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Ocean – Land – Atmosphere – Sea ice
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Spectral-transform formulation of the operational IFS (IFS-ST)

Operational configuration of the Integrated Forecasting System at ECMWF

Current operational dynamical core configuration of the Integrated Forecasting System (IFS) at the ECMWF:

• hydrostatic primitive equations (nonhydrostatic option available; see Benard et al. 2014)

• hybrid ⌘ � p vertical coordinate (Simmons and Burridge, 1982)

• spherical harmonics representation in horizontal (Wedi et al., 2013)

• finite-element discretisation in vertical (Untch and Hortal, 2004)

• semi-implicit semi-Lagrangian (SISL) integration scheme (Temperton et al. 2001, Diamantakis 2014)

• cubic-octahedral (”TCo”) grid (Wedi, 2014, Malardel et al. 2016)

• HRES: TCo1279 (O1280) with �h ⇡ 9 km and 137 vertical levels

• ENS (1+50 perturbed members): TCo639 (O640) with �h ⇡ 18 km and 91 vertical levels

Schematic of spectral-transform method in IFS

ECMWFAdvanced Numerical Methods for Earth-System Modelling  Slide 4

Schematic description of the spectral transform 
method in the ECMWF IFS model

Grid-point space
-semi-Lagrangian advection
-physical parametrizations
-products of terms

Fourier space

Spectral space
-horizontal gradients
-semi-implicit calculations 
-horizontal diffusion

FFT
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Fourier space

FFT: Fast Fourier Transform,  LT: Legendre Transform
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• IFS physics parametrizations for radiation,
sub-grid scale turbulence and surface
interaction, orographic/non-orographic drag,
moist convection, clouds and stratiform
precipitation, surface processes

• Fractional stepping within di↵erent
parametrizations (Beljaars 1991)

• Coupling of IFS physics parametrizations to
dynamical core using SLAVEPP
(Semi-Lagrangian Averaging of Physical
Parametrizations, Wedi 1999)

Christian Kühnlein, Sylvie Malardel, Piotr Smolarkiewicz, Nils Wedi 2/23
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• hydrostatic primitive equations in hybrid mass-based 
vertical coordinate

• spherical-harmonics representation in horizontal

• finite-element approach for integrals in vertical

• two-time-level semi-implicit semi-Lagrangian 
integration scheme

• cubic-octahedral grid (“TCo“)

• coupling to IFS physics using SLAVEPP (Semi-
Lagrangian Averaging of Physical Parametrisations)

Y X
Z

Nodes of octadedral 
reduced Gaussian grid
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IFS dynamical core performance comparison: time-to-solution at 
3km for dry baroclinic instability test case with 10 tracer fields

5(adapted from Michalakes et al, NGGPS AVEC report, 2015)

Operational need!

The higher the better

IFS-ST (HPEs)
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IFS dynamical core performance comparison: time-to-solution at 
3km for dry baroclinic instability test case with 10 tracer fields

6(adapted from Michalakes et al, NGGPS AVEC report, 2015)

IFS-ST (HPEs)

The higher the better

IFS-ST (HPEs)
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Current dynamical core options at ECMWF
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|  currently operational |

O24 grid points Primary mesh O24 O1280 dual mesh spacing
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Finite-Volume Module of IFS—key formulation features

• moist-precipitating, deep-atmosphere, nonhydrostatic, fully compressible equations (Smolarkiewicz,
Kühnlein, Grabowski 2017; Kühnlein et al. in prep.)

• flexible height-based terrain-following vertical coordinate

• hybrid of horizontally-unstructured median-dual finite-volume with vertically-structured
finite-di↵erence/finite-volume discretisation (Szmelter and Smolarkiewicz 2010; Smolarkiewicz et al. 2016)

• two-time-level semi-implicit integration scheme with 3D implicit acoustic, buoyant and rotational modes
(Smolarkiewicz, Kühnlein, Wedi 2014)

• finite-volume non-oscillatory forward-in-time (NFT) MPDATA scheme (Smolarkiewicz and Szmelter 2005;
Kühnlein and Smolarkiewicz 2017), directionally-split NFT advective transport (Kühnlein et al., in prep.)

• preconditioned generalised conjugate residual iterative solver for 3D elliptic problems arising in the
semi-implicit integration schemes (Smolarkiewicz and Szmelter 2011 for a more recent review)

• octahedral reduced Gaussian grid, but the IFS-FVM formulation not restricted to this (Szmelter and
Smolarkiewicz 2016)

• optional moving mesh capability (Kühnlein, Smolarkiewicz, Dörnbrack 2012)

• coupling of IFS physics parametrizations using Euler forward approach (see below)

i jSj

median-dual finite-volume approach

ECMWF2015   Slide 1

A hybrid all-scale finite-volume module for global NWP

Piotr Smolarkiewicz, Willem Deconinck, Mats Hamrud, 
George Mozdzynski, Christian Kühnlein, Joanna Szmelter, Nils Wedi
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terrain-following coordinate
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FVM summary (from year 2019)

8

Finite-Volume Module of IFS—key formulation features

• moist-precipitating, deep-atmosphere, nonhydrostatic, fully compressible equations (Smolarkiewicz,
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Nodes of octahedral grid O24

Current features:
• nonhydrostatic, deep-atmosphere, fully compressible equations

• horizontally-unstructured vertically-structured finite-volume discretisation

• semi-implicit integration with 3D implicit dynamics right-hand-sides (diffusion is 

HEVI by default)

• (explicit) nonoscillatory forward-in-time conservative Eulerian advection 

• flexibility with respect to horizontal and vertical meshes

• Atlas library mesh and parallel datastructures

• Fortran code and using hybrid MPI/OpenMP for CPUs, but Python/GT4Py DSL 

implementation under development 

• 64-bit or 32-bit precision 

• IFS-FVM coupled to IFS physical parametrisation package (CY43R3)

• ecRad radiation scheme on model grid

Y X
Z
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Octahedral reduced Gaussian grid of the IFS
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O1280 dual mesh spacingedges primary mesh connecting
nodes of O24 

nodes of O24

• Quasi-uniform resolution over the surface of the sphere
• Suitable for spherical harmonics transforms and hence the spectral-transform IFS model
• Unstructured finite-volume IFS-FVM can develop mesh about nodes of the grid  
• Using the same grid benefits overall infrastructure and model comparison studies
→ see Malardel et al. 2015; Smolarkiewicz et al. 2016; Deconinck et al. 2017; Kühnlein et al. 2019
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Summary of FVM spatial discretization

• horizontally-unstructured finite-volume (FV) and vertically-structured finite-
difference/finite-volume (FD/FV) discretisation framework

• median-dual FV approach is current default but other options are explored

10

Smolarkiewicz et al. JCP 2016
Kühnlein et al. GMD 2019

• Gauss divergence theorem is central to FV technique

• Various approximations for FV fluxes between neighbouring cells 
depending on process and form of operator

• Fluxes in Laplacian operator (gradient & divergence) are usually 
linear & centred reconstructions of data at neighbouring points, 
compact specifications are used for diffusion, upwind and nonlinear 
fluxes occur in context of non-oscillatory advection
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FVM fully compressible equations with full IFS physics
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Author One et al. 3

2.1 | Flux-form fully compressible equations solved in the discrete model
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@t

+ + · (vG⇢d rk ) = G⇢d P
rk , rk = rv , rl , rr , ri , rs , ⇤a (5d)

• Model formulation at full NWP complexity
• Revised form of the governing equations permits a higher degree of implicitness (less lagged terms) but requires

3D ambient pressure
• 3D ambient pressure term employed in coupling of thermodynamic equation to all three components of momen-

tum equation
• We consider perturbation variables for the quantities related to fast modes, i.e. potential temperature and pres-

sure.
• Check what is needed for time-dependent ambient states and mention but don’t put in equations in this paper

3D ambient Exner pressure derived from:
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3 | SEMI-IMPLICIT TIME INTEGRATION

