Non-oscillatory forward-in-time finite-volume methods for NWP

Christian Kühnlein

© ECMWF November 18, 2024

The atmospheric dynamical core plays a central role throughout IFS configurations

Forecast component	Description	#	Atmos. horiz. and vert. res.	Forecas t length	3D ocean and sea- ice	
4DVAR	Atm/land/waves High-resolution analysis	1	9 km 137 levels	-	-	
EDA ²⁵	Atm/land/waves Ensemble of data assimilations	25	18 km 137 levels	-	-	From June 2019, EDA with 50 members
OCEAN5 ⁵ / ORAS5 ⁵	3D ocean and sea-ice Ensemble of analyses	5	-	-	25 km 75 levels	
HRES	Atm/land/waves/3D ocean High-resolution	1	9 km 137 levels	0-10 d	25 km 75 levels	
ENS ⁵¹	Atm/land/wave/3D ocean	51	9km L137	0-15 d	25 km 75 levels	
	Medium- range/monthly ensemble		^{36 km} 9km L137	15-46 d		
SEAS5 ⁵¹	Atm/land/waves/3D ocean Seasonal ensemble	101	36 km 91 levels	0-7 m (0-13 m quarter)	25 km 75 levels	

for up-to-date information: <u>https://confluence.ecmwf.int/display/FCST/Implementation+of+IFS+Cycle+49r1</u> (CY49r1 to be implemented 12 Nov 2024!)

Ocean – Land – Atmosphere – Sea ice

Spectral-transform formulation of the operational IFS (IFS-ST) Nodes of octadedral hydrostatic primitive equations in hybrid mass-based reduced Gaussian grid vertical coordinate spherical-harmonics representation in horizontal finite-element approach for integrals in vertical **Grid-point space** -semi-Lagrangian advection -physical parametrizations two-time-level semi-implicit semi-Lagrangian -products of terms FFT Inverse FFT integration scheme No grid-staggering of prognostic variables cubic-octahedral grid ("TCo") Fourier space Fourier space coupling to IFS physics using SLAVEPP (Semi-Inverse LT LT Lagrangian Averaging of Physical Parametrisations) **Spectral space** -horizontal gradients -semi-implicit calculations -horizontal diffusion NSMAX $\psi(\lambda, \varphi) = \sum_{I=0} \sum_{I=0} \psi_{I,m} Y_{I,m}(\lambda, \varphi)$

CECMWF

IFS dynamical core performance comparison: time-to-solution at 3km for dry baroclinic instability test case with 10 tracer fields

IFS dynamical core performance comparison: time-to-solution at 3km for dry baroclinic instability test case with 10 tracer fields

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS(adapted from Michalakes et al, NGGPS AVEC report, 2015)

A hybrid all-scale finite-volume module for global NWP ions at ECMWF

Piotr Smolarkiewicz, Willem De George Mozdzynski, Christian Kühnle European Research Council European Research Council Supporting top researchers from anywhere in the world 2015 Silde 1 $\int_{\Omega} \nabla \cdot \mathbf{A} = \int_{\partial \Omega} \mathbf{A} \cdot \mathbf{n} = \frac{1}{\mathcal{V}_{i}} \sum_{j=1}^{I(i)} A_{j}^{\perp} S_{j}$	coninck, Mats Hamrud, in, Joanna Szmelter, Nils Wedi		(km) 9.5 9 8.5 8 7.5 7
dual volume: V_i , face area: S_j	•	currently operational	
Model aspect	IFS-FVM	IFS-ST	IFS-ST (NH option)
Equation system	fully compressible	hydrostatic primitive	fully compressible
Prognostic variables	$ \rho_{\rm d}, u, v, w, \theta', \varphi', r_{\rm v}, r_{\rm l}, r_{\rm r}, r_{\rm i}, r_{\rm s} $	$\ln p_{\rm S}, u, v, T_{\rm V}, q_{\rm V}, q_{\rm l}, q_{\rm r}, q_{\rm i}, q_{\rm s}$	$\ln \pi_{\rm S}, u, v, d_4, T_{\rm V}, \hat{q}, q_{\rm V}, q_{\rm I}, q_{\rm r}, q_{\rm i}, q_{\rm S}$
Horizontal coordinates	λ , ϕ (lon–lat)	λ, ϕ (lon–lat)	λ , ϕ (lon–lat)
Vertical coordinate	generalized height	hybrid sigma-pressure	hybrid sigma–pressure
Horizontal discretization	unstructured finite volume (FV)	spectral transform (ST)	spectral transform (ST)
Vertical discretization	structured FD–FV	structured FE	structured FD or FE
Horizontal staggering	co-located	co-located	co-located
Vertical staggering	co-located	co-located	co-located, Lorenz
Horizontal grid	octahedral Gaussian or arbitrary	octahedral Gaussian	octahedral Gaussian
Time stepping scheme	2-TL SI	2-TL constant-coefficient SI	2-TL constant-coefficient SI with ICI
Advection	conservative FV Eulerian	non-conservative SL	non-conservative SL

