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Content of this lecture

⧫ Motivation and benefits of semi-Lagrangian, semi-implicit methods

⧫ A detailed overview of semi-Lagrangian advection (definitions, stability and error 

analysis, algorithmic details, parallel implementation on spherical geometry domains)

⧫ The semi-implicit time stepping and how it is combined with a semi-Lagrangian method 

to solve the full set of the ECMWF model prognostic equations

⧫ Weaknesses of the semi-Lagrangian, semi-implicit approach



The ECMWF hydrostatic global operational model equation set
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η : hybrid pressure based vertical coordinate

𝑽𝒉: horizontal momentum

T: temperature

Tv: virtual temperature (used as spectral variable)

qx: specific humidity, specific ratios for cloud fields 

and other tracers x,  δ=cpv/cpd

Φ: geopotential

p : pressure

ω=dp/dt : diagnostic vertical velocity

P: physics forcing terms

▪ Primitive equation hydrostatic 
▪ There is non-hydrostatic option available which we use for research purposes but not 

operational
▪ Spectral Transform with spherical harmonics basis
▪ Cubic spline Finite Elements in the vertical
▪ Timestepping: semi-Lagrangian semi-implicit
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The critical role of time stepping

For operational global weather forecasting an accurate and robust weather model which 

operates at the lowest possible cost is essential

⧫ Role of time stepping scheme is central into achieving this goal

⧫ Semi-Lagrangian (SL) semi-implicit (SI) method is ideal

⧫ Unconditionally stable SL advection scheme with small phase speed errors and 

little numerical dispersion

➔  Large timesteps can be used (no CFL restriction) without accuracy penalty

➔ Multi-tracer efficient

⧫ Unconditionally stable SI time stepping for the integration of remaining (non-

advective) fast forcing terms

➔ No timestep restriction from the integration of “fast forcing” terms such as 
gravity wave  + acoustic terms (present in non-hydrostatic models)

➔ 2nd order accuracy time-stepping + high order spatial discretization
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SISL method and efficiency

⧫ Semi-Lagrangian, semi-implicit 

time integration is very efficient: 

IFS is the fastest among several 

global models 

⧫ Combined with spectral 

transform method + Vertical 

Finite Elements makes it very 

accurate: IFS produces the best 

global scores against a range of 

WMO metrics

• An example of IFS computational performance at approximately 3km resolution on a dry 
baroclinic wave case with tracers, adapted from Michalakes et al, NGGPS AVEC report, 2015

• Different “candidate US global models”  were compared to IFS

The higher the faster: IFS the fastest model 

despite that at such high resolution (3km) 

the spectral transforms cost is very high
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What is a semi-Lagrangian (SL) advection scheme?

⧫ Advection (movement of air, its constituents such as moisture, heat, momentum) is  

a fundamental process in a weather prediction model

⧫ A SL scheme is a numerical technique for solving advection type PDEs which 

applies Lagrangian “thinking” on grid-point models:

⧫ For all discrete fluid elements (parcels) the corresponding upstream points 

(“backward” trajectories) are computed

➔ SL assumes that by the end of each time-step each air parcel arrives at a 
grid-point location but the location where its trajectory started 
(departure point) is unknown and must be found.  

⧫ Gradually evolved from schemes introduced in the ’50s, ’60s,’70s (Wiin-

Nielsen, Krishnamurti, Sawyer, Leith, Purnel)
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Semi-Lagrangian advection in a picture

xx x x

x x x x

x x x x

x xxx

oo: origin of grid point x

(departure point)

Wind field
Octahedral Gaussian grid (see a 
new grid for IFS ECMWF 
newsletter 146, Malardel et al) : 
the grid that IFS uses since 
cycle 41r2 (2015)
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The SL solution of the advection equation

Tracer mixing ratio                   passive advection equation (equiv. with tracer continuity eqn):

At time t parcel is at d and at t +∆t arrives at a grid-point

           

                                          

                                                                                               

⧫ Solution at t+Δt is obtained by finding the DP location and  interpolating the available 

(defined at time t) grid-point    values at the DP

⧫ Advection term            is not explicitly computed – it is absorbed by the Lagrangian 

derivative: nonlinear advection problem is reduced to DP search and interpolation!
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Unconditional stability (Bates & McDonald MWR 82)
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SL algorithm when winds are constant

Use SL method to solve: 

At the beginning of each step advected variable values      are available on the 

computational grid. To compute next time step solution:    

• Compute departure point (DP) location:

• Using field values at nearest points surrounding         interpolate variable       to 

obtain solution at future time           i.e.

