Numerical methods for weather prediction Machine learning for weather prediction Christian Lessig European Centre for Medium-Range Weather Forecasts

What is machine learning? Derive rules or structure from data

ECMWF, 2024

What is machine learning? Derive rules or structure from data Given an image, which object is in the image.

ECMWF, 2024

What is machine learning? Derive rules or structure from data

Derive rules d
Given an in
Given a tex

• Given an image, which object is in the image.

• Given a text, correct the spelling/grammar in it.

a s in the image. g/grammar in it.

- Derive rules or structure from data
 Given an image, which object is in the image.
 - Given a text, correct the spelling/grammar in it.
 - Given an English text, translate it to French.

ECMWF, 2024

a s in the image. g/grammar in it. it to French.

- Derive rules or structure from data
 - Given an image, which object is in the image.
 - Given a text, correct the spelling/grammar in it.
 - Given an English text, translate it to French.
 - Given a description, generate a fitting image.

ECMWF, 2024

a s in the image. g/grammar in it. it to French. fitting image.

- Derive rules or structure from data
 - Given an image, which object is in the image.
 - Given a text, correct the spelling/grammar in it.
 - Given an English text, translate it to French.
 - Given a description, generate a fitting image.

ECMWF, 2024

> ...

a s in the image. g/grammar in it. it to French. fitting image.

- Derive rules or structure from data
 - Given an image, which object is in the image.
 - Siven a text, correct the spelling/grammar in it.
 - Given an English text, translate it to French.
 - Siven a description, generate a fitting image.

Siven an initial condition, generate a weather forecast.

> ...

- Classical examples of machine learning technique:
 - Interpolation rules (e.g. spline)
 - Linear regression
 - > PCA / Karhune-Loeve transform / proper orthogonal decomposition

ECMWF, 2024

> ...

What is machine learning? Many different techniques and approaches > support vector machines, decision trees, ... The most prominent approach today are neural networks > Historically inspired by psychology and neuroscience as simulations of (human brains) We will look at them from the (natural) vantage point of numerical methods Solution of the second seco

What is a neural network? • Neural network is a numerical *nonlinear* mapping:

ECMWF, 2024

 $\mathcal{N}:\mathbb{R}^n\to\mathbb{R}^m$

What is a neural network? • Neural network is a numerical nonlinear mapping:

consisting of layers as

ECMWF, 2024

- - $\mathcal{N}: \mathbb{R}^n \to \mathbb{R}^m$
- $\mathcal{N} = \mathcal{L}_K \circ \mathcal{L}_{K-1} \circ \cdots \circ \mathcal{L}_1$

What is a neural network? • Neural network is a numerical nonlinear mapping: $\mathcal{N}: \mathbb{R}^n \to \mathbb{R}^m$

consisting of layers as

ECMWF, 2024

 $\mathcal{N} = \mathcal{L}_K \circ \mathcal{L}_{K-1} \circ \cdots \circ \mathcal{L}_1$ each itself being a mapping

 $\mathcal{L}_k: \mathbb{R}^{n_k} \to \mathbb{R}^{m_k}$

What is a neural network? Linear layer:

ECMWF, 2024

0

$\mathcal{L}_k = W \in \mathbb{R}^{n_k \times m_k}$

What is a neural network? Linear layer:

Multi-layer perceptron

ECMWF, 2024

$\mathcal{L}_k = W \in \mathbb{R}^{n_k \times m_k}$

where σ is an element-wise nonlinearity, e.g. RELU, sigmoid

What is a neural network? Linear layer:

Multi-layer perceptron

where σ is an element-wise nonlinearity, e.g. RELU, sigmoid

ECMWF, 2024

$\mathcal{L}_k = W \in \mathbb{R}^{n_k \times m_k}$

What is a neural network? Linear layer: $\mathcal{L}_k = W$ Multi-layer perceptron $\mathcal{L}_k = W_l \cdot \sigma \cdot W_{l-1} \cdots \sigma \cdot W_1$

ECMWF, 2024

entries are learned, i.e. fitted to the data

where σ is an element-wise nonlinearity, e.g. RELU, sigmoid

What is a neural network?

- \circ Weakly nonlinear maps $\mathbb{R}^n \to \mathbb{R}^m$ Consisting of simple building blocks > Building blocks are largely weight matrices $W \in \mathbb{R}^{n_k \times m_k}$ > Entries of weight matrices are learned / fitted to data

 - > Entirety of learnable weights is denoted as θ

ECMWF, 2024

What is a neural network?