FVM summary (from year 2019)

Current features:

- nonhydrostatic, deep-atmosphere, fully compressible equations
- horizontally-unstructured vertically-structured finite-volume discretisation
- semi-implicit integration with 3D implicit dynamics right-hand-sides (diffusion is HEVI by default)
- (explicit) nonoscillatory forward-in-time conservative Eulerian advection
- flexibility with respect to horizontal and vertical meshes
- Atlas library mesh and parallel datastructures
- Fortran code and using hybrid MPI/OpenMP for CPUs, but Python/GT4Py DSL implementation under development
- 64-bit or 32-bit precision
- IFS-FVM coupled to IFS physical parametrisation package (CY43R3)
- ecRad radiation scheme on model grid

$$\int_{\Omega} \nabla \cdot \mathbf{A} = \int_{\partial \Omega} \mathbf{A} \cdot \mathbf{n} = \frac{1}{\mathcal{V}_i} \sum_{j=1}^{I(i)} A_j^{\perp} S_j$$

dual volume: \mathcal{V}_i , face area: S_j

Nodes of octahedral grid O24

Octahedral reduced Gaussian grid of the IFS

- Quasi-uniform resolution over the surface of the sphere
- Suitable for spherical harmonics transforms and hence the spectral-transform IFS model
- Unstructured finite-volume IFS-FVM can develop mesh about nodes of the grid
- Using the same grid benefits overall infrastructure and model comparison studies
- → see Malardel et al. 2015; Smolarkiewicz et al. 2016; Deconinck et al. 2017; Kühnlein et al. 2019

Summary of FVM spatial discretization

- horizontally-unstructured finite-volume (FV) and vertically-structured finitedifference/finite-volume (FD/FV) discretisation framework
- median-dual FV approach is current default but other options are explored

terrain-following coordinate

$$\int_{\Omega} \nabla \cdot \mathbf{A} = \int_{\partial \Omega} \mathbf{A} \cdot \mathbf{n} = \frac{1}{\mathcal{V}_i} \sum_{j=1}^{l(i)} A_j^{\perp} S_j$$

dual volume: \mathcal{V}_i , face area: S_j

- Gauss divergence theorem is central to FV technique
- Various approximations for FV fluxes between neighbouring cells depending on process and form of operator
- Fluxes in Laplacian operator (gradient & divergence) are usually linear & centred reconstructions of data at neighbouring points, compact specifications are used for diffusion, upwind and nonlinear fluxes occur in context of non-oscillatory advection

Smolarkiewicz et al. JCP 2016 Kühnlein et al. GMD 2019 FVM fully compressible equations with full IFS physics

$$\begin{aligned} \frac{\partial \mathcal{G} \rho_d}{\partial t} + \nabla \cdot (\mathbf{v} \mathcal{G} \rho_d) &= 0, \\ \frac{\partial \mathcal{G} \rho_d \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{v} \mathcal{G} \rho_d \mathbf{u}) &= \mathcal{G} \rho_d \left[-\theta_\rho \widetilde{\mathbf{G}} \nabla \varphi' - \theta_\rho \widetilde{\mathbf{G}} \nabla \varphi_a + \mathbf{g} - \mathbf{f} \times \mathbf{u} + \mathcal{M}(\mathbf{u}) + \mathbf{P}^{\mathbf{u}} \right] \\ \frac{\partial \mathcal{G} \rho_d \theta'}{\partial t} + \nabla \cdot (\mathbf{v} \mathcal{G} \rho_d \theta') &= \mathcal{G} \rho_d \left[-\mathbf{G}^T \mathbf{u} \cdot \nabla \theta_a + P^{\theta} \right], \\ \frac{\partial \mathcal{G} \rho_d r_k}{\partial t} + \nabla \cdot (\mathbf{v} \mathcal{G} \rho_d r_k) &= \mathcal{G} \rho_d P^{r_k}, \qquad r_k = r_v, r_l, r_r, r_i, r_s, \Lambda_a \end{aligned}$$

