Reduced-precision computing for Earth-system modelling

Sam Hatfield samuel.hatfield@ecmwf.int

© ECMWF November 13 2024

"More accuracy with less precision"

Switching from double to single precision permitted vertical resolution increase in ENS **for free → improves forecast skill**

Scorecard SP vs DP (+ve = SP better)

How much does precision matter?

Lorenz '63 example

Real numbers on computers

Numerical models use **real number arithmetic**

Computers deal with **finite bit strings**

How do we map a real number to a string of bits?

The obvious way: fixed-point numbers

Integer representation can be easily modified to represent real numbers

10110110₂ = $1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ = 182₁₀

The obvious way: fixed-point numbers

Integer representation can be easily modified to represent real numbers

10110110₂ = $1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 182_{10}$ 10110.110₂ = $1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} = 22.75_{10}$

The obvious way: fixed-point numbers

Integer representation can be easily modified to represent real numbers

$$
10110110_2 = 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 182_{10}
$$

$$
10110.110_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} = 22.75_{10}
$$

Major drawback: limited range = 2^{number of digits left of decimal place - 1}

A better way: floating-point numbers

Instead we use **floating-point numbers**:

A better way: floating-point numbers

Instead we use **floating-point numbers**:

$$
10110110_2 = (1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} + 0 \times 2^{-5}) \times 2^{1 \times 4 + 1 \times 2 + 0 \times 1 - 3} = 13.5_{10}
$$

$$
1111111_2 = (1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} + 1 \times 2^{-5}) \times 2^{1 \times 4 + 1 \times 2 + 1 \times 1 - 3} = 31.5_{10}
$$

$$
00000001_2 = (1 \times 2^0 + 0 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5}) \times 2^{0 \times 4 + 0 \times 2 + 1 \times 1 - 3} = 0.125_{10}
$$

Boring but important: standardisation

IEEE 754

Fixed- vs. floating-point number distribution

Machine precision

The difference between 1 and the next largest representable number is called the *machine precision/epsilon*

The relative error of a floating-point assignment will be *at most* ε / 2

"Subnormal" numbers

Remember:

$$
00000001_2 = (1 \times 2^0 + 0 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5}) \times 2^{0 \times 4 + 0 \times 2 + 1 \times 1 - 3} = 0.125_{10}
$$

This system cannot represent zero because of this guy.

"Subnormal" numbers

Remember:

$$
00000001_2 = (1 \times 2^0 + 0 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5}) \times 2^{0 \times 4 + 0 \times 2 + 1 \times 1 - 3} = 0.125_{10}
$$
\nThis system cannot represent zero because of this guy.

\nBy convention, when the exponent is zero, the (implicit) leading bit is 0, not 1

\n
$$
0.0000000 = (0 \times 2^0 + 0 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5}) \times 2^{0 \times 4 + 0 \times 2 + 0 \times 1 - 3} = 0.00000000
$$

 $00000000_2 = (0 \times 2^v + 0 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5}) \times 2^{0 \times 4 + 0 \times 2 + 0 \times 1 - 3} = 0.0_{10}$

Numbers with a zeroed **exponent** are called **subnormal numbers**

There are four elementary arithmetic operations:

 $+ - \times \div$

Carrying out one of these **op**erations on two **fl**oating-point numbers constitutes one *flop* See also: sqrt and FMA

Flop/s: an imperfect measure

Top500 supercomputer rankings June 2024

Rmax (PFlop/s) Measured performance of LINPACK

Rpeak (PFlop/s) Theoretical peak performance

julia> $0.1 + 0.2 == 0.3$ false # WTF?

What's going on?

julia> $0.1 + 0.2 == 0.3$ false # WTF?

What's going on?

Floating-point numbers are *binary* – each number is a sum of powers of two

julia> $0.1 + 0.2 = 0.3$ false # WTF?

What's going on?

