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Two commonly used equation formulations
in operational NWP models
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What motions time-stepping should resolve?

¢ Rossby waves & gravity waves must be resolved and transported
accurately - important for good weather predictions

¢ Fast acoustic waves carry little energy - not important for weather but
their implications must be considered: they may limit severely timestep of
numerical schemes

0 To avoid such timestep restrictions, ideally an unconditionally stable
numerical scheme is needed which may dissipate acoustic waves but
does not dissipate other meteorologically important waves

¢ Using very high-orders time-stepping scheme is not practical:

[ In any model, uncertainty from model components such as
parametrizations are usually large enough
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Scalability: an important requirement

¢ Moore's law (processing power of CPU doubles every 18 months) is no longer
valid but thanks to emerging accelerator technologies and communication
speed improvements in massively parallel architectures time-to-solution on
new supercomputers has been improving

¢ NWP solvers must scale well on exascale machines and able to run
efficiently on heterogenous architectures with accelerators (GPU-CPU)

¢ Grids: regular lat/lon are not suited for high resolution global modelling:

¢ Explicit timestepping: meridian convergence at poles = extremely high
resolution => At -> O due to CFL limitations

¢ Implicit timestepping: grid anisotropy near poles leads to poor
convergence of elliptic solvers + high communication cost

¢ Global spectral transform models at high resolution do not scale well mainly
due to the high communication cost of transpositions
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Common time stepping schemes in NWP

¢ Schemes currently used in atmospheric modelling

¢ Semi-Lagrangian, semi-implicit: unconditionally stable—)
large timesteps used for efficiency

¢ Flux-form explicit Eulerian transport with semi-implicit time-
stepping for fast forcing term integration

¢ Split-explicit: “improved efficiency” explicit schemes
¢ HEVI: Horizontally Explicit / Vertically Implicit

=> suitable for NH models as they use an implicit & unconditionally
stable scheme in the vertical where highest CFL numbers occur

¢ IMEX: implicit-explicit Runge-Kutta schemes

= Implicit in the fast process, explicit in the slow.
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Pros and Cons of Eulerian methods for NWP
and climate

Eulerian methods use much shorter timesteps than SISL
methods (even if implicit ..)

* Fully explicit methods: highly scalable, simple to implement but
need very short timestep for stability

« Explicit advection combined with semi-implicit time-stepping:
permit longer timesteps. Scalability depends on elliptic solver
type and its implementation (Miller & Scheichl QTRMS 2013)

Mass conservation:

* With a flux-form model and Eulerian In explicit Eulerian
time stepping we can obtain local and conservative frqnspor'l'
global mass conservation with Finite schemes the advective CFL
Volume/Finite Element/Discontinuous must be < 1 for stability
Galerkin space discretizations (unlike semi-Lagrangian
semi-implicit which can run
at CFL>1)
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The problem with very long time steps and non-hydrostatic
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’improvements of the vertical wave propagation (especially gravity waves) sought during the
implementation of an NH model in favour of an H model, are fully satisfied when the time step is small”

Time stepping schemes for atmospheric modelling Slide 7 ECMWF —w




Eulerian advection scheme: conservative vs not conservative

Advection of a tracer with density ¥ and Equivalent non-conservative form of the advection
mixing ratio my in conservative form: equation for a tracer with mixing ratio my;:
0¥ 0 J 0
+ (ugj) =0, Yj=pm mllf_l_u mw =0
ot ox v ot ox

Finite difference forward in-time

: o : Finite difference discretization:
discretization (conservative form):

At Ar u”t
n+l_wny — [pn _ n n+1_— n J n_ n o e
5” Y’J + w [FH_ 1/2 FJ_ 1/2] (mw)j (mw)j + e [(mw)j (mw)j_ 1]’ u>0 (upwinding — stable for CFL<1)
Assume constant density p of

F is a humerical flux e.g. F; = (u¥);_1; @ background air and compute fotal
If the numerical flux F is ‘consistent’ with the flux f = mass af Two consecutive Timesteps
u¥ie F(u,u,..,u) = f(u) then the above scheme with a Al N

. o n
is conservative: Zl(m pax; 7 Z ) "pA%,

N N j=
Z &”J’.” Ax= z 'P”Ax assuming periodic boundary condition or flux=0
j=1 j=1 if resolution or velocity varies
If the discretization is TVD it remains stable
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MPDATA: 2" order positive definite conservative advection