                                                               interpolation operator

Accurate calculation of DP and an accurate interpolation scheme are essential! For 

accuracy, more sophisticated method required for the DP search in real atmospheric 

(non-constant wind) flows
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Departure point search in real atmospheric flows: SETTLS

Consider that air parcels move in time in straight line trajectories. Perform a 

2nd order Taylor expansion of an arrival (grid) point to its departure point:
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AV: average value along SL trajectory

In the IFS: K=2 (was 4 until cy48r1)

For convergence of iterative 

scheme trajectories should not 

cross. This is equivalent with the 

Lipschitz condition (see MWR 2016, 

Diamantakis & Magnusson) 

 

which is less restrictive than CFL 

for atmospheric flows
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Benefits of SETTLS

➢  SETTLS (Hortal, QJRMS 2002) is an improvement of the 2nd order mid-point scheme below:

 

➢ SETTLS improved stability eliminates noise in upper troposphere. Recent comparisons also 

confirm that is overall better

( )

( 1)

(0)

( )

( /2)

2

,

3 1
( ) ( ) 1,2,...

2 2
k

ad

d a a

k

d a

r rV t t

r r tV r t

r r t V t V t t k K

−
+ +

= −

 
 

= −  − − = 
 
 

1 4 44 2 4 4 43

T  forecast 200 hPa
(from 1997/01/04)
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A familiar method: “Functional” or 
“fixed-point” iteration



SETTLS adjustment for stratospheric warming predictions

Impact of SETTLS time-extrapolation on noisy and smooth data

➢ In “Sudden Stratospheric Warmings” noise is seen in upper 
stratosphere and model underpredicts the temperature

➢ Time extrapolation of Vertical velocity in SETTLS is the culprit
➢ Solution: use non-extrapolating 1st order scheme for gridpoints 

with sudden changes in vertical velocity in 2 consecutive steps

Reference: “Improving ECMWF forecasts of sudden stratospheric 
warmings”, ECMWF newsletter No.141 Autumn 2014
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Major SSW January 2013

Original SETTLS t+7day
Improved SETTLS switching off 2nd order time-

extrapolation in regions of oscillations: t+7days
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Side-effects of non-converging DP iterations

▪ Due to very long timesteps, DP iteration convergence is slow in areas of strong winds & high shear. Non-

convergence: “noise” in TCs or forecast skill loss (Diamantakis & Magnusson, MWR 2016) 

• Before cy48r1: 5 DP iterations needed for sufficient 
convergence

• Cycle 48r1: fast convergence in 3 iterations starting 
from previous timestep DPs (Diamantakis & Vana, 
QJRMS 2021)

DP iterations haven’t converged DP converged with additional iterations 

Root Mean Square Error 
difference for the 
geopotential height when 
DP iterations have not 
sufficiently converged
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Semi-Lagrangian advection on the sphere 
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general formula independent of φ=angle ෣𝐷𝑂𝐴 between position vectors rA and rD )

O

The Earth’s curvature means that vector quantities transported from D to A must 
be rotated to account for curvature effects: multiply with a ”rotation matrix” R(V) 
the interpolated to D vector quantities
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To compute DP on the sphere: 
1.  Transform horizontal velocities (u,v)  in a geocentric Cartesian system 𝑋, 𝑌, 𝑍 
2.  Apply SETTLS algorithm to compute 𝑟𝑑 = 𝑋𝑑, 𝑌𝑑, 𝑍𝑑, ηd 

3.  Compute lon/lat of DP from 𝑋𝑑, 𝑌𝑑, 𝑍𝑑

ηd is computed from SETTLS formula and iterated
together with 𝑋𝑑, 𝑌𝑑, 𝑍𝑑
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implementation, 
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cost benefits and how 
to deal with terrain 
following coordinates 
also in: Diamantakis & 
Vana QJRMS 2021 
10.1002/qj.4224.
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Interpolation in the IFS semi-Lagrangian scheme 
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After computing the departure points we need to:
➢ Interpolate the advected field to the DP  
➢ Interpolation must use the gridpoints that lie in the neighbourhood of the DP
➢ Weights are computed only once: same weights for all tracers (multi-tracer efficient)

ECMWF model uses quasi-monotone quasi-cubic Lagrange interpolation (quintic in the 
vertical for temperature, specific humidity)
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Number of 1D cubic interpolations in 2D: 5 =>3D: 
21 (64pt  stencil)