3.1 | A fully second-order �ux-form Eulerian scheme with Lagrangian congruency
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where

e =  n + a �t R |n + �t P  |n , (9)

and b i = Ai(e ,Vn+1/2,Gn ,Gn+1, �t ) in (8) symbolises a �ux-form Eulerian NFT advective transport scheme based on
MPDATA, as described in ?
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• Companion papers study computational e�ciency to reduced precision, linear solver preconditioning, Krylov
solver choice, stopping criteria

• Yet another paper extends the semi-implicit integration with an incremental advection option for increased e�-
ciency and robustness in operational applications

• Future papers will study: advanced perturbation forms, sensitivity to ambient states for NWP, spheroidal shape
of the Earth, implicit versus explicit temporal treatment of terms in the integration for NWP, 3D implicit versus
HEVI, full multigrid

Choice of spatial discretisation appears of secondary importance compared to the choice of time stepping; cf.
Knoll et al, JCP (2003).
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Universal characteristics of atmospheric flows
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ANRV400-FL42-12 ARI 17 November 2009 10:29

Potential
temperature (Θ):
temperature an air
parcel would attain if
compressed
adiabatically to the
sea-level pressure

Barotropic versus
baroclinic: barotropic
distributions of a
variable have a unique
sign over the depth of
the fluid column,
whereas baroclinic
ones do not

Internal waves:
oscillations with
gravity as the restoring
force

Thermal wind:
vertical shear induced
by horizontal
potential-temperature
gradients under
hydrostatic and
geostrophic balance
(see Section 2.2.2)

1. INTRODUCTION

1.1. Characteristic Scales and Dimensionless Parameters

Here we borrow from Keller & Ting (1951) and Klein (2000, 2004, 2008) to argue for an inherent
scale separation in large-scale atmospheric flows. Table 1 lists eight universal characteristics of
atmospheric motions involving the physical dimensions of length, time, mass, and temperature.
Earth’s radius, its rotation rate, and the acceleration of gravity are obviously universal. The sea-
level pressure is set by the mass (weight) of the atmosphere, which is essentially constant in time.
The water-freezing temperature is a good reference value for the large-scale, long-time-averaged
conditions on Earth (see also Rahmstorf et al. 2004 for the related paleoclimatic record). The
equator-to-pole potential-temperature difference is maintained by the inhomogeneous irradia-
tion from the Sun, and its magnitude appears to be stable over very long periods of time. An
average vertical potential-temperature difference across the troposphere is of the same order of
magnitude as the equator-to-pole temperature difference (see Frierson 2008, Schneider 2006,
and references therein). Finally the dry-air gas constant is a good approximation to local values
because the mass fractions of water vapor and greenhouse gases are very small. These seven di-
mensional characteristics allow for three independent, dimensionless combinations in addition to
the isentropic exponent γ . A possible choice is

"1 = hsc

a
∼ 1.6 × 10−3,

"2 = #$

Tref
∼ 1.5 × 10−1,

"3 = c ref

%a
∼ 4.7 × 10−1,

(1)

where hsc is the density scale height, and cref is of the order of a characteristic speed of sound
or of barotropic (external) gravity waves, as given in the first three items of Table 2. The last
two items in Table 2 are further characteristic signal speeds derived from the quantities of
Table 1: cint corresponds to the horizontal phase speed of linearized internal gravity waves in
the long-wavelength limit (see Gill 1982, chapter 6). In estimating a typical horizontal flow veloc-
ity, we use the thermal wind relation (see Equation 15 below) applied to planetary scales, and let
uref ∼ hsc|∂u/∂z|thermal and ∇∥θ̄ ∼ #$/ π

2 a , with ∇∥ as the horizontal gradient. Importantly, in-
ternal gravity waves are dispersive, and their phase speed depends strongly on the wave-number
vector, so that cint is merely an upper estimate. Internal wave signals may move at speeds comparable
to uref in practice (see also Sections 2.3 and 4.3 below).

Let us consider now the distances that sound waves, internal waves, and particles advected by
the thermal wind would travel during the characteristic time of Earth’s rotation, 1/% ∼ 104 s.

Table 1 Universal characteristics of atmospheric motions

Earth’s radius a ∼ 6 × 106 m
Earth’s rotation rate % ∼ 10−4 s−1

Acceleration of gravity g ∼ 9.81 ms−2

Sea-level pressure pref ∼ 105 kgm−1 s−2

H2O freezing temperature Tref ∼ 273 K
Equator-pole potential temperature difference
Tropospheric vertical potential temperature difference

}

#$ ∼ 40 K

Dry gas constant R = 287 m2 s−2 K−1

Dry isentropic exponent γ = 1.4
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Table 2 Auxiliary quantities of interest derived from those in Table 1

Sea-level air density ρref = pref/(RTref) ∼ 1.25 kgm−3

Density scale height hsc = γ pref/(gρref) ∼ 11 km
Sound speed c ref =

√
γ pref/ρref ∼ 330 ms−1

Internal wave speed c int =
√

ghsc
#$
Tref

∼ 110 ms−1

Thermal wind velocity uref = 2
π

ghsc
&a

#$
Tref

∼ 12 ms−1

Together with the density scale height, hsc, and the equator-to-pole distance, Lp, we find the
hierarchy of characteristic lengths displayed in Table 3. The technical terms in the left column are
often used for these scales in the meteorological literature. The synoptic reference scale, LRo, is also
called the Rossby radius, and the Obukhov scale is frequently termed the external Rossby radius.
These length scales are naturally induced by fluid dynamical processes in the atmosphere, and they
give rise to multiple-scales regimes when the characteristic signal speeds differ significantly. If we
fix, in turn, a length scale to be considered, then the different characteristic signal speeds give rise
to multiple times instead of multiple lengths. In general situations, one is faced with combined
multiple length–multiple time regimes.

1.2. Distinguished Limits
Even for the simple problem of the linear oscillator with small mass and small damping, an
asymptotic expansion that allows for independent variation of the two parameters is bound to fail
because limits taken in the space of the mass and damping parameters turn out to be path dependent
(Klein 2008). If that is so even for a simple linear problem, there is little hope for independent
multiple-parameter expansions in more complex fluid dynamical problems. Therefore, faced with
multiple small parameters as in Table 1, we proceed by introducing distinguished limits, or coupled
limit processes: The parameters are functionally related, and asymptotic analyses proceed in terms
of a single expansion parameter only.

The characteristic signal speeds from Table 2 are compatible with the scalings
c int

c ref
∼ 1/3 ∼

√
ε,

uref

c int
∼ 1/9 ∼ ε, and

uref

c ref
∼ ε

3
2 , (2)

and this corresponds to letting

(1 = c 1ε
3, (2 = c 2ε, (3 = c 3

√
ε, (3)

with ci = O(1) as ε → 0 for the parameters in Table 1. The length scales in Table 3 then obey

Lmeso = hsc

ε
, LRo = hsc

ε2 , LOb = hsc

ε
5
2
, Lp = hsc

ε3 . (4)

Table 3 Hierarchy of physically distinguished scales in the atmosphere

Planetary scale Lp = π
2 a ∼ 10000 km

Obukhov radius LOb = c ref
& ∼ 3300 km

Synoptic scale LRo = c int
& ∼ 1100 km

Meso-β scale Lmeso = uref
& ∼ 150 km

Meso-γ scale hsc = γ pref
gρref

∼ 11 km
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Universal characteristics of atmospheric motions (R. Klein Annu. Rev. Fluid Mech. 2010)

Auxiliary quantities of interest dervied from the Table above

Courtesy EUMETSAT
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FVM semi-implicit integration 
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Main principles of default scheme:
Ø Time integration aims for a high degree of implicitness with respect to rhs forcings
Ø Focus on co-located arrangement of prognostic variables, but selected compact operators used
Ø Numerically consistent second-order design about non-oscillatory forward-in-time flux-form advection (core 

design uses MPDATA, alternative transport schemes for selected variables and tracers incorporated)
Ø Compact-stencil diffusion with implicit time stepping
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FVM coupling to IFS physical parametrisations 
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Physics time step from tN to tN +Dtphys ⌘ tN +Ns d t for `= 1,Ns :115