11

Universal characteristics of atmospheric flows

	Annu. Rev. nuu ween. 2010
Earth's radius	$a \sim 6 \times 10^6 \text{ m}$
Earth's rotation rate	$\Omega \sim 10^{-4} \mathrm{s}^{-1}$
Acceleration of gravity	$g \sim 9.81 \text{ ms}^{-2}$
Sea-level pressure	$p_{\rm ref} \sim 10^5 {\rm ~kgm^{-1}~s^{-2}}$
H ₂ O freezing temperature	$T_{ m ref}$ ~ 273 K
Equator-pole potential temperature difference Tropospheric vertical potential temperature difference	$\Delta \Theta \sim 40 \ \mathrm{K}$
Dry gas constant	$R = 287 \text{ m}^2 \text{ s}^{-2} \text{ K}^{-1}$
Dry isentropic exponent	$\gamma = 1.4$

Universal characteristics of atmospheric motions (R Klein Annu Rev Fluid Mech 2010)

Auxiliary quantities of interest dervied from the Table above

Sea-level air density	$\rho_{\rm ref} = p_{\rm ref}/(RT_{\rm ref}) \sim 1.25 \ \rm kgm^{-3}$
Density scale height	$b_{\rm sc} = \gamma p_{\rm ref} / (g \rho_{\rm ref}) \sim 11 \ {\rm km}$
Sound speed	$c_{\rm ref} = \sqrt{\gamma p_{\rm ref}/\rho_{\rm ref}} \sim 330 \ {\rm ms}^{-1}$
Internal wave speed	$c_{\rm int} = \sqrt{g h_{\rm sc} \frac{\Delta \Theta}{T_{\rm ref}}} \sim 110 \ {\rm ms}^{-1}$
Thermal wind velocity	$u_{\rm ref} = \frac{2}{\pi} \frac{g h_{\rm sc}}{\Omega a} \frac{\Delta \Theta}{T_{\rm ref}} \sim 12 \ {\rm ms}^{-1}$

Courtesy EUMETSAT

FVM semi-implicit integration

$$\frac{\partial G\Psi}{\partial t} + \nabla \cdot (V\Psi) = G \left(\mathcal{R}^{\Psi} + P^{\Psi} \right) ,$$

$$\Psi_{i}^{n+1} = \mathcal{A}_{i}(\widetilde{\Psi}, V^{n+1/2}, G^{n}, G^{n+1}, \delta t) + b^{\Psi} \, \delta t \, \mathcal{R}^{\Psi}|_{i}^{n+1}$$
$$\equiv \widehat{\Psi}_{i} + b^{\Psi} \, \delta t \, \mathcal{R}^{\Psi}|_{i}^{n+1} ,$$

$$\widetilde{\Psi} = \Psi^n + a^{\Psi} \,\delta t \,\mathcal{R}^{\Psi}|^n + \delta t \,P^{\Psi}|^n ,$$

Variable	Ψ	V	G	a^{Ψ}	b^{Ψ}
Dry density	$ ho_{\rm d}$	vG	${\cal G}$	_	_
Zonal physical velocity	и	$\pmb{v}\mathcal{G} ho_{\mathrm{d}}$	${\cal G} ho_{ m d}$	0.5	0.5
Meridional physical velocity	v	$\pmb{v}\mathcal{G} ho_{\mathrm{d}}$	${\cal G} ho_{ m d}$	0.5	0.5
Vertical physical velocity	w	$\pmb{v}\mathcal{G} ho_{\mathrm{d}}$	${\cal G} ho_{ m d}$	0.5	0.5
Potential temperature perturbation	heta'	$\pmb{v}\mathcal{G} ho_{\mathrm{d}}$	$\mathcal{G} ho_{ m d}$	0.5	0.5
Water vapour mixing ratio	$r_{\rm V}$	$\pmb{v}\mathcal{G} ho_{\mathrm{d}}$	${\cal G} ho_{ m d}$	_	_
Liquid water mixing ratio	r_1	$\pmb{v}\mathcal{G} ho_{\mathrm{d}}$	${\cal G} ho_{ m d}$	_	_
Rain water mixing ratio	r _r	$\pmb{v}\mathcal{G} ho_{\mathrm{d}}$	${\cal G} ho_{ m d}$	_	_
Ice mixing ratio	r_{i}	$\pmb{v}\mathcal{G} ho_{\mathrm{d}}$	${\cal G} ho_{ m d}$	_	_
Snow mixing ratio	r _s	$\pmb{v}\mathcal{G} ho_{\mathrm{d}}$	${\cal G} ho_{ m d}$	_	_
Cloud fraction	Λ_a	$\pmb{v}\mathcal{G} ho_{\mathrm{d}}$	${\cal G} ho_{ m d}$	_	_
Exner pressure perturbation	arphi'	$\pmb{v}\mathcal{G} ho_{d}$	$\mathcal{G} ho_{\mathrm{d}}$	$(1-\alpha)$	α

Main principles of default scheme:

- > Time integration aims for a high degree of implicitness with respect to rhs forcings
- > Focus on co-located arrangement of prognostic variables, but selected compact operators used
- Numerically consistent second-order design about non-oscillatory forward-in-time flux-form advection (core design uses MPDATA, alternative transport schemes for selected variables and tracers incorporated)
- Compact-stencil diffusion with implicit time stepping

FVM coupling to IFS physical parametrisations

- Parametrizations for turbulence, convection, cloud microphysics, orographic and non-orographic gravity wave drag
- Land surface model HTESSEL
- ecRad radiation scheme on model grid (called every 1h)
- As the current default, tendencies from IFS physical parametrizations are incorporated in FVM SI scheme using Euler forward approach with subcycling of dynamics:

Bauer et al. Nature 2015

Physics time step from
$$t^N$$
 to $t^N + \Delta t_{phys} \equiv t^N + N_s \,\delta t$ for $\ell = 1, N_s$:

$$\Psi_{\mathbf{i}}(t^{N}+\ell\delta t) = \mathscr{A}_{\mathbf{i}}(\widetilde{\Psi}, \mathbf{V}(t^{N}+(\ell\delta t-0.5)), G(t^{N}+(\ell-1)\delta t), G(t^{N}+\ell\delta t), \delta t) + b^{\Psi}\delta t \,\mathscr{R}_{\mathbf{i}}^{\Psi}(t^{N}+\ell\delta t)$$

 $\bigoplus \mathsf{ECMWF} \quad \widetilde{\Psi} = \Psi (t^N + (\ell - 1)\delta t) + a^{\Psi} \delta t \,\mathscr{R}^{\Psi} (t^N + (\ell - 1)\delta t) + \delta t \, P^{\Psi} (t^N, \Delta t_{phys})$ ¹⁴

Fundamentals of the FVM integration scheme

→ See Piotr Smolarkiewicz's lecture for further discussion

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

MPDATA scheme

- MPDATA: Multidimensional Positive Definite Advection Transport Algorithm
- Upwind scheme followed by error-compensating steps formulated as pseudo-flux achieves at least secondorder accurate solution
- Limiting the pseudo-flux using Flux-Corrected Transport approach achieves monotone solution
- Many variants of the scheme exist (sign-preserving, split vs unsplit, third-order extension, structured grids, unstructured meshes, curvilinear coordinates, moving meshes)
- Smolarkiewicz (1983); Smolarkiewicz and Clark \succ (1986); Smolarkiewicz and Grabowski (1990); Smolarkiewicz and Margolin (1998); Smolarkiewicz and Szmelter (2005); Kühnlein et al. 2012; Kühnlein and Smolarkiewicz (2017); Waruszewski et al. 2018

$$\begin{aligned} \mathbf{\mathcal{A}}^{n+1} &= \mathcal{A}_{\mathbf{i}}(\Psi^{n}, \mathbf{V}^{n+1/2}, G^{n}, G^{n+1}) \\ &= \chi_{\mathbf{i}}^{n+1/2} \widetilde{\mathcal{A}}_{\mathbf{i}}(\Psi^{n}, \mathbf{V}^{n+1/2}, G^{n}, G^{n+1}) \\ &= \chi_{\mathbf{i}}^{n+1/2} \Psi_{\mathbf{i}}^{\mathcal{N}_{\eta}} \\ \end{aligned}$$
where $\chi^{n+1/2} \equiv \frac{G^{n}}{2\pi^{n+1/2}}$

Ψ!

$$\begin{aligned} \widetilde{\mathcal{A}}_{\mathbf{i}} \text{ iterates for } \eta &= 1, \, \mathcal{N}_{\eta} : \\ \Psi_{k,i}^{(\eta)} &= \Psi_{k,i}^{(\eta-1)} - \frac{\delta t}{G_{k,i}^{n} \, \mathcal{V}_{i}} \sum_{j=1}^{l(i)} F_{k,j}^{\perp} \left(\Psi_{k,i}^{(\eta-1)}, \Psi_{k,j}^{(\eta-1)}, V_{k,j}^{\perp} \right)^{(\eta)} \right) S_{j} \\ &- \frac{\delta t}{G_{k,i}^{n} \, \delta z} \left\{ -F_{k+1/2,i}^{z} \left(\Psi_{k,i}^{(\eta-1)}, \Psi_{k+1,i}^{(\eta-1)}, V_{k+1/2,i}^{z} \right) -F_{k-1/2,i}^{z} \left(\Psi_{k-1,i}^{(\eta-1)}, \Psi_{k,i}^{(\eta-1)}, V_{k-1/2,i}^{z} \right) \right\} \end{aligned}$$

