
© ECMWF November 13 2024

Reduced-precision computing for
Earth-system modelling
Sam Hatfield
samuel.hatfield@ecmwf.int

“More accuracy with less precision”

22

Lang et al. 2021

Switching from double to single precision permitted
vertical resolution increase in ENS for free

→ improves forecast skill

Scorecard SP vs DP (+ve = SP better)

How much does precision matter?

33

0 500 1000 1500 2000

Forecast lead time (model timesteps)

0

25

50

75

100

125

150

175
R

M
S

E
w

.r.
t.

“tr
ut

h”
(d

ou
bl

e-
pr

ec
is

io
n)

(a) Without initial error

0 500 1000 1500 2000

Forecast lead time (model timesteps)

(b) With initial error

half-precision
single-precision
double-precision

Lorenz ‘63 example

Real numbers on computers

44

0 1 2 3 4-1-2-3-4
-∞ ∞

π
Numerical models use real number arithmetic

π ≈ 0 1 00 00 00 000 00 00 00 000 0 00 1 0 00 1 0 00 1 00 00 0 0 1 1 1 1 1 1 0 1 1
00 1 00 1 00 1 00 00 00 1 00 00 00 1 00 00 00 00 1 00 1 1 00 1 00 00 00 1 1 00 00 00

64 bits

Computers deal with finite bit strings

How do we map a real number to a string of bits?

The obvious way: fixed-point numbers

55

101101102 = 1×27+0×26+1×25+1×24+0×23+1×22 +1×21 +0×20 = 18210

Integer representation can be easily modified to represent real numbers

The obvious way: fixed-point numbers

66

101101102 = 1×27+0×26+1×25+1×24+0×23+1×22 +1×21 +0×20 = 18210
 10110.1102 = 1×24+0×23+1×22+1×21+0×20+1×2-1+1×2-2+0×2-3 = 22.7510

Integer representation can be easily modified to represent real numbers

The obvious way: fixed-point numbers

77

101101102 = 1×27+0×26+1×25+1×24+0×23+1×22 +1×21 +0×20 = 18210
 10110.1102 = 1×24+0×23+1×22+1×21+0×20+1×2-1+1×2-2+0×2-3 = 22.7510

Integer representation can be easily modified to represent real numbers

Major drawback: limited range = 2number of digits left of decimal place − 1

A better way: floating-point numbers

88

x = fixed-point number × 2 integer-bias

Instead we use floating-point numbers:

significand/mantissa
(between 1 and 2)

exponent

A better way: floating-point numbers

99

x = fixed-point number × 2 integer-bias

Instead we use floating-point numbers:

significand/mantissa
(between 1 and 2)

exponent

101101102 = (1×20+1×2-1+0×2-2+1×2-3+1×2-4+0×2-5)×21×4+1x2+0x1-3 = 13.510
111111112 = (1×20+1×2-1+1×2-2+1×2-3+1×2-4+1×2-5)×21×4+1x2+1x1-3 = 31.510
000000012 = (1×20+0×2-1+0×2-2+0×2-3+0×2-4+0×2-5)×20×4+0x2+1x1-3 = 0.12510

Boring but important: standardisation

1010

11 bits 52 bits

8 bits 23 bits

5 bits 10 bits

IEEE 754

Fixed- vs. floating-point number distribution

1111

0 1 2 3 4-1-2-3-4
floating-point

0 1 2 3 4-1-2-3-4
fixed-point

constant absolute error

constant relative error

Machine precision

1212

The difference between 1 and the next largest representable
number is called the machine precision/epsilon

𝜀 = 2−number of significand bits

ε

1 1+ε

The relative error of a floating-point assignment will be at most ε / 2

“Subnormal” numbers

1313

000000012 = (1×20+0×2-1+0×2-2+0×2-3+0×2-4+0×2-5)×20×4+0x2+1x1-3 = 0.12510

Remember:

This system cannot represent zero because of this guy.

“Subnormal” numbers

1414

000000012 = (1×20+0×2-1+0×2-2+0×2-3+0×2-4+0×2-5)×20×4+0x2+1x1-3 = 0.12510

Remember:

This system cannot represent zero because of this guy.

By convention, when the exponent is zero, the (implicit) leading bit is 0, not 1

000000002 = (0×20+0×2-1+0×2-2+0×2-3+0×2-4+0×2-5)×20×4+0x2+0x1-3 = 0.010

Numbers with a zeroed exponent are called subnormal numbers

Flops

1515

There are four elementary arithmetic operations:

+ − × ÷

Carrying out one of these operations on two
floating-point numbers constitutes one flop

See also: sqrt and FMA

Flop/s: an imperfect measure

1616

Top500 supercomputer rankings
June 2024

Rmax (PFlop/s)
Measured performance of LINPACK

Rpeak (PFlop/s)
Theoretical peak performance

Floating-point numbers are weird: demonstration 1

1717

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?