Yi
�
tN+`d t

�
=Ai

�eY,V(tN+(`d t�0.5)),G(tN+(`�1)d t),G(tN+`d t),d t
�
+bY d t RY

i
�
tN+`d t

�

116

eY = Y
�
tN +(`�1)d t

�
+aY d t RY�tN +(`�1)d t

�
+d t PY�tN ,Dtphys

�

The physics tendency PY is evaluated with the physics time step Dtphys and is then reused for117

the Ns subcycling steps with d t.118

∂G rd

∂ t
+— · (vG rd) = 0 , (16a)

∂G rdu
∂ t

+— · (vG rdu) = G rd

h
�qr eG—j 0 �qr eG—ja +g� f⇥u+M(u)+P u

i
(16b)

∂G rdq 0

∂ t
+— ·

�
vG rd q 0�= G rd

h
�(v�va) ·—qa +Pq �Pqa

a

i
, (16c)

∂G rd r0v
∂ t

+— ·
�
vG rd r0v

�
= G rd [�(v�va) ·—rva +Prv �Prva

a ] , (16d)

∂G rd rk

∂ t
+— · (vG rd rk) = G rdPrk , rk = rl ,rr ,ri ,rs (16e)

∂G rd

∂ t
+— · (vG rd) = 0 , (17a)

∂G rdu0

∂ t
+— ·

�
vG rdu0�= G rd

h
�v0 ·—ua �qr eG—j 0

�qr eG—ja +qraeG—ja � f⇥u0+M0(u0,ua)+P u �P ua
a

i (17b)

∂G rdq 0

∂ t
+— ·

�
vG rd q 0�= G rd

h
�v0 ·—qa +Pq �Pqa

a

i
, (17c)

∂G rd r0v
∂ t

+— ·
�
vG rd r0v

�
= G rd

⇥
�v0 ·—rva +Prv �Prva

a
⇤
, (17d)

∂G rd rk

∂ t
+— · (vG rd rk) = G rdPrk , rk = rl ,rr ,ri ,rs (17e)

11

• Parametrizations for turbulence, convection, cloud 
microphysics, orographic and non-orographic gravity 
wave drag 

• Land surface model HTESSEL

• ecRad radiation scheme on model grid (called every 1h)

• As the current default, tendencies from IFS physical 
parametrizations are incorporated in FVM SI scheme 
using Euler forward approach with subcycling of 
dynamics: 

Bauer et al. Nature 2015
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Fundamentals of the FVM integration scheme

15EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

4 Author One et al.

3D ambient Exner pressure derived from:

eG+'a =
1

✓⇢a

⇢
g � f ⇥ ua + M(ua ) + Puaa �

da ua
d t

�
(12)

3 | SEMI-IMPLICIT TIME INTEGRATION

3.1 | A fully second-order �ux-form Eulerian scheme with Lagrangian congruency

@G 

@t
+ + · (V ) = G

⇣
R
 + P  

⌘
, (13)

 n+1
i = Ai(e ,Vn+1/2,Gn ,Gn+1, �t ) + b �t R |n+1i ⌘ b i + b �t R |n+1i , (14)

where

e =  n + a �t R |n + �t P  |n , (15)

and b i = Ai(e ,Vn+1/2,Gn ,Gn+1, �t ) in (14) symbolises a �ux-form Eulerian NFT advective transport scheme based
on MPDATA, as described in ?

✓0i =
b✓0i + �th

h
�eGT u · +✓a � ↵✓✓

0
� ↵✓ (✓a � ✓r )

i
i

(16a)

ui = bui + �th
h
�✓?#n+1eG+'0

�
�
✓a + ✓0

�
#n+1eG+'a + g � f ⇥ u + M? �u?, u� � ↵u(u � ur )

i
i
. (16b)

where

✓?⇢ = ✓?#n+1 ⌘
✓?(1 + r n+1v /")

(1 + r n+1t )
. (17)

✓i = b✓i + �th [�↵✓ (✓ � ✓r )]i (18)

• Newton relaxation terms

3.2 | Exact Schur complement on the co-located grid

• Explicit prediction of the dry density ⇢d based on mass continuity equation in �ux form
• Schur complement is formed to reduce the dimension of the original 5-by-5 system to one Helmholtz equation

2 Author One et al.

• Companion papers study computational e�ciency to reduced precision, linear solver preconditioning, Krylov
solver choice, stopping criteria

• Yet another paper extends the semi-implicit integration with an incremental advection option for increased e�-
ciency and robustness in operational applications

• Future papers will study: advanced perturbation forms, sensitivity to ambient states for NWP, spheroidal shape
of the Earth, implicit versus explicit temporal treatment of terms in the integration for NWP, 3D implicit versus
HEVI, full multigrid

Choice of spatial discretisation appears of secondary importance compared to the choice of time stepping; cf.
Knoll et al, JCP (2003).

2 | CONTINUOUS MODEL

•

d⇢d
d t

= �
⇢d
G
+ · (Gv) , (1a)

du
d t

= �✓⇢eG+' + g � f ⇥ u +M (u) + Pu , (1b)

d✓

d t
= P ✓ , (1c)

drk
d t

= P rk , rk = rv , rl , rr , ri , rs (1d)

' = cpd

"✓
Rd

p0
⇢d ✓ (1 + rv /")

◆Rd /cvd #
, (1e)

' = cpd

"✓
Rd

p0
⇢d ✓ (1 + rv /")

◆Rd /cvd #
= cpd⇡ , (2)

d 

d t
= R (3)

@G 

@t
+ + · (V ) = G R

 (4)

Gn+1 n+1
�Gn n

�t
+ + ·

⇣
Vn+1/2 n

⌘
=
⇣
GR

 
⌘n+1/2

(5)

2 Author One et al.

• Companion papers study computational e�ciency to reduced precision, linear solver preconditioning, Krylov
solver choice, stopping criteria

• Yet another paper extends the semi-implicit integration with an incremental advection option for increased e�-
ciency and robustness in operational applications

• Future papers will study: advanced perturbation forms, sensitivity to ambient states for NWP, spheroidal shape
of the Earth, implicit versus explicit temporal treatment of terms in the integration for NWP, 3D implicit versus
HEVI, full multigrid

Choice of spatial discretisation appears of secondary importance compared to the choice of time stepping; cf.
Knoll et al, JCP (2003).
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ciency and robustness in operational applications
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of the Earth, implicit versus explicit temporal treatment of terms in the integration for NWP, 3D implicit versus
HEVI, full multigrid

Choice of spatial discretisation appears of secondary importance compared to the choice of time stepping; cf.
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2 | CONTINUOUS MODEL
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+ · (Gv) , (1a)
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= R (3)
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@t
+ + · (V ) = G R

 (4)

Gn+1 n+1
�Gn n

�t
+ + ·

⇣
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⌘
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(5)Author One et al. 3

@G 

@t
+ + · (V ) = GR

 
� + ·

⇢
�t

2
V

1

G
+ · (V ) +  

G

@G

@t

��
+ + ·

✓
VR

 �t

2

◆
+ O(�t 2) (6)

✏ =
Rd

Rv
(7)

'0 = ' �'a , ✓0 = ✓ � ✓a (8)

Density (aka virtual) potential temperature:

✓⇢ =
1 + rv /"

1 + rt
✓ , rt = rv + rl + rr + rs + ri (9)

2.1 | Flux-form fully compressible equations solved in the discrete model

@G⇢d
@t

+ + · (vG⇢d ) = 0 , (10a)

@G⇢du
@t

+ + · (vG⇢du) = G⇢d
h
�✓⇢eG+'0

� ✓⇢eG+'a + g � f ⇥ u + M(u) +P u
i

(10b)