Χ

 G^{n+1}

Split Eulerian flux-form advection

Mass-compatible horizontal-vertical Strang-split flux-form advection in FVM:

$$\begin{split} \rho_{d\,i}^{[1]} &= \mathcal{A}_{i}^{z}(\rho_{d}^{n}, (v^{z}\mathcal{G})^{n+1/2}, \mathcal{G}^{n}, \mathcal{G}^{[1]}, 0.5\delta t) ,\\ \rho_{d\,i}^{[2]} &= \mathcal{A}_{i}^{xy}(\rho_{d}^{[1]}, (\boldsymbol{v}_{h}\mathcal{G})^{n+1/2}, \mathcal{G}^{[1]}, \mathcal{G}^{[2]}, \delta t) ,\\ \rho_{d\,i}^{n+1} &= \rho_{d\,i}^{[3]} &= \mathcal{A}_{i}^{z}(\rho_{d}^{[2]}, (v^{z}\mathcal{G})^{n+1/2}, \mathcal{G}^{[2]}, \mathcal{G}^{n+1}, 0.5\delta t) \end{split}$$

$$\begin{split} \Psi_{i}^{[1]} &= \mathcal{A}_{i}^{z} (\widetilde{\Psi}, (v^{z} \mathcal{G} \rho_{d})^{[1]}, (\mathcal{G} \rho_{d})^{n}, (\mathcal{G} \rho_{d})^{[1]}, 0.5 \delta t) , \\ \Psi_{i}^{[2]} &= \mathcal{A}_{i}^{xy} (\Psi^{[1]}, (v_{h}^{\perp} \mathcal{G} \rho_{d})^{[2]}, (\mathcal{G} \rho_{d})^{[1]}, (\mathcal{G} \rho_{d})^{[2]}, \delta t) , \\ \Psi_{i}^{[3]} &= \mathcal{A}_{i}^{z} (\Psi^{[2]}, (v^{z} \mathcal{G} \rho_{d})^{[3]}, (\mathcal{G} \rho_{d})^{[2]}, (\mathcal{G} \rho_{d})^{n+1}, 0.5 \delta t) \end{split}$$

Kühnlein et al. GMD 2019

Formulate Schur complement

$$r_{l_{\mathbf{i}}}^{n+1} = \widehat{r}_{l_{\mathbf{i}}}, \quad r_{r_{\mathbf{i}}}^{n+1} = \widehat{r}_{r_{\mathbf{i}}}, \quad r_{i_{\mathbf{i}}}^{n+1} = \widehat{r}_{i_{\mathbf{i}}}, \quad r_{s_{\mathbf{i}}}^{n+1} = \widehat{r}_{s_{\mathbf{i}}}$$

$$r_{v_{\mathbf{i}}} = \widehat{r}_{v_{\mathbf{i}}} + \delta t_{h} \left[-\alpha_{r_{v}}(r_{v} - r_{v_{r}}) \right]_{\mathbf{i}}$$

$$\theta_{\mathbf{i}} = \widehat{\theta}_{\mathbf{i}} + \delta t_{h} \left[-\alpha_{\theta}(\theta - \theta_{r}) \right]_{\mathbf{i}} \qquad \theta_{\rho}^{\star} = \theta^{\star} \vartheta^{n+1} \equiv \frac{\theta^{\star}(1 + r_{v}^{n+1}/\varepsilon)}{(1 + r_{t}^{n+1})}$$

$$\theta_{\mathbf{i}}^{\star} = \widehat{\theta'}_{\mathbf{i}} + \delta t_{h} \left[-\widetilde{\mathbf{G}}^{\mathsf{T}} \mathbf{u} \cdot \nabla \theta_{a} - \alpha_{\theta} \theta' - \alpha_{\theta}(\theta_{a} - \theta_{r}) \right]_{\mathbf{i}}$$

$$\mathbf{u}_{\mathbf{i}} = \widehat{\mathbf{u}}_{\mathbf{i}} + \delta t_{h} \left[-\theta^{\star} \vartheta^{n+1} \widetilde{\mathbf{G}} \nabla \varphi' - (\theta_{a} + \theta') \vartheta^{n+1} \widetilde{\mathbf{G}} \nabla \varphi_{a} + \mathbf{g} - \mathbf{f} \times \mathbf{u} + \mathcal{M}^{\star} (\mathbf{u}^{\star}, \mathbf{u}) - \alpha_{\mathbf{u}} (\mathbf{u} - \mathbf{u}_{r}) \right]_{\mathbf{i}}$$

$$\mathbf{L}\mathbf{u} = \widehat{\widehat{\mathbf{u}}} - \delta t_h \,\theta_\rho^\star \, \widetilde{\mathbf{G}} \nabla \varphi' \longrightarrow \mathbf{u} = \mathbf{L}^{-1} \widehat{\widehat{\mathbf{u}}} - \mathbf{L}^{-1} \delta t_h \,\theta_\rho^\star \, \widetilde{\mathbf{G}} \nabla \varphi' \longrightarrow \mathbf{u} = \mathbf{u} - \mathbf{C} \nabla \varphi'$$
$$\overline{\mathbf{u}} = \mathbf{L}^{-1} \widehat{\widehat{\mathbf{u}}} \qquad \mathbf{C} = \mathbf{L}^{-1} \delta t_h \,\theta_\rho^\star \, \widetilde{\mathbf{G}}$$

