Reduced-precision computing for Earth-system modelling

Sam Hatfield samuel.hatfield@ecmwf.int

© ECMWF November 13 2024

"More accuracy with less precision"

Lang et al. 2021

Switching from double to single precision permitted vertical resolution increase in ENS for free → improves forecast skill

Scorecard SP vs DP (+ve = SP better)

How much does precision matter?

Lorenz '63 example

Real numbers on computers

Numerical models use real number arithmetic

Computers deal with finite bit strings

How do we map a real number to a string of bits?

The obvious way: fixed-point numbers

Integer representation can be easily modified to represent real numbers

 $10110110_2 = 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 182_{10}$

The obvious way: fixed-point numbers

Integer representation can be easily modified to represent real numbers

 $10110110_{2} = 1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = 182_{10}$ $10110.110_{2} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} = 22.75_{10}$

The obvious way: fixed-point numbers

Integer representation can be easily modified to represent real numbers

$$10110110_{2} = 1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = 182_{10}$$

$$10110.110_{2} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} = 22.75_{10}$$

Major drawback: limited range = 2^{number of digits left of decimal place} - 1

A better way: floating-point numbers

Instead we use **floating-point numbers**:

A better way: floating-point numbers

Instead we use floating-point numbers:

 $10110110_{2} = (1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} + 0 \times 2^{-5}) \times 2^{1 \times 4 + 1 \times 2 + 0 \times 1^{-3}} = 13.5_{10}$ $11111111_{2} = (1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} + 1 \times 2^{-5}) \times 2^{1 \times 4 + 1 \times 2 + 1 \times 1^{-3}} = 31.5_{10}$ $00000001_{2} = (1 \times 2^{0} + 0 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5}) \times 2^{0 \times 4 + 0 \times 2 + 1 \times 1^{-3}} = 0.125_{10}$

Boring but important: standardisation

IEEE 754

Fixed-vs. floating-point number distribution

Machine precision

The difference between 1 and the next largest representable number is called the *machine precision/epsilon*

The relative error of a floating-point assignment will be at most ε / 2

"Subnormal" numbers

Remember:

$$0000001_{2} = (1 \times 2^{0} + 0 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5}) \times 2^{0 \times 4 + 0 \times 2 + 1 \times 1 - 3} = 0.125_{10}$$

This system cannot represent zero because of this guy.

"Subnormal" numbers

Remember:

$$0000001_{2} = (1 \times 2^{0} + 0 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5}) \times 2^{0 \times 4 + 0 \times 2 + 1 \times 1 - 3} = 0.125_{10}$$

This system cannot represent zero because of this guy.

By convention, when the **exponent** is zero, the (implicit) leading bit is 0, not 1

$$0000000_{2} = (0 \times 2^{0} + 0 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5}) \times 2^{0 \times 4 + 0 \times 2 + 0 \times 1 - 3} = 0.0_{10}$$

Numbers with a zeroed **exponent** are called **subnormal numbers**

There are four elementary arithmetic operations:

 $+ - \times \div$

Carrying out one of these **op**erations on two **fl**oating-point numbers constitutes one **flop** See also: sqrt and FMA

Flop/s: an imperfect measure

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,699,904	1,206.00	1,714.81	22,786
2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	
4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107

Top500 supercomputer rankings June 2024 Rmax (PFlop/s) Measured performance of LINPACK

Rpeak (PFlop/s) Theoretical peak performance

julia> 0.1 + 0.2 == 0.3 false # WTF?

What's going on?

julia> 0.1 + 0.2 == 0.3 false # WTF?

What's going on?

Floating-point numbers are *binary* – each number is a sum of powers of two

julia> 0.1 + 0.2 == 0.3 false # WTF?

What's going on?

Floating-point numbers are *binary* – each number is a sum of powers of two

0.1 is actually 0.09999990.2 is actually 0.1999999

julia> 0.1 + 0.2 == 0.3 false # WTF?

What's going on?