To save computations: use cubic interpolation only for 
nearest neighbour rows and linear interpolation 
remaining rows.  “quasi-cubic interpolation”: 
3*cubic+2*linear interpolations in 2D
7*cubic+10*linear in 3D (32 pt stencil)

Cubic Lagrange interpolation: ,  
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Limiter for shape-preserving (locally monotonic)  interpolation

• Creation of “artificial” maxima /minima

x

x
x

x

x x:  grid point values

x:  interpolated value

• Shape-preserving  (quasi-monotone) cubic interpolation QMSL scheme 
(Bermejo & Staniforth, MWR 1992) 

- Alternative: Spline or Hermite interpolation (not used in IFS operationally)
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A note on SL and its truncation error

⧫ Falcone, Feretti SIAM J. 1998: the leading order truncation error term for a 

SL method applied to a 1D constant wind advection equation with an 

interpolation formula of order p on a grid with constant spacing ∆𝑥 and an order 

k time-integration method with timestep ∆𝑡 for the DP is 𝑂 ∆𝑡𝑘 + ∆𝑥 𝑝+1/∆𝑡  

⧫ Resolution refinement and timestep reduction should be applied simultaneously 

rather than separately to improve accuracy

⧫ small ∆𝑡 improves the accuracy of the DP calculation

⧫ However, with unnecessarily short ∆𝑡 too many interpolations and 

therefore more diffusion from them

⧫ Smaller ∆𝑥 reduces spatial truncation errors 

⧫ ∆𝑡, ∆𝑥 ratio must be adjusted together to optimize accuracy
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Parallel implementation

Halo width for MPI assumes a 
maximum wind speed larger 
than the ones observed in the 
atmosphere e.g. 250m/s 

Two levels of communication:
• Entire wind halo filled for the DP 

iterations
• When the DP is known then only a 

smaller sub-region around the DP 
needs to be filled

• No need to fetch data from 
remote processors at the expense 
of extra memory use 

Blue: Halo region

Equal region domain 
decomposition + MPI and 
openMP parallel

Interpolation at the DP near the edges of MPI 
domains requires data from neighbouring domain
(note that DP may lie at a different domain)
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Combining semi-Lagrangian with semi-implicit (SI) time stepping

⧫ A nonlinear system of m-prognostic equations must be solved: 

⧫ Integrate along SL trajectory using a “trapezoidal” 2nd order 

approximation to obtain semi-implicit (Crank-Nicolson) scheme: 

⧫ Use isothermal reference profiles to linearise the “fast” terms 

of the right-hand side M  and split them to a linear and a 

residual part:
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Dt
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X

L:“Fast linearized” (e.g. GW) terms. These 
must be integrated implicitly for stability
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when variables are 
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IFS-SISL for NWP prognostic equations

With splitting in fast linear and slow nonlinear residual terms the two-time-

level, 2nd order IFS discretization  (Temperton et al, QJRMS 2001) becomes:
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The 2nd right hand side term in brackets is an extrapolation & approximation (space/time) at 
the trajectory mid-point i.e.             and can be substituted by the SETTLS expansion:
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The Helmholtz equation

⧫ The previous system contains several discretized equations each applied over the 

globel at each vertical level (huge system!)

⧫ In IFS system is reduced to a single elliptic equation with constant coefficients 

which can be solved with a fast and accurate direct solver in spectral space ☺

⧫ Eliminate prognostic variables to derive Helmholtz equation in terms of horizontal 

wind divergence

⧫ “Back-substitute” to update remaining prognostic variables

⧫ The Helmholtz solver exploits spherical Harmonics properties resulting to a  very 

cheap direct solver!

⧫ Having a cheap solver + being able to use large ∆t (due to unconditional stability and 

good dispersion properties of SISL) explains why IFS is a very computationally 

efficient model
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Application to the IFS Hydrostatic Primitive Equation set
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Linearise fast nonlinear terms of this equation set:

η : terrain following (pressured based) 
vertical coordinate
𝑉ℎ: horizontal momentum
𝛻ℎ: horizontal gradient
Tv: virtual temperature
qx: humidity and moist tracers,δ=cpv/cpd

Φ: geopotential
p, ps : pressure, surface pressure
ω=dp/dt : diagnostic vertical velocity
P: physics forcing terms

nonlinear but slow changing linear but fast changing

),( vuh =V

 


−=




−=







=















+




+

















1

0

1

0

...

