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Two commonly used equation formulations

in operational NWP models

Hydrostatic approximation

• Atmosphere is approximately in 
hydrostatic equilibrium

• Vertical motion is diagnosed from 
continuity equation

• Filters the very fast sound 
waves ⇒ no stability problems 
associated with very large 
acoustic CFL numbers in the 
vertical

Non-hydrostatic (NH) 
equation model

• Most accurate description 
of the atmosphere. 

• More expensive equation set 
with often more complex 
and computationally 
demanding numerical 
algorithms: better use when 
needed i.e. high resolutions 
where dynamics begin to 
resolve convection explicitly
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What motions time-stepping should resolve?

⧫ Rossby waves & gravity waves must be resolved and transported 

accurately – important for good weather predictions 

⧫ Fast acoustic waves carry little energy - not important for weather but 

their implications must be considered: they may limit severely timestep of 

numerical schemes

❑ To avoid such timestep restrictions, ideally an unconditionally stable 
numerical scheme is needed which may dissipate acoustic waves but 
does not dissipate other meteorologically important waves

⧫ Using very high-orders time-stepping scheme is not practical:

❑ In any model, uncertainty from model components such as 
parametrizations are usually large enough
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Scalability: an important requirement

⧫ Moore’s law (processing power of CPU doubles every 18 months) is no longer 

valid but thanks to emerging accelerator technologies and communication 

speed improvements in massively parallel architectures time-to-solution on 

new supercomputers has been improving

⧫ NWP solvers must scale well on exascale machines and able to run 

efficiently on heterogenous architectures with accelerators (GPU-CPU)

⧫ Grids: regular lat/lon are not suited for high resolution global modelling: 

⧫ Explicit timestepping: meridian convergence  at poles ⇒ extremely high 

resolution => ∆t -> 0 due to CFL limitations

⧫ Implicit timestepping: grid anisotropy near poles leads to poor 

convergence of elliptic solvers + high communication cost

⧫ Global spectral transform models at high resolution do not scale well mainly 

due to the high communication cost of transpositions
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Common time stepping schemes in NWP

⧫ Schemes currently used in atmospheric modelling

⧫ Semi-Lagrangian, semi-implicit: unconditionally stable        

large timesteps used for efficiency 

⧫ Flux-form explicit Eulerian transport with semi-implicit time-

stepping for fast forcing term integration

⧫ Split-explicit:  “improved efficiency” explicit schemes 

⧫ HEVI: Horizontally Explicit / Vertically Implicit

➔  suitable for NH models as they use an implicit & unconditionally 
stable scheme in the vertical where highest CFL numbers occur

⧫ IMEX: implicit-explicit Runge-Kutta schemes

➔ Implicit in the fast process, explicit in the slow.
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Pros and Cons of Eulerian methods for NWP 

and climate

Mass conservation:

• With a flux-form model and Eulerian 
time stepping we can obtain local and 
global mass conservation with Finite 
Volume/Finite Element/Discontinuous 
Galerkin space discretizations

In explicit Eulerian 
conservative  transport 
schemes the advective CFL 
must be < 1 for stability 
(unlike semi-Lagrangian 
semi-implicit which can run 
at CFL>1)

Eulerian methods use much shorter timesteps than SISL 
methods (even if implicit ..)

• Fully explicit methods: highly scalable, simple to implement but 
need very short timestep for stability

• Explicit advection combined with semi-implicit time-stepping: 
permit longer timesteps. Scalability depends on elliptic solver 
type and its implementation (Müller & Scheichl QJRMS 2013)
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The problem with very long time steps and non-hydrostatic 

dynamics

”improvements of the vertical wave propagation (especially gravity waves) sought during the 

implementation of an NH model in favour of an H model, are fully satisfied when the time step is small”

Long time steps inhibit NH 
models to reach their 
potential in accurately 
representing vertical 
gravity wave propagation 

Figure and conclusions 
from Burgot, Auger, 
Benard, QJRMS 2021 



ECMWFTime stepping schemes  for atmospheric modelling Slide 8 

Eulerian advection scheme: conservative vs not conservative

Finite difference forward in-time 
discretization (conservative form): 

Advection of a tracer with density Ψ and 
mixing ratio  𝑚ψ in conservative form:

• F is a numerical flux e.g. 𝐹𝑗 = (𝑢Ψ)j−1/2
• If the numerical flux F is ‘consistent’ with the flux 𝑓 =

𝑢Ψ i.e. 𝐹 𝑢, 𝑢, … , 𝑢 = 𝑓(𝑢) then the above scheme with a 
is conservative:
 
                                    

• If the discretization is TVD it remains stable

Equivalent non-conservative form of the advection 
equation for a tracer with mixing ratio  𝑚ψ:

Finite difference discretization: 

Assume constant density ρ of 
background air and  compute total 
mass at two consecutive timesteps

if resolution or velocity varies
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MPDATA: 2nd order positive definite conservative advection

Smolarkiewicz & Margolin (1998) MPDATA in finite difference form:

Upstream approximation of flux equation:  

  MPDATA steps

⧫ Compute 1st order upstream approximation         from above 

formula   

⧫ Subtract from        estimate of error to obtain 2nd order accuracy 

     where 
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A case that makes semi-Lagrangian advection and schemes in 

non-conservative form break

Standard 
SemiLag bottom 
boundary 
condition:
 mixing ratio 
constant between 
surface and 
atmospheric level 
above it

Setting mixing 
ratio 0 at the 
surface: lifts the 
bubble but the 
correct boundary 
condition for the 
general case is 
flux=0 rather than 
mix ratio=0

• An idealised case with symmetric winds converging at a point of no wind: upward motion and 
transfer of mass from the surface because of the boundary condition

• Very rare but elements of this problem can contribute to mass growth from the boundary in 
semi-Lagrangian based models

• Interpolation method COMAD in IFS (Malardel and Ricard QJRMS, 2014) can partially 
alleviate this

• A flux-form scheme e.g. MPDATA behaves like the right plot but for different reason which 
is correct: influx of ‘clean’ air from the east-west side of the bubble

Bubble mass grows approx. 15-20 

times in the forecast timescale
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A simple test model for fast process integration: 

1d gravity wave equations 

𝜕/𝜕𝑡 on first equation and eliminate φ to obtain the familiar 
equation of a 1-dimensional wave:
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Explicit Leapfrog time stepping on 1D GW eqn

Three-time-level explicit Leapfrog scheme

Von Neuman stability:

Solution is a combination of a physical and a computational mode which can be damped 
by use of a time filter, e.g. Asselin filter (but damps energy in long integrations)
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+== −+ 2)( 11Leapfrog on a general problem:

Leapfrog on 1D GW equations:

Typical value for global 

models:  𝛾 = 0.06  

Note Paul Williams (prof. in U 

of Reading) & associates work 

on high order leapfrog and 

high order filters for leapfrog
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Staggering variables to improve accuracy

⧫ The prognostic variables can be

⧫ On the same location on the grid, i.e. co-located 

⧫ In between (half way) each other, i.e. staggered

➔ Improved accuracy + dispersion properties

➔ On explicit techniques staggering results into a more 
restrictive  timestep e.g.:               instead of 
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Different Arakawa horizontally staggered grids

Fig source: Wikipedia By Rpnl ocn - Own work, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=47077493

q: geopotential or pressure

“A benefit of C-grid is that it 
captures well the propagation 
of inertio-gravity waves and 
hence the process of 
geostrophic adjustment” 
Arakawa and Lamb 1977
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Vertical grid staggering

Lorenz 

staggering
Charney-Philips staggering

Picture from Arakawa and Konor MWR, 1996, vol 124, 511-  

• No computational mode
• Conservation of PV• Good for 

energy  
conservation

• Presence of a 
computational 
mode

ECMWF IFS:
• No staggering at all
Why is that acceptable?
• High order (spectral 

transform) horizontal 
discretization

• High order (finite-
element) vertical 
discretization 



ECMWFTime stepping schemes  for atmospheric modelling Slide 16 

Enhancing stability: forward-backward integration

• Forward-backward scheme: a predictor-corrector type scheme 
The predictor and the corrector are applied on separate equations.
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Runge-Kutta RK3 scheme
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3rd or 4th order FD 
scheme for estimating 
derivatives

Compared with leapfrog almost doubles (1.62) 
Δt when 3rd order spatial discretization used

• Runge-Kutta (Wicker & Skamarock, MWR 2002) RK3 scheme:
   - three-stage, two-time-level (2nd order) scheme from the RK  family

In WRF this is used in combination with time-splitting …

)(: Yf
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Applied on 1d-GW eqn:
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Splitting the time integration: the motivation

⧫ In an atmospheric model fast and slow wave motions co-exist

⧫ Splitting exploits the multi-time-scale nature of the governing 

equations

⧫ Explicit techniques are only conditionally stable which imposes use of 

very small timesteps for fast processes

⧫ Let ∆t be the longest permissible timestep for integrating stably 

the slow process => ∆t will be too long for stable integration of 

the fast process

⧫ A practical solution is to split the integration:

➔  integrate slow process with “long” ∆t 

➔  integrate fast process with a fraction of it i.e. ∆t/n
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Split-explicit example in a diagram 

Split-explicit Euler Split-explicit RK3

sub-step fast process only (with timestep Δt/n)

(Diagram from S.J. Lock, ECMWF Seminar proceedings 2013, HEVI time-
stepping for NWP and climate models)

Runge-Kutta internal step i: each approximates 
solution at t+ci Δt  where, ci=1/3,1/2,1 the RK3 
coefficient



ECMWFTime stepping schemes  for atmospheric modelling Slide 20 

Split-explicit forward Euler integration
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Split-explicit RK3 integration
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Leapfrog (3TL) split-explicit fw-bw example
slow/leapfrog
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Drawbacks of the split-explicit approach