Floating-point numbers are *binary* – each number is a sum of powers of two

0.1 is actually 0.0999999 0.2 is actually 0.1999999

julia> $0.1 + 0.2 = 0.3$ false # WTF?

What's going on?

Floating-point numbers are *binary* – each number is a sum of powers of two

0.1 is actually 0.0999999 0.2 is actually 0.1999999 0.1 + 0.2 is actually 0.2998888

julia> $0.1 + 0.2 = 0.3$ false # WTF?

What's going on?

Floating-point numbers are *binary* – each number is a sum of powers of two

0.1 is actually 0.0999999 0.2 is actually 0.1999999 0.1 + 0.2 is actually 0.2998888 0.3 is actually 0.3000488

julia> $0.1 + 0.2 = 0.3$ false # WTF?

What's going on?

Floating-point numbers are *binary* – each number is a sum of powers of two

```
0.1 is actually 0.0999999
0.2 is actually 0.1999999
0.1 + 0.2 is actually 0.2998888
0.3 is actually 0.3000488
hence
0.1 + 0.2 != 0.3
```
The harmonic series

 $1 +$ 1 2 + 1 3 $+$ …

diverges when calculated with infinite precision

With (finite-precision) floating-point arithmetic, it converges!

$$
1 + \frac{1}{2} + \frac{1}{3} + \dots = 7.0859
$$

Float32

$$
1 + \frac{1}{2} + \frac{1}{3} + \dots = 15.404
$$

Float64

$$
1 + \frac{1}{2} + \frac{1}{3} + \dots = 34.122
$$

Swamping

The harmonic series converges because of *swamping*

```
julia> Float16(2500.0) + Float16(1.0)
Float16(2500.0)
```
This can occur when doing big number + small number. Why?

```
julia> nextfloat(Float16(2500.0))
Float16(2502.0) # There is no Float16(2501.0)!
```
Pathological case:

a, b are arrays of 50,000 elements of all 1s except the first which is 50

Answer with Float32: 52499.0

Answer with Float16: 2500.0

```
function inner_product(a, b)
   sum = a[1] * b[1]for (a_i, b_i) in zip(a[2:end], b[2:end])sum += a_i \pm b_i end
     sum
end
```
Pathological case:

a, b are arrays of 50,000 elements of all 1s except the first which is 50

Answer with Float32: 52499.0

Answer with Float16: 52499.0

```
function inner_product_mixed(a, b)
    sum = Float32(a[1] \star b[1])for (a_i, b_i) in zip(a[2:end], b[2:end])sum += Float32(a_i * b_i)
     end
     sum
end
```
Pathological case:

a, b are arrays of 50,000 elements of all 1s except the first which is 50

Answer with Float32: 52499.0

Answer with Float16: 52500.0

```
function inner_product_compensated(a, b)
   sum = a[1] \star b[1]c = convert(typeof(a[1]), 0.0)
    for (a_i, b_i) in zip(a[2:end], b[2:end])y = (a i * b i) - ct = sum + yc = (t - sum) - ysum = t end
     sum
end
```


Floating-point numbers: *recap*

• Floating-point numbers have a **significand** and an **exponent**

- Their precision is determined by the **machine epsilon**
- They have a **normal** range and a **subnormal** range
- "Computational work" is measured in **flops**, speed in **flop/s**
- Only numbers decomposable into power-two sums are perfectly representable
- Caution required when adding **big numbers** and **small numbers**

Half-precision in practice

Half precision already demonstrated in shallow water simulations

Klöwer et al. 2021

What about in NWP models?

Could we use half precision in NWP?

Could we use half precision in NWP?

Could we use half precision in NWP?

It actually works… (for software-emulated half precision)

Hatfield et al. 2019

What about data assimilation?

Successful convergence of minimization in 4D-Var depends on this equality holding:

This equality will never hold exactly for floating-point arithmetic! The higher the precision, the less the inequality

See Hatfield et al. 2020

Sam Hatfield samuel.hatfield@ecmwf.int

© ECMWF November 13 2024