@G⇢d ✓
0

@t
+ + ·

�
vG⇢d ✓0

�
= G⇢d

h
�GT u · +✓a + P ✓

i
, (10c)

@G⇢d rk
@t

+ + · (vG⇢d rk ) = G⇢d P
rk , rk = rv , rl , rr , ri , rs , ⇤a (10d)

with

v = GT u (11)

• Model formulation at full NWP complexity
• Revised form of the governing equations permits a higher degree of implicitness (less lagged terms) but requires

3D ambient pressure
• 3D ambient pressure term employed in coupling of thermodynamic equation to all three components of momen-

tum equation
• We consider perturbation variables for the quantities related to fast modes, i.e. potential temperature and pres-

sure.
• Check what is needed for time-dependent ambient states and mention but don’t put in equations in this paper

Lagrangian

Eulerian

Eulerian-Lagrangian congruency

4 Author One et al.

3D ambient Exner pressure derived from:

eG+'a =
1

✓⇢a

⇢
g � f ⇥ ua + M(ua ) + Puaa �

da ua
d t

�
(12)

3 | SEMI-IMPLICIT TIME INTEGRATION

3.1 | A fully second-order �ux-form Eulerian scheme with Lagrangian congruency

@G 

@t
+ + · (V ) = G

⇣
R
 + P  

⌘
, (13)

 n+1
i = Ai(e ,Vn+1/2,Gn ,Gn+1, �t ) + b �t R |n+1i ⌘ b i + b �t R |n+1i , (14)

where

e =  n + a �t R |n + �t P  |n , (15)

and b i = Ai(e ,Vn+1/2,Gn ,Gn+1, �t ) in (14) symbolises a �ux-form Eulerian NFT advective transport scheme based
on MPDATA, as described in ?

✓0i =
b✓0i + �th

h
�eGT u · +✓a � ↵✓✓

0
� ↵✓ (✓a � ✓r )

i
i

(16a)

ui = bui + �th
h
�✓?#n+1eG+'0

�
�
✓a + ✓0

�
#n+1eG+'a + g � f ⇥ u + M? �u?, u� � ↵u(u � ur )

i
i
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where
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✓?(1 + r n+1v /")

(1 + r n+1t )
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✓i = b✓i + �th [�↵✓ (✓ � ✓r )]i (18)

• Newton relaxation terms

3.2 | Exact Schur complement on the co-located grid

• Explicit prediction of the dry density ⇢d based on mass continuity equation in �ux form
• Schur complement is formed to reduce the dimension of the original 5-by-5 system to one Helmholtz equation

with

Forward-in-time discretization:

Modified equation:

à See Piotr Smolarkiewicz’s lecture for further discussion
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where

• MPDATA: Multidimensional Positive Definite Advection 
Transport Algorithm

• Upwind scheme followed by error-compensating steps 
formulated as pseudo-flux achieves at least second-
order accurate solution

• Limiting the pseudo-flux using Flux-Corrected 
Transport approach achieves monotone solution

• Many variants of the scheme exist (sign-preserving, 
split vs unsplit, third-order extension, structured grids, 
unstructured meshes, curvilinear coordinates, moving 
meshes) 

Ø Smolarkiewicz (1983); Smolarkiewicz and Clark 
(1986); Smolarkiewicz and Grabowski (1990); 
Smolarkiewicz and Margolin (1998); Smolarkiewicz 
and Szmelter (2005); Kühnlein et al. 2012; Kühnlein 
and Smolarkiewicz (2017); Waruszewski et al. 2018
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Appendix A: Horizontal–vertical splitting of the NFT
advective transport

We consider the advection operator Ai in the two-time-
level semi-implicit integration scheme (7) to be direction-
ally split in the horizontal and vertical directions. This split-
ting is motivated by the observation that NWP models typ-
ically have a larger restriction on the time step in the verti-
cal than the horizontal direction. For example, in the current
operational configuration of the IFS run at TCo1279/L137
(⇡ 9 km horizontal grid spacing and 137 stretched vertical
levels), the advective Courant numbers are up to a factor of 2
larger in the vertical than in the horizontal direction. The
horizontal–vertical splitting also accommodates IFS-FVM’s
unstructured horizontal discretization, enabling broad classes
of global meshes, and the structured grid in the (stiff) vertical
direction.

The proposed scheme implements mass-compatible
second-order Strang splitting as explained in the follow-
ing. The overall semi-implicit integration of the fully com-
pressible Eqs. (1a)–(1e) proceeds exactly as explained in
Sect. 2.1.2, but with the 3-D NFT advection operatorAi split
into purely horizontal Axy

i and vertical Az

i schemes, respec-
tively. For each model time step �t , these are applied in the
sequence Az

i !A
xy

i !A
z

i using half-time steps in the two
vertical sweeps and the full time step in the horizontal part.
Specifically, the split scheme commences with the integra-
tion of the mass continuity Eq. (1a) as
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z
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[3] for the three sub-steps. For compatibility with
mass continuity, these quantities are then all employed in the
subsequent advective transport of scalar variables e9 (Eq. 8)
as
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where b9i ⌘ 9
[3]

i . In Eqs. (A1) and (A2), the implementa-
tion of the horizontal advection transport Axy follows the
horizontal part of the unstructured-mesh FV MPDATA of
Kühnlein and Smolarkiewicz (2017). The vertical scheme
A

z is a corresponding 1-D structured-grid MPDATA. Re-
sults from numerical experimentation relevant to NWP show
that the presented horizontally–vertically split NFT scheme
based on MPDATA can be considerably more efficient than
the standard fully multidimensional (unsplit) MPDATA of
Kühnlein and Smolarkiewicz (2017). This is particularly due

to the integration of the vertical parts Az

i with �t/2 each,
which mitigates the vertical stability restriction while not
adding any significant computational cost17. Overall, the
horizontal–vertical splitting of Ai can enable a more than
twice larger time step in the integration than the unsplit for-
mulation. In addition, the split scheme facilitates the appli-
cation of higher-order, e.g. Waruszewski et al. (2018), and/or
flux-form semi-Lagrangian advective transport in the verti-
cal. While a detailed presentation and analysis will be pro-
vided in a future publication, results so far indicate a com-
parable solution quality of the split versus unsplit schemes
for global atmospheric flow benchmarks. All IFS-FVM re-
sults presented in this paper were obtained using the split
scheme (A1)–(A2) for Ai in Eqs. (7)–(8).

Appendix B: Weighted line Jacobi preconditioner

The bespoke preconditioner solves for the solution error e of
the pressure perturbation variable '

0:

P(e) = r̂, (B1)

where r̂ denotes the residual error of Eq. (20). The precondi-
tioning operator P is then decomposed into vertical and hor-
izontal parts (Smolarkiewicz and Margolin, 2000), and the
residual problem is solved iteratively according to

Pz(e
µ+1

) +Ph(e
µ
) � r̂ = 0, (B2)

where µ numbers the iterations, of which there are typically
two. The vertical part Pz is inverted directly with a tridiag-
onal algorithm. The horizontal part Ph is lagged behind, ex-
cept for its diagonal entries. The actual implementation is
given as

Pz(e
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) +Ph(e
µ
) +D(e
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� e

µ
) � r̂ = 0 , (B3)

where D is the diagonal coefficient of Ph, specified as
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with B11 and B22 referring to the diagonal entries of eGTC.
Subsequently, Eq. (B3) is executed as

e
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with the weight ! = 0.7.

17Compared to the unsplit scheme, the particular horizontal–
vertical splitting also does not incur any additional parallel com-
munication in the context of the horizontal domain decomposition
of IFS-FVM.
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u = u � C+'0 (27)

u = L�1bbu � L�1�th ✓?⇢ eG+'0 (28)

3.3 | Implicit acoustic scheme and solution of the overdetermined system

The following is the internal energy constraint written in a perturbation form for the Exner pressure, that explicitly
takes into account a time-dependent ambient state and forcings from physical parametrisations:
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• The Exner pressure obtained from (29) does not necessarily ful�l the equation of state at the moment, this needs
to be developed.