⧫ In deep global models O(100km) there is no much benefit from 

split-explicit approach in the horizontal

⧫ Stratospheric polar jet velocities are not very far from speed 

of sound       advective CFL number is close to acoustic CFL 

number

➔ All processes are fast and therefore horizontal splitting will 
not bring significant efficiency benefit

⧫ Splitting needs damping for stabilization

⧫ Other than split-explicit methods:

⧫ Horizontally Explicit Vertically Implicit (HEVI)

⧫ Implicit Explicit (IMEX) RK (unconditionally stable implicit 

scheme for fast processes and cheap explicit for slow)
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HEVI schemes

In NH models acoustic CFL in the 
vertical is much larger because vertical 
resolution is at the order of few 
metres only: explicit time-stepping 
requires very small timesteps

• Explicit in the horizontal scheme (or 
split explicit) - horizontal CFL is much 
smaller than the vertical

• Unconditionally stable implicit scheme 
for the vertical to deal with high 
acoustic CFL numbers

Solution: 
Horizontally 

Explicit, Vertically 
Implicit schemes

max

10
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Some HEVI / split-explicit models

⧫ ICON (DWD Germany): global NWP, LAM weather and climate unified 

model

⧫ forward-backward explicit time-stepping (no splitting) in the 

horizontal + vertically semi-implicit (Crank-Nicolson)

⧫ EU-COSMO: former DWD operational NH LAM 

⧫  RK3 + split-explicit in the horizontal + semi-implicit Crank-

Nicolson in the vertical

⧫ NICAM: cloud resolving NH global model (Japan)

⧫ Split-explicit forward-backward in the horizontal + implicit in 

vertical

⧫ WRF, MPAS (USA): LAM, Global research & operational

⧫ Split-explicit RK3 + vertically semi-implicit
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IMEX: Blending explicit with implicit
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Some useful theoretical properties

⧫ A-stability: unconditionally stability for damping & oscillatory 

linear problems                                   and consequently 

for linear constant coefficient systems                                                     

⧫ Explicit methods cannot be A-stable (stability functions are 

polynomials rather than rational functions)

⧫ L-Stability: A-stable + rapid decay for stiff problems at long 

timesteps i.e.                    for the above linear equation

⧫ Strong Stability Preserving: SSP is a desirable property for a 

hyperbolic PDE              .      A scheme is SSP if for a 

given space discretization which is Total Variation Diminishing 

(TVD) when combined with forward Euler time discretization, it 

preserves the TVD property for  some norm and timestep i.e.  
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Example of IMEX – ARK2(2,3,2)

⧫ Giraldo et al SIAM J.Sci.Comp., 2013 option in NUMA NH 

US Navy model

                 
• 2nd order + L-Stable, overall very accurate and stable (Weller et al JCP 2013) 
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A more recent technique: exponential integrators

( )( ), ( )
dU

F U F U J U N U
dt

= = +

Split F (right hand side of space discretized system) to a linear and nonlinear part:   

The linear part contains the Jacobian J while N(𝑈) the nonlinear residual. After 
multiplying with an integrating factor  𝑒−𝐽𝑡 the following exact formula is derived: 
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• Analytic solution for the stiff (fast changing) linear term expressed as the 
action of a matrix exponential to a vector which can be computed  using 
truncated Taylor expansions or Krylov techniques (Niesen and Wright ACM 
TOMS 38(3), 2012)

• The integral can be computed using numerical quadrature 𝑈𝑛 e.g. Runge-Kutta 
type formulae:   
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1 , Coefficients a, b are matrix functions of 
ℎ𝐽𝑛 and 𝑐𝑖 are the nodes [0,1]. They are 
analogous to the Runge-Kutta coefficients 
and satisfy special order conditions.

Further reading: Luan et al, JCP Vol 376, Jan 2019, p 817-837 

Clancy et al, Tellus 2013: use of exponential 
integration methods in atmospheric models  

Exponential Integrators:
• Stable with long 

timesteps and thus 
efficient

• Accurate with fast 
dynamics

• They reduce 
unphysical oscillations
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Overview

Nowadays mainly due to hardware requirements and interest in developing very 
high resolution systems there is considerable research & development activity in 
scalable compact stencil Eulerian techniques which are also suited for developing 

dynamical cores with formal conservation properties

What to choose depends on the problem you solve (mathematical formulation, 
resolution, domain) and the computer architecture you apply your algorithm

There are many choices of numerical techniques
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Some references (alphabetically by author’s 

surname)

⧫ J. Coiffier book: Fundamentals of Numerical Weather 

Prediction (2011)

⧫ Dale Durran’s book: “Numerical methods for Wave 

Equations in Geophysical Fluid Dynamics” 

⧫ Lauritzen et al book: Numerical Techniques for Global 

Atmospheric Models, Springer 2011

⧫ Mengaldo et al, Archives of Comp. Meth. in Eng. (2018): 

Current and Emerging Time-Integration Strategies in Global 

NWP

⧫ Wicker & Skamarock (MWR 2001): “Time-Splitting Methods 

for Elastic Models Using Forward Time Schemes”
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