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“More accuracy with less precision”
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How much does precision matter?

(a) Without initial error (b) With initial error
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Real numbers on computers

Numerical models use real number arithmetic
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64 bits

How do we map a real number to a string of bits?




The obvious way: fixed-point numbers

Integer representation can be easily modified to represent real numbers

10110110, = 1+27+0%20+1%25+1x2%+0=27+1 1 0 = 182,
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The obvious way: fixed-point numbers

Integer representation can be easily modified to represent real numbers
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Major drawback: limited range = 2number of digits left of decimal place _ A



A better way: floating-point numbers

Instead we use floating-point numbers:

x = fixed-point number x 2 integer-bias
N\ _ \/_/
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A better way: floating-point numbers

Instead we use floating-point numbers:

x = fixed-point number x 2 integer-bias
N\ _ \/_/

N
exponent

significand/mantissa
(between 1 and 2)

10110110, = 1 0 1 1 0 L1000 = 13,5,
11111111, = 1 1 1 1 1 Lo 2 31,5,
00000001, = 0 0 0 0 0 04101 = 9125,




Boring but important: standardisation

11 bits

52 bits

L g N

010000000000
double

8 bits

23 bits

——r

single [ NNS)

5 bits 10 bits

\F

WEliEN010000

B sign ® exponent

IEEE 754

significand

= 3.141592653589793

= 3.1415927

=3.14
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Fixed- vs. floating-point number distribution

T T I O I O I |

T T rrrrrrr e rrrrrrrrrrl |

-4 -3 -2 -1 0 1 2 3 4
fixed-point

I I I T IO A7 T |

R |

-4 -3 -2 -1 0 1 2 3 4

floating-point

11



Machine precision

The difference between 1 and the next largest representable
number is called the machine precision/epsilon
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The relative error of a floating-point assignment will be at most € / 2
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“Subnormal” numbers

Remember:
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00000001,

0.1254,
T

This system cannot represent zero because of this guy.
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“Subnormal” numbers

Remember:
00000001, = 0 0 0 0 0 0rirrond = 0.1254,
This system cannot represent zero because of this guy.
By convention, when the exponent is zero, the (implicit) leading bit is @, not 1
00000000, = 0 0 0 0 0 00700200 = 0.04,

/N

Numbers with a zeroed exponent are called subnormal numbers
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Flops

There are four elementary arithmetic operations:
+ - x +

Carrying out one of these operations on two

floating-point numbers constitutes one flop
See also: sqrt and FMA
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Flop/s: an

Rank

Imperfect measure

Rmax Rpeak Power
System Cores (PFlop/s) (PFlop/s) (kW)
Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,699,904 1,206.00 1,714.81 22,786
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE
DOE/SC/Oak Ridge National Laboratory
United States
Aurora - HPE Cray EX - Intel Exascale Compute Blade, 9,264,128 1,012.00 1,980.01 38,698
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Mayx, Slingshot-11, Intel
DOE/SC/Argonne National Laboratory
United States
Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, 2,073,600 561.20 846.84
NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure
United States
Supercomputer Fugaku - Supercomputer Fugaku, 7,630,848 442.01 537.21 29,899
Ab4FX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science
Japan
LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation 2,752,704 379.70 531.51 7,107
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC
Finland

Top500 supercomputer rankings
June 2024

Rmax (PFlop/s)
Measured performance of LINPACK

Rpeak (PFlop/s)

Theoretical peak performance
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Floating-point numbers are weird: demonstration 1

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?
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Floating-point numbers are weird: demonstration 1

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?

Floating-point numbers are binary — each number is a sum of powers of two
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Floating-point numbers are weird: demonstration 1

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?
Floating-point numbers are binary — each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999
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Floating-point numbers are weird: demonstration 1

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?
Floating-point numbers are binary — each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999
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Floating-point numbers are weird: demonstration 1

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?
Floating-point numbers are binary — each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999
0.1 + 0.2 isactually 0.2998888
0.3 is actually 0.3000488

hence
0.1 + 0.2 '= 0.3
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Floating-point numbers are weird: demonstration 2

The harmonic series

1 1
1+ =+ =+ ...
2 3

diverges when calculated
with infinite precision

With (finite-precision)
floating-point arithmetic, it
converges!