• Put a note about forcing of pressure from physics but don’t go into details in this paper
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Formulate Schur complement 

Author One et al. 5

and b i = Ai(e ,Vn+1/2,Gn ,Gn+1, �t ) in (17) symbolises a �ux-form Eulerian NFT advective transport scheme based
on MPDATA, as described in ?
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• Newton relaxation terms

3.2 | Exact Schur complement on the co-located grid

• Explicit prediction of the dry density ⇢d based on mass continuity equation in �ux form
• Schur complement is formed to reduce the dimension of the original 5-by-5 system to one Helmholtz equation

for the Exner pressure variable.
• Exact Schur complement on co-located grids may be called "co-located Schur complement"
• Apply Quasi-Newton solution approach (any method that replaces the exact Jacobian with an approximation is a

quasi-Newton method)
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• Apply Quasi-Newton solution approach (any method that replaces the exact Jacobian with an approximation is a
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3.2 | Exact Schur complement on the co-located grid
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• Schur complement is formed to reduce the dimension of the original 5-by-5 system to one Helmholtz equation

for the Exner pressure variable.
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3.3 | Implicit acoustic scheme and solution of the overdetermined system

The following is the internal energy constraint written in a perturbation form for the Exner pressure, that explicitly
takes into account a time-dependent ambient state and forcings from physical parametrisations:

@(G⇢d'
0
)

@t
+ + ·

�
vG⇢d'

0
�
= G⇢d


�
⇠'

G
+ ·

⇣
GGT u

⌘
�

1

G⇢d
+ ·

⇣
G⇢d'aGT u

⌘

+
'a

G⇢d
+ ·

⇣
G⇢dGT u

⌘
�

@'a

@t
+ P'

� (29)

with

P' = ⇠'

✓
P ✓

✓
+

P rv /"

1 + rv /"

◆

⇠ =
Rd

cvd
(30)

'0
i = A('0n + (1 � � ) �t R'0

|
n + �t P'0

|
n , (vG⇢d )? |n+1/2, (G⇢d )n , (G⇢d )n+1, �t ) + � �t R'0

|
n+1 (31)
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• The Exner pressure obtained from (29) does not necessarily ful�l the equation of state at the moment, this needs
to be developed.

• Put a note about forcing of pressure from physics but don’t go into details in this paper
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3.2 | Exact Schur complement on the co-located grid

• Explicit prediction of the dry density ⇢d based on mass continuity equation in �ux form
• Schur complement is formed to reduce the dimension of the original 5-by-5 system to one Helmholtz equation

for the Exner pressure variable.
• Exact Schur complement on co-located grids may be called "co-located Schur complement"
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The following is the internal energy constraint written in a perturbation form for the Exner pressure, that explicitly
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• The Exner pressure obtained from (13) does not necessarily ful�l the equation of state at the moment, this needs
to be developed.

• Put a note about forcing of pressure from physics but don’t go into details in this paper

Total derivative of equation of state combined with mass continuity, thermodynamic, and water vapour 
mixing ratio equations yields, see Smolarkiewicz et al. (2014, 2017, 2019); Kühnlein et al. 2019: 
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• Put a note about forcing of pressure from physics but don’t go into details in this paper
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Reorganising terms �nally yields the elliptic (inhomogeneous) Helmholtz equation for the pressure perturbation
variable '0 at the future time level t n+1, which can be written compactly as

0 = �

3’
`=1

 
A?`
⇣`

+ · ⇣` eGT
(u � C+'0

)

!
� B?('0

� b'0) ⌘ L('0
) � R , (34)

where the spatial grid index i has been omitted again. The summation ` in (34) is over the three divergence operators on
the rhs of (31). The symbolic notations L('0

) and R refer to the implicit and explicit parts of the equation, respectively.
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4 | NUMERICAL EXPERIMENTS

• We show the properties of the presented semi-implicit method in the context of the co-located �nite-volume
IFS-FVM model

• For the �rst time this is done for the model at full NWP complexity
• Across range of horizontal resolutions
• Highlight the numerical and computational properties (convergence, inner preconditioner iterations,..)
• By plotting 2D
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• Put a note about forcing of pressure from physics but don’t go into details in this paper
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4 | NUMERICAL EXPERIMENTS

• We show the properties of the presented semi-implicit method in the context of the co-located �nite-volume
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• For the �rst time this is done for the model at full NWP complexity
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Coefficients:

Advective part:

Ø 3D implicit Exner pressure solution is a crucial aspect for the performance, robustness and accuracy of 
the FVM model

Ø Different kinds of solution methods considered/developed as some future HPC architectures may require 
approaches that operate within the acoustic radius
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5 | APPENDIX

5.1 | Krylov solver and its preconditioning

5.1.1 | Krylov solver using the Generalised Conjugate Residual approach

For any initial guess  0, set r 0 = L( 0) � R , q0 = P�1(r 0), then iterate:

For n = 1,2,... until convergence do

for ⌫ = 0,...,k-1 do

� = � hr ⌫L(q⌫ )i
hL(q⌫ )L(q⌫ )i ,

 ⌫+1i =  ⌫i + �q⌫i ,

r ⌫+1i = r ⌫i + �Li(q⌫ ) ,

exit if kr ⌫+1 k  ✏ ,

e i = P�1
i (r ⌫+1) ,

evaluate Li(e) ,

[l=0,⌫ ↵l = � hL(e)L(q l )i
hL(q l )L(q l )i

,

q⌫+1i = e i +
⌫’
l=0

↵l q
l
i ,

Li(q⌫+1) = Li(e) +
⌫’
l=0

↵l Li(q l ) ,

end do ,

reset ( , r , q , L(q ))ki to [ , r , q , L(q )]0i ,

end do .

• Restarted preconditioned generalized conjugate residual GCR(k) method
• The Helmholtz operator L needs to be explicitly evaluated only once per iteration
• Two global reductions are required to compute the scalar (inner) products hab i = Õ

[i ai bi in the expressions for
� and ↵l per cycle.

• Additional global reductions may be performed for checking exit conditions with respect to the residual r ⌫ and
diagnostics, but this is not mandatory

5.1.2 | Preconditioning

• we do left preconditioning
• A distinctive feature of atmospheric �ows is the anisotropy in the vertical direction, which is particularly pro-

nounced for global con�gurations, and the larger the ratio of the horizontal to the vertical scale the sti�er the
elliptic problem.

GCR(k) scheme

• We prefer the Generalized Conjugate Residual method of order k for non-
symmetric systems (GMRES, BiCGSTAB are alternatives, pipelined versions

     can be useful)
• Matrix-free implementation
• Bespoke preconditioners for atmospheric configurations
• Multi-grid extension for preconditioner (Gillard et al. 2024)
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Appendix A: Horizontal–vertical splitting of the NFT
advective transport

We consider the advection operator Ai in the two-time-
level semi-implicit integration scheme (7) to be direction-
ally split in the horizontal and vertical directions. This split-
ting is motivated by the observation that NWP models typ-
ically have a larger restriction on the time step in the verti-
cal than the horizontal direction. For example, in the current
operational configuration of the IFS run at TCo1279/L137
(⇡ 9 km horizontal grid spacing and 137 stretched vertical
levels), the advective Courant numbers are up to a factor of 2
larger in the vertical than in the horizontal direction. The
horizontal–vertical splitting also accommodates IFS-FVM’s
unstructured horizontal discretization, enabling broad classes
of global meshes, and the structured grid in the (stiff) vertical
direction.