CECMWF

Helmholtz equation for implicit treatment of Exner pressure

Total derivative of equation of state combined with mass continuity, thermodynamic, and water vapour mixing ratio equations yields, see Smolarkiewicz et al. (2014, 2017, 2019); Kühnlein et al. 2019:

$$\frac{\partial(\mathcal{G}\rho_{d}\varphi')}{\partial t} + \nabla \cdot \left(\mathbf{v}\mathcal{G}\rho_{d}\varphi'\right) = \mathcal{G}\rho_{d} \left[-\frac{\xi\varphi}{\mathcal{G}}\nabla \cdot \left(\mathcal{G}\mathbf{G}^{T}\mathbf{u}\right) - \frac{1}{\mathcal{G}\rho_{d}}\nabla \cdot \left(\mathcal{G}\rho_{d}\varphi_{a}\mathbf{G}^{T}\mathbf{u}\right) + \frac{\varphi_{a}}{\mathcal{G}\rho_{d}}\nabla \cdot \left(\mathcal{G}\rho_{d}\mathbf{G}^{T}\mathbf{u}\right) - \frac{\partial\varphi_{a}}{\partial t} + P^{\varphi}\right]$$
with $P^{\varphi} = \xi\varphi \left(\frac{P^{\theta}}{\theta} + \frac{P^{r_{v}}/\varepsilon}{1 + r_{v}/\varepsilon}\right) \qquad \xi = \frac{R_{d}}{c_{vd}}$

 $\varphi'_{\mathbf{i}} = \mathcal{A}(\varphi'^{n} + (1 - \beta) \,\delta t \,\mathcal{R}^{\varphi'}|^{n} + \delta t P^{\varphi'}|^{n}, (\mathbf{v}\mathcal{G}\rho_{d})^{\perp}|^{n+1/2}, (\mathcal{G}\rho_{d})^{n}, (\mathcal{G}\rho_{d})^{n+1}, \delta t) + \beta \,\delta t \,\mathcal{R}^{\varphi'}|^{n+1}$

 $\beta \in [0.5, 1.0]$

Elliptic Helmholtz boundary value problem

$$0 = -\sum_{\ell=1}^{3} \left(\frac{A_{\ell}^{\star}}{\zeta_{\ell}} \nabla \cdot \zeta_{\ell} \, \widetilde{\mathbf{G}}^{T} (\overline{\mathbf{u}} - \mathbf{C} \nabla \varphi') \right) - B^{\star} (\varphi' - \widehat{\varphi'}) \equiv \mathcal{L}(\varphi') - R$$

Coefficients:

$$A_1^{\star} = 1 , \quad A_2^{\star} = \frac{c_{vd}}{R_d} \frac{\varphi_a}{\varphi} = -A_3^{\star} , \qquad \zeta_1 = \mathcal{G} , \quad \zeta_2 = \mathcal{G}\rho_d\varphi_a , \qquad \zeta_3 = \mathcal{G}\rho_d , \qquad B^{\star} = \frac{1}{\beta \,\delta t} \frac{c_{vd}}{R_d \,\varphi}$$

Advective part:

$$\widehat{\varphi'} = \mathcal{A}(\varphi'^n + (1-\beta)\,\delta t\,\mathcal{R}^{\varphi'}|^n + \delta t P^{\varphi'}|^n, (\mathbf{v}\mathcal{G}\rho_d)^{\perp}|^{n+1/2}, (\mathcal{G}\rho_d)^n, (\mathcal{G}\rho_d)^{n+1}, \delta t)$$

- 3D implicit Exner pressure solution is a crucial aspect for the performance, robustness and accuracy of the FVM model
- Different kinds of solution methods considered/developed as some future HPC architectures may require approaches that operate within the acoustic radius

Linear solvers for the 3D Helmholtz problem

- We prefer the Generalized Conjugate Residual method of order k for nonsymmetric systems (GMRES, BiCGSTAB are alternatives, pipelined versions can be useful)
- Matrix-free implementation
- Bespoke preconditioners for atmospheric configurations
- Multi-grid extension for preconditioner (Gillard et al. 2024)
- See Smolarkiewicz et al. (2000, 2004); Smolarkiewicz and Szmelter 2011 for tutorials