- Training:

Solution to nonlinear optimization to fit trainable parameters to training data given a loss function ℓ > Let $\{(x_i, y_i)\}_{i=1}^R$ be a set of training examples • x = network input; y = desired network output Training solves in general: $\min_{\theta} L = \min_{\theta} \frac{1}{R} \sum_{i=1}^{\kappa} \ell(y, \tilde{y}) , \ B \ll R$

What is a neural network? Common loss functions: > For regression, mean squared error (MSE):

ECMWF, 2024

- - $\ell(y, \tilde{y}) = \|y \hat{y}\|_2^2$

c = 1

> For classification, cross entropy loss:

 $\ell(y, \tilde{y}) = \sum \delta_{y, \tilde{y}} \log(p_{\tilde{y}})$

known label is interpreted a discrete Kronecker prob. distribution $\delta_{y,\tilde{y}}$

What is a neural network? Nonlinear optimization problem is typically solved with stochastic gradient descent (or a variant of it such as ADAM)

ECMWF, 2024

What is a neural network? Nonlinear optimization problem is typically solved with stochastic gradient descent (or a variant of it such as ADAM)

ples, a so called batch

Nakes optimization computationally tractable but also improves robustness to local minima

Subset of the second state of the second st

What is a neural network?

class NeuralNetwork(nn.Module): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential(nn.Linear(28*28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10), def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits

ECMWF, 2024

oles.htm with rch to rials/b \mathbf{O} https://

What is a neural network?

ECMWF, 2024

The nn package also contains definitions of popular loss functions; in this # case we will use Mean Squared Error (MSE) as our loss function. loss_fn = torch.nn.MSELoss(reduction='sum')

```
learning_rate = 1e-6
for t in range(2000):
```

Forward pass: compute predicted y by passing x to the model. Module objects *# override the __call__ operator so you can call them like functions. When* # doing so you pass a Tensor of input data to the Module and it produces *# a Tensor of output data.*

y_pred = model(xx)

```
# Compute and print loss. We pass Tensors containing the predicted and true
# values of y, and the loss function returns a Tensor containing the
# loss.
```

```
loss = loss_fn(y_pred, y)
if t % 100 == 99:
    print(t, loss.item())
```

```
# Zero the gradients before running the backward pass.
model.zero_grad()
```

```
# Backward pass: compute gradient of the loss with respect to all the learnable
# parameters of the model. Internally, the parameters of each Module are stored
# in Tensors with requires_grad=True, so this call will compute gradients for
# all learnable parameters in the model.
```

loss.backward()

```
# Update the weights using gradient descent. Each parameter is a Tensor, so
# we can access its gradients like we did before.
with torch.no_grad():
   for param in model.parameters():
       param -= learning_rate * param.grad
```

ples

Advanced neural network architectures

- - predicted

ECMWF, 2024

Prediction heads for classification problems

> Most intuitive approach for prediction a class label c_i is to directly predict the label (perhaps thresholded) > In practice, a probability over all possible classes is

 $W \in \mathbb{R}^{3 \times 8}$

 $\rightarrow \text{softmax}(y)_i \rightarrow$

Advanced neural network architectures

- - predicted

ECMWF, 2024

Prediction heads for classification problems

> Most intuitive approach for prediction a class label c_i is to directly predict the label (perhaps thresholded) > In practice, a probability over all possible classes is

 $W \in \mathbb{R}^{3 \times 8}$

 \rightarrow softmax $(y)_i \rightarrow$

 e^{y_i}

 $\gamma_{ij} e^{y_j}$

Generative machine learning Generate data from a (potentially conditional) probability distribution

ECMWF, 2024

 $p_{\theta}(y|x) \approx p(y|x)$

Generative machine learning Generate data from a (potentially conditional) probability distribution

ECMWF, 2024

Generative machine learning Generate data from a (potentially conditional) probability

distribution

ECMWF, 2024

 $p_{\theta}(y|x) \approx p(y|x)$ $\mathcal{N}_{\theta}(x)$

> Discrete: probabilistic prediction Regression (continuous): e.g. diffusion models

Advanced neural network architectures

• Transformer neural networks > Input is set/sequence of vectors x_i (e.g. from words) Self-attention computes similarity between latent representation of vectors and updates based these on this

ECMWF, 2024

 $q_i = W_a x_i \quad k_i = W_k x_i \quad v_i = W_v x_i$ $\bar{q}_i = \sum \int \sigma(q_i \cdot k_j) v_j$

Advanced neural network architectures Transformer neural networks

 $\{x_i\} \rightarrow$

C

 \mathbb{O}

Ð

ECMWF, 2024

→ *Y*

Advanced neural network architectures

- Convolutional neural networks
- Central building block are learnable convolutions Graph neural networks
 - Similar to transformer but with graph to structure information exchange between latent space representations
- U-Net
 - Network has U-like shape with decreasing/increasing dimension to have multiple levels of abstraction

Our work reinforces the bitter lesson. The most important factors determining the performance of a sensibly designed model are the compute and data available for training⁵

ECMWF, 2024

Advanced neural network architectures

Our work reinforces the bitter lesson. The most important factors determining the performance of a sensibly designed model are the compute and data available for training⁵

ECMWF, 2024

Advanced neural network architectures

⁵By sensibly designed, we mean models that are sufficiently expressive and have stable gradient propagation.

Summary

- Machine learning: derive rules or structure from data Neural networks
 - > Weakly nonlinear mappings between real vector spaces with matrix entries as trainable parameters
 - > Parameters are "fit" using stochastic gradient descent
 - Allows to effectively solve nonlinear optimization problems with billions of free parameters