The proposed scheme implements mass-compatible
second-order Strang splitting as explained in the follow-
ing. The overall semi-implicit integration of the fully com-
pressible Eqs. (1a)–(1e) proceeds exactly as explained in
Sect. 2.1.2, but with the 3-D NFT advection operatorAi split
into purely horizontal Axy

i and vertical Az

i schemes, respec-
tively. For each model time step �t , these are applied in the
sequence Az

i !A
xy

i !A
z

i using half-time steps in the two
vertical sweeps and the full time step in the horizontal part.
Specifically, the split scheme commences with the integra-
tion of the mass continuity Eq. (1a) as
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[3] for the three sub-steps. For compatibility with
mass continuity, these quantities are then all employed in the
subsequent advective transport of scalar variables e9 (Eq. 8)
as
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where b9i ⌘ 9
[3]

i . In Eqs. (A1) and (A2), the implementa-
tion of the horizontal advection transport Axy follows the
horizontal part of the unstructured-mesh FV MPDATA of
Kühnlein and Smolarkiewicz (2017). The vertical scheme
A

z is a corresponding 1-D structured-grid MPDATA. Re-
sults from numerical experimentation relevant to NWP show
that the presented horizontally–vertically split NFT scheme
based on MPDATA can be considerably more efficient than
the standard fully multidimensional (unsplit) MPDATA of
Kühnlein and Smolarkiewicz (2017). This is particularly due

to the integration of the vertical parts Az

i with �t/2 each,
which mitigates the vertical stability restriction while not
adding any significant computational cost17. Overall, the
horizontal–vertical splitting of Ai can enable a more than
twice larger time step in the integration than the unsplit for-
mulation. In addition, the split scheme facilitates the appli-
cation of higher-order, e.g. Waruszewski et al. (2018), and/or
flux-form semi-Lagrangian advective transport in the verti-
cal. While a detailed presentation and analysis will be pro-
vided in a future publication, results so far indicate a com-
parable solution quality of the split versus unsplit schemes
for global atmospheric flow benchmarks. All IFS-FVM re-
sults presented in this paper were obtained using the split
scheme (A1)–(A2) for Ai in Eqs. (7)–(8).

Appendix B: Weighted line Jacobi preconditioner

The bespoke preconditioner solves for the solution error e of
the pressure perturbation variable '

0:

P(e) = r̂, (B1)

where r̂ denotes the residual error of Eq. (20). The precondi-
tioning operator P is then decomposed into vertical and hor-
izontal parts (Smolarkiewicz and Margolin, 2000), and the
residual problem is solved iteratively according to

Pz(e
µ+1

) +Ph(e
µ
) � r̂ = 0, (B2)

where µ numbers the iterations, of which there are typically
two. The vertical part Pz is inverted directly with a tridiag-
onal algorithm. The horizontal part Ph is lagged behind, ex-
cept for its diagonal entries. The actual implementation is
given as

Pz(e
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where D is the diagonal coefficient of Ph, specified as
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with B11 and B22 referring to the diagonal entries of eGTC.
Subsequently, Eq. (B3) is executed as
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with the weight ! = 0.7.

17Compared to the unsplit scheme, the particular horizontal–
vertical splitting also does not incur any additional parallel com-
munication in the context of the horizontal domain decomposition
of IFS-FVM.
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Weighted line Jacobi method preconditioner in FVM (Kühnlein et al. 2019):

Ø See Smolarkiewicz et al. (2000, 2004); Smolarkiewicz and Szmelter 2011 
     for tutorials
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surface pressure (hPa) at day 10 meridional wind (m/s) at 50N at day 10

experimental setup following Ullrich et al. QJ 2012

65km 32km
32km65km
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surface pressure (hPa) at day 15

near-surface

~ 500 hPa

day 15

Figure 6. Dry baroclinic instability at day 15: Kinetic energy spectra obtained with IFS-FVM and IFS-ST using the (O320,TCo319) grid.

The blue vertical line indicates the spatial scale corresponding to four times the nominal grid spacing of IFS-FVM with O320. The spectra

are shown on models levels near the surface and at ∼ 500 hPa.

3.2 Simulation results for moist-precipitating configuration with IFS cloud parametrization

Next we present results for the moist-precipitating baroclinic instability with coupling to the IFS cloud parametrization. Fig-

ure 7 shows the instantaneous large-scale precipitation rate at the surface 15 for the (O160,TCo159) and (O320,TCo319) grids

at day 10. For any of these grids, both model formulations show five rainbands with essentially identical phase, as emphasized

by the overlay with the 0.5 mm/h black contour line of the corresponding other model formulation. The elongated rainbands5

are associated with the lifting along sharp frontal zones. Precipitation amounts are overall similar but somewhat higher local

values exist for IFS-FVM particularly in the two easternmost rainbands when looking at the (O160,TCo159) grid. Figure 8

is analogous to Fig. 7 but for day 15. As can be expected, the spread between the different model formulations becomes

larger. However, there is still reasonably close agreement, especially for the higher-resolution grid (O320,TCo319) in the right

column of Fig. 8. Here, the location of the easternmost frontal zone and associated rainband agrees closely considering the10

late stage of the baroclinic instability evolution. Figure 9 supplements the precipitation plots with the corresponding pressure

field on day 15. In addition to to the standard configurations of IFS-FVM and IFS-ST where the physics parametrization is

evaluated every dynamics time step Ns = 1, Figure 9 also provides the IFS-FVM result with subcyling (middle panel) where

the parametrizations are evaluated every Ns = 3 semi-implicit time steps δt; see 2.3 for discussion of the physics-dynamics

coupling. Again, the pressure fields of all three simulations resemble each other closely, often even in the location and mag-15

nitude of smaller structures, while the modified physics-dynamics coupling frequency Ns = 3 to the cloud parametrization

seems to have only a small impact on the solution. Furthermore, none of the simulations shows significant grid imprinting

in the pressure fields, but the solution symmetry about the equator is broken in both IFS-FVM and IFS-ST as a result of the

incorporation of the cloud parametrization (in contrast to the dry results shown before in Fig. 5). The analysis of the sim-

15Here, the precipitation rate represents the liquid and rain (excluding ice and snow) sedimentation flux at the surface.
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KE spectra with O320/TCo319 at day 15

32km

Second-order finite-volume provides essentially the same 
solution-quality than spectral-transform model for this test
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Snapshot of computational efficiency: FVM vs IFS-ST

• Dry baroclinic instability experiments in identical 
configuration O1280/TCo1279 (9km) with L137

• Time steps of IFS-FVM were a factor of 6-7 smaller than 
IFS-ST

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

O1280/TCo1279 with L137 dry dycore
on 350 nodes of ECMWF‘s Cray XC40

Comparison study on latest GPU hardware in prep!
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Octahedral and HEALPix meshes with FVM
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Octahedral O400 example for baroclinic instability benchmark
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O400

X
Y

Z



October 29, 2014

Octahedral and HEALPix meshes with FVM

26EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

X
Y

Z

HEALPix H240 example for baroclinic instability benchmark
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H240
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Octahedral and HEALPix meshes with FVM

27EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

X
Y

Z

HEALPix H240 example for baroclinic instability benchmark

H18 

H240

https://healpix.sourceforge.io/



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS October 29, 2014

Stratified flow past Schär mountain in small-planet configuration

28

MPAS

FVM

solution after 2hrs

MPAS results from
Klemp et al. JAMES 2015
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Stratified flow past steep orography in small-planet configuration

29

max. slope 71°

Vertical velocity (m/s) in lon-height section Meridional velocity (m/s) in lon-lat section at z=2km

mountain

Experimental setup following Zängl MWR 2012

→ IFS-FVM robust wrt very steep slopes of orography
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temporal evolution (panels are at 0.5,1.0,1.5, 2.0 h)

vertical velocity (m/s) 
in lon-lat section at 
z=5km

rain water (g/kg) in 
lon-lat section at 
z=5km

Zarzycki et al. GMD 2019
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DCMIP2016 dynamical core intercomparison: splitting supercell
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final 2h result as various grid spacing (panels are at 4, 2, 1, 0.5 km)

vertical velocity (m/s) 
in lon-lat section at 
z=5km

rain water (g/kg) in 
lon-lat section at 
z=5km

Zarzycki et al. GMD 2019
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DCMIP2016 dynamical 
core intercomparison: 
splitting supercell

32

final 2h result as various grid spacings (panels are at 2, 1, 0.5, 0.25 km)

→ TEMPEST uses higher-order Spectral-Element 
methods

→ FVM uses second-order Finite-Volume method

Zarzycki et al. GMD 2019
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J. L. Willson et al.: DCMIP2016: TC 2503

Figure 4. Azimuthally averaged vertical wind composite of the sim-
ulated TCs from days 4–10 of the 50 km simulation.