Float16

11
1‘|—§+§‘|‘—70859

Float32

1 1 B
1+§+§+...—15.404

Float64

1 1 B
1‘|‘§+§‘|‘...—34.122
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Swamping

The harmonic series converges because of swamping

julia> Float16(2500.0) + Float16(1.0)
Float16(2500.0)

This can occur when doing big number + small number. Why?

julia> nextfloat(Float16(2500.0))
Float16(2502.0) # There is no Float16(2501.0)!

24



Floating-point numbers are weird: demonstration 3

Pathological case:

a, b are arrays of 50,000 function inner_product(a, b)
elements of all 1s except sum = a[1] = b[1]

the first which is 50 _ o ,
for (a_i, b_i) in zip(a[2:end], b[2:end])
sum += a_1 * b 1

Answer with Float32: end

52499.0

sum
Answer with Float16: end
2500.0
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Floating-point numbers are weird: demonstration 3

Pathological case:

a, b are arrays of 50,000
elements of all 1s except
the first which is 50

Answer with Float32:
52499.0

Answer with Float16:
52499.0

function inner_product _mixed(a, b)

end

sum

= Float32(a[1] = b[1])

for (a_i, b_i) in zip(a[2:end], b[2:end])

end

sum

sum += Float32(a_i * b_1i)

26



Floating-point numbers are weird: demonstration 3

Pathological case:

a, b are arrays of 50,000
elements of all 1s except
the first which is 50

Answer with Float32:
52499.0

Answer with Float16:
52500.0

function inner_product_compensated(a, b)
sum = a[1] * b[1]
c = convert(typeof(al[1]), 0.0)

for (a_i, b_i) in zip(a[2:end], b[2:end])

y = (a_1*b i) -c
t = sum + vy
c = (t - sum) -y
sum = t

end

sum

end
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Floating-point numbers are weird: demonstration 3

Basotype | Algorithm | Answer | FLOPs

Float32
Float16
Float16
Float16

Basic
Basic
Mixed
Compensated

52499.0
2500.0

52499.0
52500.0

2n-1 Float32
2n-1 Float16
n Float16 + n-1 Float32
5n-4 Float16
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Floating-point numbers: recap

* Floating-point numbers have a significand and an exponent

x = fixed-point number x 2 integer-bias
W/

N _
—

exponent
significand P

« Their precision is determined by the machine epsilon

« They have a normal range and a subnormal range

« “Computational work” is measured in flops, speed in flop/s

« Only numbers decomposable into power-two sums are perfectly representable
« Caution required when adding big numbers and small numbers
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Half-precision in practice

Half precision already demonstrated in shallow water simulations

Float64 simulation a Floatl6 simulation

Klower et al. 2021

What about in NWP models?

30



Could we use half precision in NWP?

Variable range

| |
—
" Qverflow

0 half-precision range

65504
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Could we use half precision in NWP?

Rescale

Variable range
|

0 half-precision range

65504
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Could we use half precision in NWP?

TCo01279 (~9 km)

500 hPa geopotential height RMSE (m) 500 hPa temperature RMSE (K)
Northern extratropics (20N-90N) Northern extratropics (20N-90N)
100 ——— double > Z 4

—-—- half

It actually works...
(for software-emulated half precision)
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Hatfield et al. 2019
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What about data assimilation?

Successful convergence of minimization in 4D-Var depends on this equality holding:

[M,,, (x,)8x]" 8y = 6x [M,,, (x,)5y]

L L
tangent-linear adjoint
model model

This equality will never hold exactly for floating-point arithmetic!
The higher the precision, the less the inequality
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