
© ECMWF November 14, 2024

Atlas, a library for flexible
Earth system modelling

ECMWF Training course:

Numerical Methods for Numerical Weather Prediction

Willem Deconinck
willem.deconinck@ecmwf.int

Traditional science workflow
[Schulthess 2015]

Compilers can no longer do everything…

Does every physicist need also a degree in computer engineering?

Xeon

Phi

GPU
FPGA

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 3

What are the options?

Huge exercise to

port all model

components to

(each?) hardware

Development of

toolchain to

abstract

 hardware,

 memory,

 numerics

Flexible model

development

on abstractions

MPI

Separation of

concerns !!!

Road blocks

Atlas

• A new foundation built with future challenges for HPC in mind

• Modern C++ library implementation with modern
 Fortran 2008 (OOP) interfaces → integration in existing models

• Open-source (Apache 2.0), www.github.com/ecmwf/atlas

• Data structures to enable new numerical algorithms,
 e.g. based on unstructured meshes

• Separation of concerns:

– Parallelisation

– Accelerator-awareness (GPU/CPU/…)

• Readily available operators

– Remapping and interpolation

– Gradient, divergence, laplacian

• Support structured and unstructured grids (global as well as LAM)

Atlas, a library for NWP and climate modelling – Deconinck et al. 2017, J-CPC

Mesh

Partitions

with halo’s

Field

Finite

Volume
Spectral

Transforms

Finite

Element

Discontinuous

Spectral

Element

FunctionSpace

Grid

Atlas typical workflow

Octahedral Gaussian grid (O16)
The octahedral Gaussian grid is a “StructuredGrid"

ESCAPE: Advection dwarfs

6EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Atlas:

- data structure

- parallelisation

Advection abstraction in IFS based on Atlas

dwarf-D-advection-semiLagrangian dwarf-D-advection-MPDATA

October 29, 2014

• Two linked memory spaces:

 host (CPU) and device (GPU)

• Built on memory resource abstractions

– Memory pools

– CUDA (Nvidia) or HIP (AMD)

• Asynchronous execution via ‘streams’

7

Atlas on GPUs
// Create field (double precision, with 2 dimensions)
auto field = Field(datatype(“real64”), shape(Ni,Nj));

// Create a host view to interpret as 2D Array of doubles
auto host_view = make_host_view<double,2>(field);

// Modify data on host
for (int i=0; i<Ni; ++i) {
 for (int j=0; j<Nj; ++j) {
 host_view(i,j) = ...
}}

// Allocate and copy field to device
field.updateDevice();

// Create a device view to interpret as 2D Array of doubles
auto device_view = make_device_view<double,2>(field);

// Use e.g. CUDA to process the device view (OR Kokkos!)
some_cuda_kernel<<<1,1>>>(device_view);

C++ example

Array

 Layout Map
 Paddi ng
 Al i gnment

 c l one
 synchr oni se

GridTools
HostStorage

GridTools
DeviceStorage

+ size() : Integer
+ rank() : Integer
+ shape(dim : Integer) : Integer
+ valid() : Boolean

operator() (i, j, ... : Integer) : Value

ArrayView
Val ue, Rank

make_host _vi ew<Val ue, Rank>
make_devi ce_vi ew<Val ue, Rank>

October 29, 2014

• GPU enabled data structures

• Cloning mesh to device recursively

clones all encapsulated components to

device

8

type(atlas_Mesh) :: mesh ! Assume created
type(atlas_mesh_Nodes) :: nodes ! Nodes in the Mesh
type(atlas_Field) :: field_xy ! Coordinate field of nodes
real(8), pointer :: xy ! Raw data pointer

!--!

nodes = mesh%nodes() ! Access nodes
field_xy = nodes%xy() ! Access coordinate field
call make_view(field_xy, xy) ! Access raw data

call field_xy%update_device() ! Copy field to GPU

!$acc data present(xy)
!$acc kernels
do j=1,nodes%size() ! Operate on GPU data
 xy(1,j) = ... ! e.g. modify X-coordinate
enddo
!$acc end kernels
!$acc end data

call field_xy%update_host() ! Update changed field

Atlas on GPUs with OpenACC for Fortran

• CLOUDSC: ECMWF cloud microphysics scheme with 262144 columns (NPROMA=64)

• Memory management, offloading and GPU data access via Atlas

• Fortran OpenACC with !$ACC DATA DEVICEPTR clause

• Different memory allocation and offloading strategies on AMD MI250X (LUMI), Nvidia A100, Nvidia GH200
→ Strategy which works best for one GPU is not what works best for another!

Playing with different memory resources and offloading strategies

atlas4py

10EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

• atlas4py = Python bindings for Atlas

• Developed and hosted by CSCS

(github.com/GridTools/atlas4py)

• Minimum requirement for FVM+GT4Py

• Agreed to be contributed to our ECMWF hosted

atlas repository by CSCS shortly

• More bindings exist and are in process of merging:

Interpolation, Spectral transforms,

Halo exchanges, KD-Tree-search, Partitioners,

MeshGenerators, FunctionSpaces

• Opens up various parallel distributed research and

data analysis opportunities, with operability with

Fortran and C++ algorithms.

• New model development with driver layers and

data management in Python but with

computations in C++ or Fortran or DSL or … ?

Spherical harmonic

n=16, m=8

custom python

 function using

 numpy array

Atlas not the solution (i.e. not the library to develop in), but enabling new research

• IFS (currently optional)

– Grid-point derivatives

– Parallel interpolations

– Multiple grids / coupling

11

• ESCAPE dwarfs

– Object Oriented data structures

– LAM grids

– GPU aware memory storage

• MIR (Met. Interpol. & Regrid.)

– Interpolation

– Grid library

– Provide spectral transforms

• FVM

– Object Oriented data structures

– Parallelisation: domain decomp.

– MARS

– MetView

– prodgen

	Begin
	Slide 1
	Slide 2
	Slide 3
	Slide 4: Atlas, a library for NWP and climate modelling – Deconinck et al. 2017, J-CPC
	Slide 5: Atlas typical workflow
	Slide 6: ESCAPE: Advection dwarfs
	Slide 7
	Slide 8
	Slide 9
	Slide 10: atlas4py
	Slide 11: Atlas not the solution (i.e. not the library to develop in), but enabling new research