Smolarkiewicz & Margolin (1998) MPDATA in finite difference form:
W 3

Upstream approximation of flux equation: =WV, bleat i},,cemr
Wit — o R (W W Ui ) — F(WE LW, Ui p)] o
: ! [ ( f+1 H—lﬁ) ( =1 ! ' I‘Q)] i+1/2: var'lableajrmwall
F(V, , U, U)=[U]"V, +[U] Vg, U= Z—Axt (localCourantNumber)

[U]" =0.5(U+|U, U] =0.5U-|U).
MPDATA steps

¢ Compute 1st order upstream approximation ¥”  from above

formula M
\Pi
¢ Subtrac r accurac
(2) (1) M gy (g (D Y
W= — [F(\lf WiV 1;2) F(llf WL Vi ;2)]
v 11;“3'
1 i 1)
where _—— Vi = (U - U? o0 @ = UI- UHAY, ),
Pseudo-velocity i+1 i
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A case that makes semi-Lagrangian advection and schemes in
non-conservative form break

g‘ran.ﬁardb PR R i - Setting mixing
emiLag boTtom Bubble mass grows approx. 15-20 ratio O at the
bounfiqr‘y .| times in the forecast timescale surface: lifts the
copc{u’rnon- . bubble but the
mixing ratio correct boundary
constant between condition for the

surface and general case is
atmospheric level -

. | - - flux=0 rather th

 An idealised case with symmetric winds converging at a point of no wind: upward motion and
transfer of mass from the surface because of the boundary condition

 Very rare but elements of this problem can contribute o mass growth from the boundary in
semi-Lagrangian based models

« Interpolation method COMAD in IFS (Malardel and Ricard QJRMS, 2014) can partially
alleviate this

* A flux-form scheme e.g. MPDATA behaves like the right plot but for different reason which
is correct: influx of ‘clean’ air from the east-west side of the bubble
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A simple test model for fast process integration:
1d gravity wave equations

-

/ Fluid mean depth

v, o9 _,
Linearised shallow ot ax N ® = gH
water equations: < o ¢ = gh
=0
5’[ 6X \ Perturbation from

mean depth

d/0dt on first equation and eliminate ¢ to obtain the familiar
equation of a 1-dimensional wave:
o°u o°u

oz P =0

propagating with speed: ¢ = % —+J® =+ JgH
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Explicit Leapfrog time stepping on 1D GW eqn

Three-time-level explicit Leapfrog scheme

Leapfrog on a general problem: Z—gt” = f(y) >y =y 24t fy")

[ n n
un+1 _ un—l _ At ¢j+1 - ¢j—1 Note Paul Williams (prof. in U
) . T 2 AX of Reading) & associates work
Leapfrog on 1D 6W equa‘rlons. S on high order leapfrog and

u”. —u" high order filters for leapfrog
n+l _ 4n-1 j+1 -1
¢j = ¢j 2At © TR

.

Neutral (no damping) + 2"d order  BUT  phase + dispersion errors +
computational mode

AX ~Ax

Von Neuman stability: At < E ~ 300

Solution is a combination of a physical and a computational mode which can be damped

by use of a time filter, e.g. Asselin filter (but damps energy in long integrations)
Typical value for global

vyl -2p" ™), >0, w=u,0
models: y = 0.06

l 2
ECMWF £
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Staggering variables to improve accuracy

¢ The prognostic variables can be

¢ On the same location on the grid, i.e. co-located
¢j+1_¢j—1

u, u,
u¢ ug ug ugd Uug ¢ ? AU; + =0
XA X X X X X X ) 2AX
X
u,.,—Uu.
A, +D 12 I 0
#; 2AX

¢ In between (half way) each other, i.e. staggered

u ¢ u ¢ u ¢1 u ¢1 u ¢ u ¢ u (Atuj+¢j+1/2_¢j—1/2 —0
i—= j+= AX
. 2 . 2 <
NG S —
<—AX—> J j+1 \At¢j+1/2 + o N =0
> Improved accuracy + dispersion properties
=> On explicit techniques stagaerina results into a more
restrictive timestep e.g.: Amx .1 instead of e g
AX[2 AX
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Different Arakawa horizontally staggered grids
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"A benefit of C-grid is that it

captures well the propagation
(C) of inertio-gravity waves and
hence the process of
geostrophic adjustment”
Arakawa and Lamb 1977

g: geopotential or pressure

Fig source: Wikipedia By Rpnl ocn - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=47077493