3.4 Impact of finer grid spacing

The previous analysis is now repeated at 25 km grid spac-
ing for participating models (Table 5). The time evolution
of MSP and MWS is first examined and results are seen in
Fig. 5. For both MWS and MSP, the evolution largely re-
sembles the coarser grid spacing case in Fig. 1. There is a
period of significant intensification in the first 4 d followed
by a steady-state time period. In almost all cases, the 25 km
simulations are more intense than their 50 km counterparts,
and the most intense models in the 50 km simulation are
also the most intense in the 25 km simulation. ACME-A and
CAM-SE are the most intense models in both grid spac-
ings, with their MWS increasing from 40–50 to 50–60 m s�1

and their MSP decreasing from approximately 950–970 to
920–940 hPa with the change to 25 km grid spacing. An in-
crease in TC intensity in CAM with finer grid spacing is
shown in several studies, including Reed and Jablonowski
(2011a, b) and Reed et al. (2012), and is likely related to im-
plicit and explicit diffusion becoming weaker (Jablonowski

Figure 5. Evolution of MSP and MWS over the 10 d simulation
period. Grid spacings of 50 km (dashed line) and 25 km (solid line)
are shown for participating models.

and Williamson, 2011). FVM and GEM are again models
with intermediate intensity, and FVM tends to have a larger
increase in intensity than GEM by approximately 5 ms�1 for
MWS and 15 hPa for MSP. NICAM is unique in this anal-
ysis because of its substantial increase in intensity, upwards
of 15 m s�1 for MWS and 30 hPa for MSP, but these large
changes only occur during days 2–8 of the simulation.

The wind–pressure relationships (Fig. 6) have larger MSP
and MWS ranges for all models, which was expected due to
larger intensities at 25 km grid spacing. As in the 50 km sim-
ulations, most of these relationships are nonlinear since the
rate of increase in MWS tends to decrease at lower MSP. Ad-
ditionally, a majority of the points occur at the high-intensity
region, as before, due to the longer period of the simulation
spent by the TC at high intensity. The MSP and MWS val-
ues seen in this analysis are within observed ranges for TCs,
reaching up to category 4 on the Saffir–Simpson scale.

Radial profiles of 1 km wind speed and surface pressure
(Fig. 7) are used to determine how the TC horizontal struc-
ture changes at finer grid spacing. As in the coarser grid spac-
ing simulations, the wind speed increases rapidly with radius
until it reaches a maximum and subsequently decreases ex-
ponentially and reaches an asymptotic value of 0 ms�1. At
finer grid spacing, this maximum wind speed value occurs at
a smaller radius, approximately 50 km compared to 100 km,
and has a larger magnitude. All models significantly increase
in intensity, often by 10 ms�1 or greater, in the core region.

Surface pressure radial profiles at finer grid spacing also
have similarities to those at coarser grid spacing. In both

https://doi.org/10.5194/gmd-17-2493-2024 Geosci. Model Dev., 17, 2493–2507, 2024
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Figure 8. Azimuthally averaged vertical wind composite of the sim-
ulated TCs from days 4–10 of the 25 km simulation.

It is evident that the dynamical core has an essential role
in determining the resulting TC behavior in GCMs. While
the impact of the dynamical core has been investigated thor-
oughly in studies including one or two models, the intercom-
parison of a larger group of models illustrates this role and
related sensitivity to horizontal grid spacing. The dynami-
cal core choice should be carefully considered in the GCM

development process, and more work can be done to better
quantify its effects when all other parameters are held con-
stant. The goal of this study is to present a general intercom-
parison of TC behavior among a grouping of models that dif-
fered in dynamical core. In doing so, this work provides a
library of solutions that can serve as a benchmark for mod-
eling groups to compare with during the model development
process, similar to other non-TC-focused intercomparison ef-
forts (e.g. Blackburn et al., 2013; Zarzycki et al., 2019). This
is especially important since the RJ TC test case and other
DCMIP2016 test cases are widely used in the community and
some test cases are readily available in CESM. Future work
could examine differences between specific dynamical core
characteristics and how those differences impact TC simula-
tion in intermediate-complexity simulations.

Code and data availability. Information on the availability of
source code for the models featured in this paper can be
found in Ullrich et al. (2017). For this particular test, the
initialization routine, microphysics code, and sample plotting
scripts are available at https://doi.org/10.5281/zenodo.1298671
(Ullrich et al., 2018). Data used in this study are available at
https://doi.org/10.5061/dryad.fttdz08z5 (Willson and Reed, 2023).
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Figure 6. Wind–pressure relationship in the simulated TCs at all
time steps for 25 km simulations of participating models.

Figure 7. Radial 1 km wind speed and surface pressure profiles av-
eraged from days 4–10 of the simulation. Values in the radial pro-
files are azimuthally averaged. Values of 50 km (dashed line) and
25 km (solid line) are shown for participating models.

cases, the minimum surface pressure values at the center
rapidly increase at relatively small radii, and the rate of in-
crease eventually slows and surface pressure reaches the pre-
scribed value (Sect. 2.1.1) at large radii. The minimum pres-
sure values decrease in all models by 10–20 hPa. At 25 km,
the surface pressure profiles, similarly to the wind profiles,
are more compact since they tend to plateau at a smaller
radius, which is consistent with the larger magnitude and
smaller radius of maximum winds. Results converge at radii
greater than 400 km for all models.

As with the previous quantities, grid spacing has an impact
on the wind composites (Fig. 8). The overall 2D structure of
the 25 km TCs remains similar to that of the 50 km TCs, but
there are key differences. As before, there is a narrow region
of weak winds by the TC center at all heights followed by a
stronger wind field that extends to a radius of approximately
300 km and a height of exactly or above 10 km. In ACME-
A and CAM-SE, the most intense models, there is a region
of intense winds that is more compact at 25 km grid spac-
ing, which extends to around a 100 km radius compared to a
200 km radius in the 50 km simulations. This region contains
stronger winds that are routinely greater than 50 ms�1. This
decrease in the radius of maximum winds is seen in the re-
maining models as there is a 50–100 km decrease in GEM,
FVM, and NICAM. In particular, GEM becomes much more
compact, especially at altitudes higher than 5 km, and has a
profile with a different overall shape. Wind composites also
become more compact at finer grid spacing in the more com-
plex GCM simulations analyzed in Moon et al. (2020).

4 Conclusions

The RJ TC test case results demonstrate that solutions vary
between DCMIP2016 models with different dynamical cores
and identical simple-physics parameterization packages and
physical environments, building on the work of Reed and
Jablonowski (2012). Most participating GCMs produce a TC
with similar MWS and MSP evolutions, wind–pressure rela-
tionship, radial profiles of wind and pressure, and wind com-
posites; however, there are important differences between
them. Certain models were more intense overall, and that
is reflected in their MWS, MSP, and horizontal and vertical
structures. These intensity differences are likely tied to the
effective resolution of the dynamical core, which is the short-
est wavelength which is accurately simulated in the model
(Kent et al., 2014). GCMs also have relatively large inten-
sity spread, possibly due to thermodynamic structures (Moon
et al., 2020) or dynamical core choice (Reed et al., 2015).
Similarly, numerical weather prediction (NWP) models have
large TC intensity root-mean-square errors, often on the or-
der of 2.5–8 ms�1, depending on lead time (Zhang et al.,
2023), although they are smaller in magnitude than the in-
tensity spread seen in this study. Additionally, the physics–
dynamics coupling is a further source of uncertainty in this
test case (Gross et al., 2018). TC behavior among participat-
ing models also changes when the horizontal grid spacing
becomes finer. TCs simulated at 25 km grid spacing tend to
be more intense and compact than those simulated at 50 km
grid spacing. Models that produced the most intense TCs at
50 km also produced the most intense TCs at 25 km, indicat-
ing that some differences between the models are preserved
at finer grid spacing. In the intercomparison, NICAM was an
outlier, possibly due to an initialization error.