Floating-point numbers are *binary* – each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999
0.1 + 0.2 is actually 0.2998888

julia> 0.1 + 0.2 == 0.3 false # WTF?

What's going on?

Floating-point numbers are *binary* – each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999
0.1 + 0.2 is actually 0.2998888
0.3 is actually 0.3000488

julia> 0.1 + 0.2 == 0.3 false # WTF?

What's going on?

Floating-point numbers are *binary* – each number is a sum of powers of two

```
0.1 is actually 0.09999999
0.2 is actually 0.1999999
0.1 + 0.2 is actually 0.2998888
0.3 is actually 0.3000488
hence
0.1 + 0.2 != 0.3
```

The harmonic series

 $1 + \frac{1}{2} + \frac{1}{3} + \dots$

diverges when calculated with infinite precision

With (finite-precision) floating-point arithmetic, it converges!

Float16

$$1 + \frac{1}{2} + \frac{1}{3} + \dots = 7.0859$$

Float32
 $1 + \frac{1}{2} + \frac{1}{3} + \dots = 15.404$
Float64
 $1 + \frac{1}{2} + \frac{1}{3} + \dots = 34.122$

Swamping

The harmonic series converges because of *swamping*

```
julia> Float16(2500.0) + Float16(1.0)
Float16(2500.0)
```

This can occur when doing big number + small number. Why?

```
julia> nextfloat(Float16(2500.0))
Float16(2502.0) # There is no Float16(2501.0)!
```

Pathological case:

a, b are arrays of **50,000** elements of all **1**s except the first which is **50**

Answer with Float32: 52499.0

Answer with Float16: 2500.0

```
function inner_product(a, b)
    sum = a[1] * b[1]
    for (a_i, b_i) in zip(a[2:end], b[2:end])
        sum += a_i * b_i
    end
    sum
end
```

Pathological case:

a, b are arrays of **50,000** elements of all **1**s except the first which is **50**

Answer with Float32: 52499.0

Answer with Float16: 52499.0

```
function inner_product_mixed(a, b)
   sum = Float32(a[1] * b[1])
   for (a_i, b_i) in zip(a[2:end], b[2:end])
      sum += Float32(a_i * b_i)
   end
   sum
end
```

Pathological case:

a, b are arrays of **50,000** elements of all **1**s except the first which is **50**

Answer with Float32: 52499.0

Answer with Float16: 52500.0

```
function inner_product_compensated(a, b)
   sum = a[1] * b[1]
   c = convert(typeof(a[1]), 0.0)
   for (a_i, b_i) in zip(a[2:end], b[2:end])
        y = (a_i * b_i) - c
        t = sum + y
        c = (t - sum) - y
        sum = t
    end
    sum
end
```

Base type	Algorithm	Answer	FLOPs
Float32	Basic	52499.0	2n-1 Float32
Float16	Basic	2500.0	2n-1 Float16
Float16	Mixed	52499.0	n Float16 + n-1 Float32
Float16	Compensated	52500.0	5n-4 Float16

Floating-point numbers: recap

Floating-point numbers have a significand and an exponent

- Their precision is determined by the machine epsilon
- They have a **normal** range and a **subnormal** range
- "Computational work" is measured in **flops**, speed in **flop/s**
- Only numbers decomposable into power-two sums are perfectly representable
- Caution required when adding **big numbers** and **small numbers**

Half-precision in practice

Half precision already demonstrated in shallow water simulations

Klöwer et al. 2021

What about in NWP models?

Could we use half precision in NWP?

Could we use half precision in NWP?

Could we use half precision in NWP?

It actually works... (for software-emulated half precision)

Hatfield et al. 2019

What about data assimilation?

Successful convergence of minimization in 4D-Var depends on this equality holding:

This equality will never hold exactly for floating-point arithmetic! The higher the precision, the less the inequality

See Hatfield et al. 2020

Sam Hatfield samuel.hatfield@ecmwf.int

© ECMWF November 13 2024