Vertical grid staggering

Lorenz @)  Lgrid . W . Charney-Philips staggering
staggering 1/2 o=0 1/2 “ 9 o=0
| g v 1 "TTTTmTTTTTTTos v .
" G " 0 & * No compu‘fcmonal mode
. Good for . . « Conservation of PV
energy 132 G tan 0 c
conservation {1 —mmmmmmmmmmmme 0 v $] —mmmmmmmmmm—man v
e Presence of a L1 5 ) 06
computational [ e emmmmema 8 v A y
mode 412 (.)' 112 0 (.f
fyy "mmmmmmmmmmsme A v ECMWEF IFS:
1372 G tan 0o »  No staggering at all
o , ¢ . Why is that acceptable?
L1/2 Y L1/2 6o  High order (spectral
| cmmmmmmmmmmmm 0 v T v transform) horizontal
L2 DT O\ w00 discretization
- | « High order (finite-
. Fii. 1. An illustration of (a) the Lorenz grid and element) vertical
(b) the Charney—-}’hillips grid for a o coordinate. discretization
Picture from Arakawa and Konor MWR, 1996, vol 124, 511-
ECMWF
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Enhancing stability: forward-backward integration

« Forward-backward scheme: a predictor-corrector type scheme
The predictor and the corrector are applied on separate equations.

-

\

¢n+1

n+l

Uj

DAL
&, ——(U,+1 ui,) forward

= '?——(¢J”j11 #1)| backward (pseudo-implicit)

At <

Fwd-Bwd versus Leapfrog:

2AX  AX 1. Wider stability region allowing twice as big

Zl

Jo 150  timestep compared with leapfrog

2. Neutral (no damping)
3. Two-time-level scheme = no computational mode
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Runge-Kutta RK3 scheme

* Runge-Kutta (Wicker & Skamarock, MWR 2002) RK3 scheme:
- three-stage, two-time-level (2" order) scheme from the RK family

Solve: d—Y= f(Y)
dt

y* —yn +% FY™) Applied on 1d-GW eqn:

0
At U — 6_¢ 3rd or 4th order FD
Y7 = Y"+ = f (Y*) Y = ( j f(Y) = X scheme for estimating
2 @ _q)g_u - derivatives
X

Y™ =Y "+ AL F(YT)
Compared with leapfrog almost doubles (1.62)
At when 3rd order spatial discretization used

In WREF this is used in combination with time-splitting ...
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Splitting the time integration: the motivation

¢ In an atmospheric model fast and slow wave motions co-exist

¢ Splitting exploits the multi-time-scale nature of the governing
equations

¢ Explicit techniques are only conditionally stable which imposes use of
very small timesteps for fast processes

¢ Let At be the longest permissible timestep for integrating stably
the slow process => At will be too long for stable integration of
the fast process

¢ A practical solution is to split the integration:

- integrate slow process with "long” At
- integrate fast process with a fraction of it i.e. At/n
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Split-explicit example in a diagram
Split-explicit RK3

Split-explicit Euler
Runge-Kutta internal step i: each approximates
solution at t+c; At where, ¢;=1/3,1/2,1 the RK3

coefficient

Y

Al

- AR —
- — ALG ——

Y
'Y

At
(3

a

(2]

(1
N

sub-step fast process only (with timestep At/n)

(Diagram from S.J. Lock, ECMWF Seminar proceedings 2013, HEVT time-
stepping for NWP and climate models)
ECMWF
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Split-explicit forward Euler integration

Y _F@y)+sw)

8’[/ \

Fast forcing term Slow forcing term
Integrate forward n, - times with Az = At/n, fromt tot+At:

Wt+mAr _ Wt+(m—1)Ar AT F(Wt+(m—1)Ar)+Az_ S(Wt)’ m=12,...n,
e N

Equivalent to: Fast term updated Slow term kept constant (stored)

fw Euler with big step

Wt+At _ l//t L AT nzs [F (Wt+(m—1)Az' )_|_ S(Wt )] _ ;//t At S(Wt)+ AT nzs = (Wt+(m—l)Az' )’
m=1

m=1

It is an efficient approach:

Store: R(y')=ArS(y") 1*S + n*F evaluations

versus FW-Euler
Integrate: "™ =y MDY L AL (MDA )L R(yY), m=12,...n,  Ns*S+ns*Fevaluations
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Split-explicit RK3 integration

0
—=F)+SW)
Step 1: integrate from t to t+ At/3with Az =At/n,:

l//t+mAr _ Wt+(m—1)Ar L AL F(wt+(m—1)Ar)+Az_ S(Wt), m=12....n./3

Step 2: integrate from t to t+ At/ 2 with Az =At/n:
S(l//*): S(l//t+At/ ’ ), v =y""™"*: final result from stage1

Wt+mAz— _ wt+(m—1)Ar L AL F(Wu(m—l)m)_l_Az_ S(W*), m=12...n./2

Step 3: integrate from t to t+ At with Az =At/n:
S(l//**)= S(l//”A” 2), w = w"™'?: final result from stage 2

wt+mAr _ Wt+(m—l)Ar L AL F(l//t+(m—1)Ar)+Az_ S(l//**), m=12,...n,

S term is evaluated only once per internal RK step and added at each sub-cycle
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Leapfrog (3TL) split-explicit fw-bw example

fast/forward  slow/leapfrog

(8
(,;/:1 =FR(y,)+S,(v.v,)
<
%5
2= R)+ Sap )

backward  leapfrog

Repeated short timestep integration fromt to t+4¢ (m=12,...2n, Az =At/n,):
l/jlt—At+mAr _ l/jlt—AtJr(m—l)Ar _ A7 Fl(l/lzt—AH(m—l)Ar )—Az' Sl(l/llt | l//é)

‘//zt_AHmAT = ‘/jztwm)lzz (Wlt-A“mAf )_ AtS, (l//lt ’ l//;) \

fast F terms updated Slow terms kept constant

fw—Euler—small—steps

t-At+(m-1) Az )

: 2n A
W1t+At = Wlt_At — 2AtS; (Wlt , W; )_ At Z = (Wz
m=1

=)

2N t-At+mA7
WzHAt = f/jzt_At —2At3, (Wlt , W; )_ At Z F, (Wl )
m=1

J

leapfrog —Targ e—step

~
bw—Euler—small—steps
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Drawbacks of the split-explicit approach

¢ In deep global models O(100km) there is no much benefit from
split-explicit approach in the horizontal

¢ Stratospheric polar jet velocities are not very far from speed
of soum) advective CFL number is close to acoustic CFL
number

> All processes are fast and therefore horizontal splitting will
not bring significant efficiency benefit

¢ Splitting needs damping for stabilization
¢ Other than split-explicit methods:
¢ Horizontally Explicit Vertically Implicit (HEVI)

¢ Implicit Explicit (IMEX) RK (unconditionally stable implicit
scheme for fast processes and cheap explicit for slow)
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HEVI schemes

In NH models acoustic CFL in the

vertical is much larger because vertical A7 10m
resolution is at the order of few
metres only: explicit time-stepping
requires very small timesteps

= ~(0.03s
¢ 300m/s

- Explicit in the horizontal scheme (or
Solution: split explicit) - horizontal CFL is much
Horizontally smaller than the vertical

* Unconditionally stable implicit scheme
for the vertical to deal with high
acoustic CFL numbers

Explicit, Vertically
Implicit schemes
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Some HEVI / split-explicit models

¢ ICON (DWD Germany): global NWP, LAM weather and climate unified
model

¢ forward-backward explicit time-stepping (no splitting) in the
horizontal + vertically semi-implicit (Crank-Nicolson)

¢ EU-COSMO: former DWD operational NH LAM

¢ RK3 + split-explicit in the horizontal + semi-implicit Crank-
Nicolson in the vertical

¢ NICAM: cloud resolving NH global model (Japan)

¢ Split-explicit forward-backward in the horizontal + implicit in
vertical

¢ WRF, MPAS (USA): LAM, Global research & operational

¢ Split-explicit RK3 + vertically semi-implicit
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IMEX: Blending explicit with implicit

d
—di = s(t,y) + f(t,y)
v v

slow process fast process

G | 11 - Oy ¢ | 11 - Q7
clA : c|l A
b Ey &vl Tt &uu b Cv a1 et Oy
bl ... by bl e bv