Floating-point numbers are weird: demonstration 1

1818

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?

Floating-point numbers are binary – each number is a sum of powers of two

Floating-point numbers are weird: demonstration 1

1919

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?

Floating-point numbers are binary – each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999

Floating-point numbers are weird: demonstration 1

2020

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?

Floating-point numbers are binary – each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999
0.1 + 0.2 is actually 0.2998888

Floating-point numbers are weird: demonstration 1

2121

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?

Floating-point numbers are binary – each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999
0.1 + 0.2 is actually 0.2998888
0.3 is actually 0.3000488

Floating-point numbers are weird: demonstration 1

2222

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?

Floating-point numbers are binary – each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999
0.1 + 0.2 is actually 0.2998888
0.3 is actually 0.3000488
hence
0.1 + 0.2 != 0.3

Floating-point numbers are weird: demonstration 2

2323

The harmonic series

1 +
1
2

 +
1
3

 + …

diverges when calculated
with infinite precision

With (finite-precision)
floating-point arithmetic, it

converges!

Float16
1 + 1

2 + 1
3 + … = 7.0859

Float32
1 + 1

2 + 1
3 + … = 15.404

Float64
1 + 1

2 + 1
3 + … = 34.122

Swamping

2424

The harmonic series converges because of swamping

julia> Float16(2500.0) + Float16(1.0)
Float16(2500.0)

This can occur when doing big number + small number. Why?

julia> nextfloat(Float16(2500.0))
Float16(2502.0) # There is no Float16(2501.0)!

Floating-point numbers are weird: demonstration 3

2525

function inner_product(a, b)
 sum = a[1] * b[1]

 for (a_i, b_i) in zip(a[2:end], b[2:end])
 sum += a_i * b_i
 end

 sum
end

Pathological case:

a, b are arrays of 50,000
elements of all 1s except

the first which is 50

Answer with Float32:
52499.0

Answer with Float16:
2500.0

Floating-point numbers are weird: demonstration 3

2626

function inner_product_mixed(a, b)
 sum = Float32(a[1] * b[1])

 for (a_i, b_i) in zip(a[2:end], b[2:end])
 sum += Float32(a_i * b_i)
 end

 sum
end

Pathological case:

a, b are arrays of 50,000
elements of all 1s except

the first which is 50

Answer with Float32:
52499.0

Answer with Float16:
52499.0

Floating-point numbers are weird: demonstration 3

2727

function inner_product_compensated(a, b)
 sum = a[1] * b[1]
 c = convert(typeof(a[1]), 0.0)

 for (a_i, b_i) in zip(a[2:end], b[2:end])
 y = (a_i * b_i) - c
 t = sum + y
 c = (t - sum) - y
 sum = t
 end

 sum
end

Pathological case:

a, b are arrays of 50,000
elements of all 1s except

the first which is 50

Answer with Float32:
52499.0

Answer with Float16:
52500.0

Floating-point numbers are weird: demonstration 3

2828

Base type Algorithm Answer FLOPs
Float32 Basic 52499.0 2n-1 Float32
Float16 Basic 2500.0 2n-1 Float16
Float16 Mixed 52499.0 n Float16 + n-1 Float32
Float16 Compensated 52500.0 5n-4 Float16

Floating-point numbers: recap

2929

x = fixed-point number × 2 integer-bias

significand exponent

• Floating-point numbers have a significand and an exponent

• Their precision is determined by the machine epsilon
• They have a normal range and a subnormal range
• “Computational work” is measured in flops, speed in flop/s
• Only numbers decomposable into power-two sums are perfectly representable
• Caution required when adding big numbers and small numbers

Half-precision in practice

3030

Klöwer et al. 2021

Half precision already demonstrated in shallow water simulations

What about in NWP models?

Could we use half precision in NWP?

3131

0 65504half-precision range

Variable range

Overflow

Could we use half precision in NWP?

3232

0 65504half-precision range

Variable range
Rescale

Could we use half precision in NWP?

3333

TCo1279 (~9 km)

Hatfield et al. 2019

It actually works…
(for software-emulated half precision)

What about data assimilation?

3434

Successful convergence of minimization in 4D-Var depends on this equality holding:

tangent-linear
model

adjoint
model

This equality will never hold exactly for floating-point arithmetic!
The higher the precision, the less the inequality

See Hatfield et al. 2020

© ECMWF November 13 2024

Sam Hatfield
samuel.hatfield@ecmwf.int