Weighted line Jacobi method preconditioner in FVM (Kühnlein et al. 2019):

$$e^{\mu+1} = \omega \left[\mathcal{D} + \mathcal{P}_z \right]^{-1} \left(\mathcal{D} e^{\mu} - \mathcal{P}_h(e^{\mu}) + \hat{r} \right) + (1 - \omega) e^{\mu}$$
$$\mathcal{D}_{k,i} = -\frac{1}{4\mathcal{V}_i} \sum_{\ell=1}^3 \frac{A_{\ell k,i}^{\star}}{\zeta_{\ell k,i}} \sum_{j=1}^{l(i)} \frac{\zeta_{\ell k,j}}{\mathcal{V}_j} \left(\mathcal{B}_{k,j}^{11} S_j^{x2} + \mathcal{B}_{k,j}^{22} S_j^{y2} \right)$$

For n = 1,2,... until convergence do

for v = 0....k-1 do $\beta = -\frac{\langle r^{\nu} \mathcal{L}(q^{\nu}) \rangle}{\langle f(q^{\nu}) f(q^{\nu}) \rangle} ,$ $\psi_{\mathbf{i}}^{\nu+1} = \psi_{\mathbf{i}}^{\nu} + \beta q_{\mathbf{i}}^{\nu} ,$ $r_{\mathbf{i}}^{\nu+1} = r_{\mathbf{i}}^{\nu} + \beta \mathcal{L}_{\mathbf{i}}(q^{\nu}),$ exit if $||r^{\nu+1}|| \leq \epsilon$, $\boldsymbol{e}_{\mathbf{i}} = \boldsymbol{\mathcal{P}}_{\mathbf{i}}^{-1}(\boldsymbol{r}^{\nu+1}) \,,$ evaluate $\mathcal{L}_{\mathbf{i}}(\mathbf{e})$, GCR(k) scheme $\forall_{I=0,\nu} \alpha_{I} = -\frac{\langle \mathcal{L}(e)\mathcal{L}(q')\rangle}{\langle f(a')f(a')\rangle},$ $q_{\mathbf{i}}^{\nu+1} = e_{\mathbf{i}} + \sum_{l=0}^{\nu} \alpha_l q_{\mathbf{i}}^l ,$ $\mathcal{L}_{\mathbf{i}}(q^{\nu+1}) = \mathcal{L}_{\mathbf{i}}(e) + \sum_{l=0}^{\nu} \alpha_l \mathcal{L}_{\mathbf{i}}(q^l),$ end do, reset $(\psi, r, q, \mathcal{L}(q))_{\mathbf{i}}^{k}$ to $[\psi, r, q, \mathcal{L}(q)]_{\mathbf{i}}^{0}$, 21

end do.

FVM comparison to hydrostatic IFS-ST: dry adiabatic dynamics

experimental setup following Ullrich et al. QJ 2012

22

FVM comparison to hydrostatic IFS-ST: dry adiabatic dynamics

-60°

Second-order finite-volume provides essentially the same solution-quality than spectral-transform model for this test

CECMWF

315°

270°

315°

270°

225°

32km

135°

180°

Snapshot of computational efficiency: FVM vs IFS-ST

- Dry baroclinic instability experiments in identical configuration O1280/TCo1279 (9km) with L137
- Time steps of IFS-FVM were a factor of 6-7 smaller than IFS-ST

O1280/TCo1279 with L137 dry dycore on 350 nodes of ECMWF's Cray XC40

R FORECASTS Comparison study on latest GPU hardware in prep!

Octahedral and HEALPix meshes with FVM

Octahedral O400 example for baroclinic instability benchmark

Octahedral and HEALPix meshes with FVM

HEALPix H240 example for baroclinic instability benchmark

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Octahedral and HEALPix meshes with FVM

Stratified flow past Schär mountain in small-planet configuration

Stratified flow past steep orography in small-planet configuration

Experimental setup following Zängl MWR 2012

 \rightarrow IFS-FVM robust wrt very steep slopes of orography

DCMIP2016 dynamical core intercomparison: splitting supercell

DCMIP2016 dynamical core intercomparison: splitting supercell

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Zarzycki et al. GMD 2019

DCMIP2016 dynamical core intercomparison: splitting supercell

Zarzycki et al. GMD 2019

 \rightarrow FVM uses second-order Finite-Volume method

 \rightarrow TEMPEST uses higher-order Spectral-Element methods

IKE(t) =
$$\frac{1}{2} \int_{0}^{z_t} \int_{0}^{A_e} \rho \left({u'}^2 + {v'}^2 + {w'}^2 \right) dAdz$$

ECRIVE EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECA

DCMIP2016 dynamical core intercomparison: tropical cyclone

Figure 4. Azimuthally averaged vertical wind composite of the simulated TCs from days 4–10 of the 50 km simulation.

