OE+00

suminGB | | | [| 2400 | 800

Intensity 6,25 -- aconds -m
seconds
52

< ECMWF

Create performance model

exampl{ o—————

real, dim | o 5 s floating point operations:
1nteger : - , _
dfd> ti.mist - | f operations per step
o J=l1, b4
. 2L i
d0<}=1,: g §i g5 RiE 2*N*M 2E+11
a(i,J | e | '
end do |2 total GFlops for _ 20000
2 9 all steps
end do |& :
end do | N runtime | | 1000 _

10:‘

#read per | #write per | total bits | total bits
step step read written

6,4E+12 6,4E+12
o N*M 1 o 6,4E+12 OE+00

-1
10 10 10 10
operational intensity (Flops/Bytes) I 6,4E+12 OE+00

——-mm—___
suminGB| | | 00| | 2400 | 800

ECHSIE 6’25 -- Sec : -m
seconds
52

< ECMWF

Create performance model

example code:

real, dimension(N,M) :: a,b,cC
integer :: 1,3j,N,M

parameters: floating point operations:
do timestep=1,nstep
do j=1,M

operations per step
do 1=1,N

=1 . o o 2*N*M 2E+11
aCi,3) = a(1,3) + b(1,73) CClJ) 100 total GFlops for

end do 2 all steps
GFlops/s [RFINMll runtime | | 1000 _
memory:

end do
-ﬂ
variable
entry step step read written
N*M 6,4E+12 6,4E+12
N*M OE+00 OE+00

_ _ 0E+00 OE+00

suminGB | | | | | 80 | 800

seconds
53

< ECMWF

Create performance model

exampl(1o’

real, din
1nteger :
do timest
do j=1,\

do i=1,|,10¢

a(i,],
end do
end do

end do

GFlops per node

10"}

10"
10

-1

10” 10!
operational intensity (Flops/Bytes)

uﬁ

< ECMWF

floating point operations:

operations per step

2*N*M 2E+11
total GFlops for

“ntme || 1000

#read per | #write per | total bits | total bits
step step read written

)
0

N*M 6,4E+12 6,4E+12
N*M O OE+00 OE+00
_ OE+00 OE+00

———m::mﬂ__—
suminGB| | | | | 80 | 80

seconds
53

Recommendations

* try to use well optimized libraries

» try to use compiler optimisation (be careful!)
 avoid unnecessary computation and communication
* give each thread as much work as possible

* let the threads do work that does not affect others
» overlap computation and communication

* use data only once per time-step

* contiguous memory access

* try to fit data into cache

* make good use of vectorisation

» compare performance with expectations

< ECMWF s

Recommendations

* try to use well optimized libraries

» try to use compiler optimisation (be careful!)
 avoid unnecessary computation and communication
» give each thread as much work as possible

* let the threads do work that does not affect others

» overlap computation and communication
* use data only once per time-step

* contiguous memory access

open question
How to find good

* try to fit data into cache compromise between
. i d f torisati performance and readability,
Make good use ot vectorisation portability, maintainability?

|

» compare performance with expectations

< ECMWF 55

Questions?

< ECMWF 56