&j =0 Vj> i (explicit) a;j=0 forj > i (diagonally impl)

Compute RK stages YU), j =1,... v and then new solution y"+1:

Jj—1 J
YU) = y” + Atz &ng(fnﬂ—EgAt? Y(E)) + Z ajgf(f”-l-CgAt, Y(f))
=1 =1

y”+1 =y"+ Atz EjS(tn—FEjAt, YU)) + Z bjf(tn+CjAta YU))
j=1 Jj=1

ECMWF
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Some useful theoretical properties

¢ A-stability: unconditionally stability for damping & oscillatory
linear problems %=ly, A=pf+iw, <0 and consequently
for linear constant coefficient systems

¢ Explicit methods cannot be A-stable (stability functions are
polynomials rather than rational functions)

¢ L-Stability: A-stable + rapid decay for stiff problems at long

t+At

timesteps i.e. lim yyt =0 for the above linear equation
¢ Strong Stability Preserving: SSP is a desirable property for a
hyperbolic PDE U, =—f(u), . A scheme is SSP if for a

given space discretization which is Total Variation Diminishing
(TVD) when combined with forward Euler time discretization, it
preserves the TVD property for some norm and timestep i.e.
TV@U™)<TV(U"), TV(u)=>|u;,—Uu
j=1
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Example of IMEX - ARK2(2,3,2)

¢ Giraldo et al SIAM J.Sci.Comp., 2013 option in NUMA NH
US Navy model

0 0 0 0
1 1
2—V2|2-v2 0 2-V2 | 1= 1-—
1 1 1
1 1 q_ 1 1 1 91
2v/2 2V/2 V2 22 2/2 V2

1
dy = 6(3—'_ 2\/5)
« 2" order + L-Stable, overall very accurate and stable (Weller et al JCP 2013)
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A more recent technique: exponential integrators

Split F (right hand side of space discretized system) to a linear and nonlinear part:
%—T:F(U), FU)=JU+N (U)
The linear part contains the Jacobian J while N(U) the nonlinear residual. After

multiplying with an integrating factor e/t the following exact formula is derived: Exponential Integrators:

du T _ Clancy et al, Tellus 2013: use of exponential Stable with long
dt JU+N (U)=U(t, +At) = et u(,)+ _([ e N (U (t,+ T))dT integration methods in atmospheric models timesteps and thus
efficient

 Analytic solution for the stiff (fast changing) linear term expressed as the + Accurate with fast
action of a matrix exponential to a vector which can be computed using dynamics
truncated Taylor expansions or Krylov techniques (Niesen and Wright ACM + They reduce
TOM,S 38(3), 2012) , , unphysical oscillations
* The integral can be computed using numerical quadrature U, e.g. Runge-Kutta
type formulae:

U,,=e"U, + hz b, (h“]n)Nn(U (tn +Cih))’ h=At coefficients a, b are matrix functions of
=1 hJ,, and c; are the nodes [0,1]. They are

_ah, S analogous to the Runge-Kutta coefficients
U(t, +ch)=e"™U, + h;aij (h‘]”)N”(U (t” +th)) and satisfy special order conditions.

Further reading: Luan et al, JCP Vol 376, Jan 2019, p 817-837
ECMWF . 0=



Overview

There are many choices of numerical techniques

i

What to choose depends on the problem you solve (mathematical formulation,
resolution, domain) and the computer architecture you apply your algorithm

| \| -
Nowadays mainly due to hardware requirements and interest in developing very
high resolution systems there is considerable research & development activity in

scalable compact stencil Eulerian techniques which are also suited for developing
dynamical cores with formal conservation properties
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Some references (alphabetically by author’s
surname)

¢ J. Coiffier book: Fundamentals of Numerical Weather
Prediction (2011)

¢ Dale Durran’s book: “Numerical methods for Wave
Equations in Geophysical Fluid Dynamics”

¢ Lauritzen et al book: Numerical Techniques for Global
Atmospheric Models, Springer 2011

¢ Mengaldo et al, Archives of Comp. Meth. in Eng. (2018):
Current and Emerging Time-Integration Strategies in Global
NWP

¢ Wicker & Skamarock (MWR 2001): “Time-Splitting Methods
for Elastic Models Using Forward Time Schemes”
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