)(
1

)(ln)(ln)(

0)(

1

0














d
p

p
pp

Dt

D
d

p

t

p

ppp

t

hh

s

shhshh
s

d

hh

VVV

V SL continuity derived 

from Eulerian equation

BCs:

Term is further simplified 

using vertical coordinate 

definition: p=A(η)+B(η)ps

0)0(,0)1( ==  



ECMWFSemi-Lagrangian semi-implicit technique in IFS    Slide 25 

Deriving Helmholtz equation
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• For simplicity assume dry dynamics (T=Tv )
• Also assume that Coriolis terms are incorporated in Vh  (advective form): 𝑿 = 𝑽ℎ + 2Ω × 𝒓
• Having defined L, R we may write the 2nd order semi-implicit time discretization as:
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=+

=+

=++
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+++







(γ ln ), , for , , lnh d ref s sL T R T p D D X D T p  − + − − =

divergencehorizontal:

1995 123,  volMWR alet  Ritchie indefinedoperators:,,γ

profile reference emperatureconstant t :

D

Tref



Momentum equation in terms of 
divergence D has been derived by 
applying the 𝛻 ∙ operator in 
horizontal momentum component 
discrete equation

T, lnps can now be eliminated 
deriving a single elliptic 
equation in terms of D

Note: following convention 
terms without subscript are 
assumed to be on a grid-point 

Linearised terms for 
different equations
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Solving Helmholtz equation in spectral space 

Prognostic variables are eliminated to derive a Helmholtz equation wrt to D in spectral space:  

( )2 2 2( ) t t

d ref hI t R T D RHS   +−  +  =

[in IFS α=1/2 (Crank-Nicolson), however, off-centring i.e. using α-value slightly >0.5 is often 

used  by other models to control unwanted oscillations]

( )2 2 γ d rt R T     + ( )2 t t

hI D RHS+−  =

• Γ is constant in time, depends on the vertical discretization and couples all vertical levels

Define:     

• In a spectral model, the Laplacian operator can be substituted analytically using 
properties of spherical harmonics: 

• Matrix Γ can be diagonalised (before timestepping starts) and decoupled to its vertical 
eigenmodes solving cheaply the above system for each (m,n) => Computationally Efficient!

• Once divergence D at new time level is found the remaining fields can be computed 
through back-substitution

2

0

( 1)m m

n n

n n
D D

r

+
 = −

2

( 1) m m

n n

o

n n
I D B

r

 +
+  = 

 

RHS contains all known terms (at time t)
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A simplified overview of IFS time-stepping

Transform from Spectral->Gridpoint space

1. Compute R.H.S. terms of equations at time t 

2. Call radiation scheme (currently every 1 hr) 

and store output 

3. SL advection: compute DP / interpolate at DP         

(advected variables and eqn RHS terms) / update 

variables adding advection tendencies

4. Call physics updating tendencies each time.

Transform from Gridpoint-> Spectral space

➢ Solve Helmholtz problem

➢  Update main prognostic variables 

➢  Add horizontal diffusion

Grid-point space

- SL advection

- parametrizations

- products of NL terms

Fourier space

Spectral space

- horizontal gradients

- SI calculations

- horizontal diffusion

FFT

LT

Inverse FFT

Inverse LT

Fourier space

FFT: Fast Fourier Transform,  LT: Legendre Transform

Octahedral grid



Mass conservation in semi-Lagrangian advection

Mass conservation: important for atmospheric 

composition forecasts, for long range forecasts, climate 

and overall for high-resolutions

• SISL time-stepping does not conserve mass, energy, 

momentum

• Why? (i) continuity expressed in non-conservation form 

(ii) interpolation introduces global conservation errors 

• Mass conservation error depends on the characteristics 

of the transported variable:

• Small error for smooth tracers and total mass of air

• Large error for localised tracers with large 

gradients. Monotone limiters amplify cons errors!

• Region matters: tracer near the surface exhibit 

larger conservation errors (boundary condition issue)

Case study: artificial 
discontinuous tracer 
4x5 degrees rectangle 
placed on the near 
surface level near 
Shanghai:
• Large mass 

conservation error 
growth in time

• Monotone limiter 
greatly amplifies 
those

With O-grid total air 
mass conservation 
error is very small in 
double precision

10-day forecast

Mass errors as percent of initial mass

Linear grid

O-grid

Impact of 3D limiter in mass 

error



IFS mass fixers

Correction computed by the mass fixer is the solution of a constrained optimization problem that 
ensures that its global norm is minimized subject to the constraint that global mass remains 
constant

➢ A simple mass fixer (rescaling) is applied on surface pressure field to keep air mass constant in time
➢ A tracer mass fixer is also applied on water tracers, GHG gases, aerosols