ECMVF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Figure 6. Wind–pressure relationship in the simulated TCs at all time steps for 25 km simulations of participating models.

Willson et al. GMD 2024

DCMIP2016 dynamical core intercomparison: tropical cyclone

ulated TCs from days 4-10 of the 25 km simulation.

Figure 4. Azimuthally averaged vertical wind composite of the simulated TCs from days 4–10 of the 50 km simulation.

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FVM case study of Hurricane IRMA

- Major Hurricane of Category 5 in tropical Atlantic
- Formed 30 August 2017
- Dissipated 14 September 2017
- 285 km/h 1-minute sustained winds
- 914 hPa minimum MSLP
- Peak intensity on 5 September 2017
- Fourth-costliest tropical cyclone on record

FVM forecast experiments of Hurricane IRMA

- Initialisation from IFS analysis 20170904 00 UTC
- O1280/TCo1279 corresponding to ~9 km nominal spacing, L62
- IFS CY43R3, uncoupled

FVM forecast experiments of Hurricane IRMA

O1280/TCo1279 corresponding to ~9 km nominal spacing, L62

IFS CY43R3, uncoupled

Christian Kühnlein, Linus Magnusson

FVM forecast experiments of Hurricane IRMA

- Initialisation from IFS analysis 20170904 00 UTC
- O1280/TCo1279 corresponding to ~9 km nominal spacing, L62

IFS CY43R3, uncoupled

Christian Kühnlein, Linus Magnusson

Relevance of nonhydrostatic effects for the supercell convective storm

ECRAFF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Relevance of nonhydrostatic effects for the supercell convective storm

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Single-precision implementation of FVM

MPI x OMP	72 x 18	144 x 9	144 x 18	288 x 9
SP	2315 s	2365 s	1260 s	1269 s
DP	3660 s	3634 s	2007 s	1926 s

- Runtimes for a O640/L62 4-day forecast using single- vs. double-precision on Cray XC40
- Configuration is for init date 22 May 2018 00 UTC, full IFS physics package, all parametrisations apart from radiation and non-orographic GW drag are called at every FVM time step here
- Radiation called every hour and run on the same O640 grid
- Convergence of the FVM preconditioned Krylov solver is essentially identical with SP and DP given typical thresholds

Single-precision implementation of FVM

ECCIVE EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Single-precision implementation of FVM

ECCIVE EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Geosci. Model Dev., 12, 651–676, 2019 https://doi.org/10.5194/gmd-12-651-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS

Christian Kühnlein¹, Willem Deconinck¹, Rupert Klein², Sylvie Malardel^{1,3}, Zbigniew P. Piotrowski⁴, Piotr K. Smolarkiewicz¹, Joanna Szmelter⁵, and Nils P. Wedi¹

¹European Centre for Medium-Range Weather Forecasts, Reading, UK

²FB Mathematik und Informatik, Freie Universität Berlin, Berlin, Germany

³Laboratoire de l'Atmosphére et des Cyclones, Météo-France, La Reunion, France

⁴Institute of Meteorology and Water Management – National Research Institute, Warsaw, Poland

⁵Loughborough University, Leicestershire, LE11 3TU, UK

References

Smolarkiewicz P. K., W. Deconinck, M. Hamrud, C. Kühnlein, G. Modzinski, J. Szmelter, N. P. Wedi, A finite-volume module for simulating global all-scale atmospheric flows., J. Comput. Phys., 2016.

Kühnlein C., P. K. Smolarkiewicz, An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics. J. Comput. Phys. 2017.

Deconinck W., P. Bauer, M. Diamantakis, M. Hamrud, C. Kühnlein, G. Mengaldo, P. Marciel, T. Quintino, B. Raoult, P. K. Smolarkiewicz, N. P. Wedi, Atlas: A library for numerical weather prediction and climate modelling, CPC, 2017.

Gillard M., Szmelter J., Cocetta F.: Preconditioning elliptic operators in high-performance all-scale atmospheric models on unstructured meshes, J. Comput. Phys., 2024.

Smolarkiewicz P. K., C. Kühnlein, W. Grabowski, A finite-volume module for cloud-resolving simulations of global atmospheric flows, J. Comput. Phys., 2017.

Smolarkiewicz P. K., C. Kühnlein, N. P. Wedi, Semi-implicit integrations of perturbation equations for all-scale atmospheric dynamics, J. Comput. Phys., 2019.

Kühnlein C., W. Deconinck, R. Klein, S. Malardel, Z.P. Piotrowski, P.K. Smolarkiewicz, J. Szmelter, N.P. Wedi, FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS, Geosci. Model Dev., 12, 651-676, 2019.