Geosci. Model Dev., 17, 2493–2507, 2024 https://doi.org/10.5194/gmd-17-2493-2024
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Figure 4. Azimuthally averaged vertical wind composite of the sim-
ulated TCs from days 4–10 of the 50 km simulation.

3.4 Impact of finer grid spacing

The previous analysis is now repeated at 25 km grid spac-
ing for participating models (Table 5). The time evolution
of MSP and MWS is first examined and results are seen in
Fig. 5. For both MWS and MSP, the evolution largely re-
sembles the coarser grid spacing case in Fig. 1. There is a
period of significant intensification in the first 4 d followed
by a steady-state time period. In almost all cases, the 25 km
simulations are more intense than their 50 km counterparts,
and the most intense models in the 50 km simulation are
also the most intense in the 25 km simulation. ACME-A and
CAM-SE are the most intense models in both grid spac-
ings, with their MWS increasing from 40–50 to 50–60 m s�1

and their MSP decreasing from approximately 950–970 to
920–940 hPa with the change to 25 km grid spacing. An in-
crease in TC intensity in CAM with finer grid spacing is
shown in several studies, including Reed and Jablonowski
(2011a, b) and Reed et al. (2012), and is likely related to im-
plicit and explicit diffusion becoming weaker (Jablonowski

Figure 5. Evolution of MSP and MWS over the 10 d simulation
period. Grid spacings of 50 km (dashed line) and 25 km (solid line)
are shown for participating models.

and Williamson, 2011). FVM and GEM are again models
with intermediate intensity, and FVM tends to have a larger
increase in intensity than GEM by approximately 5 ms�1 for
MWS and 15 hPa for MSP. NICAM is unique in this anal-
ysis because of its substantial increase in intensity, upwards
of 15 m s�1 for MWS and 30 hPa for MSP, but these large
changes only occur during days 2–8 of the simulation.

The wind–pressure relationships (Fig. 6) have larger MSP
and MWS ranges for all models, which was expected due to
larger intensities at 25 km grid spacing. As in the 50 km sim-
ulations, most of these relationships are nonlinear since the
rate of increase in MWS tends to decrease at lower MSP. Ad-
ditionally, a majority of the points occur at the high-intensity
region, as before, due to the longer period of the simulation
spent by the TC at high intensity. The MSP and MWS val-
ues seen in this analysis are within observed ranges for TCs,
reaching up to category 4 on the Saffir–Simpson scale.

Radial profiles of 1 km wind speed and surface pressure
(Fig. 7) are used to determine how the TC horizontal struc-
ture changes at finer grid spacing. As in the coarser grid spac-
ing simulations, the wind speed increases rapidly with radius
until it reaches a maximum and subsequently decreases ex-
ponentially and reaches an asymptotic value of 0 ms�1. At
finer grid spacing, this maximum wind speed value occurs at
a smaller radius, approximately 50 km compared to 100 km,
and has a larger magnitude. All models significantly increase
in intensity, often by 10 ms�1 or greater, in the core region.

Surface pressure radial profiles at finer grid spacing also
have similarities to those at coarser grid spacing. In both

https://doi.org/10.5194/gmd-17-2493-2024 Geosci. Model Dev., 17, 2493–2507, 2024
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Figure 8. Azimuthally averaged vertical wind composite of the sim-
ulated TCs from days 4–10 of the 25 km simulation.

It is evident that the dynamical core has an essential role
in determining the resulting TC behavior in GCMs. While
the impact of the dynamical core has been investigated thor-
oughly in studies including one or two models, the intercom-
parison of a larger group of models illustrates this role and
related sensitivity to horizontal grid spacing. The dynami-
cal core choice should be carefully considered in the GCM

development process, and more work can be done to better
quantify its effects when all other parameters are held con-
stant. The goal of this study is to present a general intercom-
parison of TC behavior among a grouping of models that dif-
fered in dynamical core. In doing so, this work provides a
library of solutions that can serve as a benchmark for mod-
eling groups to compare with during the model development
process, similar to other non-TC-focused intercomparison ef-
forts (e.g. Blackburn et al., 2013; Zarzycki et al., 2019). This
is especially important since the RJ TC test case and other
DCMIP2016 test cases are widely used in the community and
some test cases are readily available in CESM. Future work
could examine differences between specific dynamical core
characteristics and how those differences impact TC simula-
tion in intermediate-complexity simulations.

Code and data availability. Information on the availability of
source code for the models featured in this paper can be
found in Ullrich et al. (2017). For this particular test, the
initialization routine, microphysics code, and sample plotting
scripts are available at https://doi.org/10.5281/zenodo.1298671
(Ullrich et al., 2018). Data used in this study are available at
https://doi.org/10.5061/dryad.fttdz08z5 (Willson and Reed, 2023).
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• Major Hurricane of Category 5 in tropical Atlantic

• Formed 30 August 2017
• Dissipated 14 September 2017

• 285 km/h 1-minute sustained winds

• 914 hPa minimum MSLP

• Peak intensity on 5 September 2017

• Fourth-costliest tropical cyclone on record
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§ Initialisation from IFS analysis 20170904 00 UTC
§ O1280/TCo1279 corresponding to ~9 km nominal spacing, L62
§ IFS CY43R3, uncoupled
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§ Initialisation from IFS analysis 20170904 00 UTC
§ O1280/TCo1279 corresponding to ~9 km nominal spacing, L62
§ IFS CY43R3, uncoupled

IFS-FVM (circles)
vs BestTrack (hourglass)

120h forecast, 6-hourly intervals

MSLP in hPa

single precision

Christian Kühnlein, Linus Magnusson
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§ Initialisation from IFS analysis 20170904 00 UTC
§ O1280/TCo1279 corresponding to ~9 km nominal spacing, L62
§ IFS CY43R3, uncoupled

IFS-ST (circles)
vs BestTrack (hourglass)

120h forecast, 6-hourly intervals

MSLP in hPa

Christian Kühnlein, Linus Magnusson
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Nonhydrostatic dynamics

Idealized convective storm (Klemp et al. 2015) on a small planet (1/25 reduced) with H and NH
formulation of IFS: From what horizontal grid spacing �h appear significant di↵erences?

! H-IFS and NH-IFS use Forbes et al. 2011 microphysics and similar numerical configurations, in
particlar TCo grid, FD in vertical, ICI, no explicit di↵usion, no convection scheme)

Christian Kühnlein, Sylvie Malardel, Piotr Smolarkiewicz , ECMWF colleagues and ESCAPE partners 3/19

�h =5km

�h =2.5 km

�h =1.25 km

�h =625m
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Nonhydrostatic dynamics

Idealized convective storm (Klemp et al. 2015) on a small planet (1/25 reduced) with H and NH
formulation of IFS and NH-FVM:

!NH-FVM uses smaller time steps and di↵erent microphysics parametrisation!

Christian Kühnlein, Sylvie Malardel, Piotr Smolarkiewicz , ECMWF colleagues and ESCAPE partners 4/19
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MPI x OMP 72 x 18 144 x 9 144 x 18 288 x 9

SP 2315 s 2365 s 1260 s 1269 s

DP 3660 s 3634 s 2007 s 1926 s

Single-precision implementation of FVM

• Runtimes for a O640/L62 4-day forecast using single- vs. double-precision on Cray XC40

• Configuration is for init date 22 May 2018 00 UTC, full IFS physics package, all parametrisations 
apart from radiation and non-orographic GW drag are called at every FVM time step here  

• Radiation called every hour and run on the same O640 grid

• Convergence of the FVM preconditioned Krylov solver is essentially identical with SP and DP 
given typical thresholds
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