• The tracer mass fixer used is a locally weighted scheme (ECMWF TM 819, 2017 Diamantakis & Agusti-
Panareda, scheme based on Bermejo & Conde MWR 2002) which gives more skilful tracer concentration 
predictions  apart of correcting their global mass error

M total mass for 
tracer ɸ 

( ) ( )

mass integral

, ,adv adv n

jk jk jk adv

jk

j jk

j k

M
w M M M

p
A w

g

 


      = − = = −


 
1 4 44 2 4 4 43

jkw is a weight that depends on the sign of δM, it is proportional to the interpolation 
truncation error and the mass content of grid-box that corresponds to jk

Tracer 

mixing ratio  
after 
advection

Lagrange 

multiplier

Corrected 

tracer
mixing 
ratio

δM: mass 
conservation 

error in a 
timestep 
after SL 
advection



Fixing water leakage in IFS

Mass fixer on moist tracers (humidity, clouds): improvement in precipitation scores and overall skill of 
ENS forecasts

Plots and diagnostics by Tobias Becker from nextGEMS runs  

Total Energy leakage reduction with fixer:
 2 W/m2 -> -0.15 (deep conv on)
 6 W/m2 -> -0.32 (deep conv off)

Total water conservation error as a fraction of total 
precipitation in long integrations
• 10% surplus is reduced to nearly 0% with tracer mass 

fixer

Reference: ECMWF newsletter 172, p14
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Summary of limitations of the SISL approach

⧫ Unconditionally stable and multi-tracer efficient but not formally conserving

⧫ In long integrations mass drifts and needs to be “fixed” 

⧫ In IFS mass fixers are used for individual tracers and surface pressure in 

long simulations

⧫ Inherently conserving SL options have been developed in some models (e.g. 

SLICE in ENDGame, CSLAM in CAM-SE, SL-AV models). With the very large 

timesteps used in IFS such options may not be absolutely stable

⧫ Scalability issues as resolution increases:

⧫ ECMWF spectral IFS: high global communication cost of spectral transforms 

(transpositions) + scalability/memory scalability of SL (very large halos to be 

filled, see GMD 11, 3409-3426, 2018)
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Some references cited here and further relevant ones
⧫ Diamantakis & Vana (QJRMS 2021): “A fast converging and concise algorithm for computing 

the departure points in semi-Lagrangian weather and climate models”

⧫ ECMWF Tech Memo 819 2017: “A positive definite tracer mass fixer for high-resolution weather 

and atmospheric composition forecasts”

⧫ Diamantakis & Magnusson (MWR 2016): “Sensitivity of the ECMWF Model to Semi-Lagrangian 

Departure Point Iterations ”

⧫ S. Fletcher book: Semi-Lagrangian Advection Methods and Their Applications in Geoscience (2020)

⧫ Hortal (QJRMS 2002): “The development and testing of a new two-time level semi-Lagrangian 

scheme (SETTLS) in the ECMWF model”

⧫ Ritchie et al (MWR 1995): “Implementation of the Semi-Lagrangian Method in a High-Resolution 

version of the ECMWF forecast model”

⧫ Staniforth & Cote (MWR 1990): “Semi Lagrangian schemes for Atmospheric models”

⧫ Temperton,Hortal,Simmons (QJRMS 2001): “A two-time-level SL global spectral model”
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IFS SI time stepping and stability

⧫ In the non-hydrostatic IFS, extrapolations in SISL can be unstable: A 

non-extrapolating ICI (Iterative Centred Implicit scheme) is used

⧫ Predictor gives a first approximation X+(0) ~ Xt+∆t. Crank-Nicolson type 

corrector iterations evaluate nonlinear residual terms R=M-L based on 

latest estimate of Xt+∆t :

⧫ For stability, non-hydrostatic IFS requires a linearisation constant 

temperature T* reference state for acoustic terms such that  T*<Tref, 

Tref reference temperature for gravity wave terms used also in 

hydrostatic (see paper by P. Benard et al QJRMS 2010, Vol 136, p155)

( ) ( )

( ) ( )

(0)

(0) (0)

(0)

( )

( ) ( 1) ( )
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1 1

2 2

1 1
, 1,2,...,

2 2

t

d t t t

d d

i t

d i i t i t

d i d i

X X
X X L L
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X X
X X L L i K

t

+

+

+

+ − +

−
   =  + + +  

−
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Predictor:

Corrector: K=1 suffices
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