Reduced-precision computing for
Earth-system modelling

Sam Hatfield

samuel.hatfield@ecmwf.int

~ ECMWF
© ECMWF November 13 2024

“More accuracy with less precision”

Received: 6 May 2021 Revised: 4 2021 Accepted: 28 Sep 2021 Published on: 21 October 2021

n.hem tropics s.hem

DOI: 10.1002/qj.4181

Quarterly Journal of the ERMets z100"an
Royal Meteorological Society

RESEARCH ARTICLE 2500_an

More accuracy with less precision 850-an

Simon T. K. Lang'!® | Andrew Dawson!® | Michail Diamantakis'® | ff850"an
Peter Dueben'® | Samuel Hatfield'® | Martin Leutbecher'® | Tim Palmer?® | oo

Fernando Prates! | Christopher D. Roberts!® | Irina Sandu'® | Nils Wedi! swh0~an
10ff@seal_an

z50_ob
2100 ob

Lang et al. 2021 0ot

Switching from double to single precision permitted a0
vertical resolution increase in ENS for free #ees
— improves forecast skill 10ffozob 1, .

T T T T T T T T T T T T T
24 96 168 240 312 24 96 168 240 312 24 96 168 240 312

Scorecard SP vs DP (+ve = SP better)

How much does precision matter?

(a) Without initial error (b) With initial error
= 175
R
2 150
o
o
& 125
o)
3
S 100
c
5 75
g 50 —— half-precision
L — == single-precision
b25
s S N double-precision
T
0 500 1000 1500 2000 0 500 1000 1500 2000
Forecast lead time (model timesteps) Forecast lead time (model timesteps)

Lorenz ‘63 example

Real numbers on computers

Numerical models use real number arithmetic

0/1|0/0/0/0/0/0/0/0/0/0|1/0/0/10|0(1/0/00/0(1{1(1|11]1/1/0

o1|0/10/10/001 000100001011 01000{1/100/0

64 bits

How do we map a real number to a string of bits?

The obvious way: fixed-point numbers

Integer representation can be easily modified to represent real numbers

10110110, = 1+27+0%20+1%25+1x2%+0=27+1 1 0 = 182,

The obvious way: fixed-point numbers

Integer representation can be easily modified to represent real numbers

10110110,
10110.110,

I
=
S
=
=
S
=
=
S

I

1824,
22.754,

I
=
S
=
=
S
=
=
S

I

The obvious way: fixed-point numbers

Integer representation can be easily modified to represent real numbers

10110110,
10110.110,

1
=
S
=
=
S
=
=
S

1

1824,
22.754,

1
=
S
=
=
S
=
=
S

1

Major drawback: limited range = 2number of digits left of decimal place _ A

A better way: floating-point numbers

Instead we use floating-point numbers:

x = fixed-point number x 2 integer-bias
N\ _ \/_/

\/

I : exponent
significand/mantissa P

(between 1 and 2)

A better way: floating-point numbers

Instead we use floating-point numbers:

x = fixed-point number x 2 integer-bias
N\ _ \/_/

N
exponent

significand/mantissa
(between 1 and 2)

10110110, = 1 0 1 1 0 L1000 = 13,5,
11111111, = 1 1 1 1 1 Lo 2 31,5,
00000001, = 0 0 0 0 0 04101 = 9125,

Boring but important: standardisation

11 bits

52 bits

L g N

010000000000
double

8 bits

23 bits

——r

single [NNS)

5 bits 10 bits

\F

WEliEN010000

B sign ® exponent

IEEE 754

significand

= 3.141592653589793

= 3.1415927

=3.14

10

Fixed- vs. floating-point number distribution

T T I O I O I |

T T rrrrrrr e rrrrrrrrrrl |

-4 -3 -2 -1 0 1 2 3 4
fixed-point

I I I T IO A7 T |

R |

-4 -3 -2 -1 0 1 2 3 4

floating-point

11

Machine precision

The difference between 1 and the next largest representable
number is called the machine precision/epsilon

1 1+¢

<
<

v

e

¢ — p—humber of significand bits

The relative error of a floating-point assignment will be at most € / 2

12

“Subnormal” numbers

Remember:

1

I
S
S
S
S
S

S
S

00000001,

0.1254,
T

This system cannot represent zero because of this guy.

13

“Subnormal” numbers

Remember:
00000001, = 0 0 0 0 0 0rirrond = 0.1254,
This system cannot represent zero because of this guy.
By convention, when the exponent is zero, the (implicit) leading bit is @, not 1
00000000, = 0 0 0 0 0 00700200 = 0.04,

/N

Numbers with a zeroed exponent are called subnormal numbers

14

Flops

There are four elementary arithmetic operations:
+ - x +

Carrying out one of these operations on two

floating-point numbers constitutes one flop
See also: sqrt and FMA

15

Flop/s: an

Rank

Imperfect measure

Rmax Rpeak Power
System Cores (PFlop/s) (PFlop/s) (kW)
Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,699,904 1,206.00 1,714.81 22,786
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE
DOE/SC/Oak Ridge National Laboratory
United States
Aurora - HPE Cray EX - Intel Exascale Compute Blade, 9,264,128 1,012.00 1,980.01 38,698
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Mayx, Slingshot-11, Intel
DOE/SC/Argonne National Laboratory
United States
Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, 2,073,600 561.20 846.84
NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure
United States
Supercomputer Fugaku - Supercomputer Fugaku, 7,630,848 442.01 537.21 29,899
Ab4FX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science
Japan
LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation 2,752,704 379.70 531.51 7,107
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC
Finland

Top500 supercomputer rankings
June 2024

Rmax (PFlop/s)
Measured performance of LINPACK

Rpeak (PFlop/s)

Theoretical peak performance

16

Floating-point numbers are weird: demonstration 1

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?

17

Floating-point numbers are weird: demonstration 1

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?

Floating-point numbers are binary — each number is a sum of powers of two

18

Floating-point numbers are weird: demonstration 1

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?
Floating-point numbers are binary — each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999

19

Floating-point numbers are weird: demonstration 1

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?
Floating-point numbers are binary — each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999
0.1 + 0.2 isactually 0.2998888

20

Floating-point numbers are weird: demonstration 1

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?
Floating-point numbers are binary — each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999
0.1 + 0.2 isactually 0.2998888

0.3 isactually 0.3000488

21

Floating-point numbers are weird: demonstration 1

julia> 0.1 + 0.2 == 0.3
false # WTF?

What’s going on?
Floating-point numbers are binary — each number is a sum of powers of two

0.1 is actually 0.0999999
0.2 is actually 0.1999999
0.1 + 0.2 isactually 0.2998888
0.3 is actually 0.3000488

hence
0.1 + 0.2 '= 0.3

22

Floating-point numbers are weird: demonstration 2

The harmonic series

1 1
1+ =+ =+ ...
2 3

diverges when calculated
with infinite precision

With (finite-precision)
floating-point arithmetic, it
converges!

Float16

11
1‘|—§+§‘|‘—70859

Float32

1 1 B
1+§+§+...—15.404

Float64

1 1 B
1‘|‘§+§‘|‘...—34.122

23

Swamping

The harmonic series converges because of swamping

julia> Float16(2500.0) + Float16(1.0)
Float16(2500.0)

This can occur when doing big number + small number. Why?

julia> nextfloat(Float16(2500.0))
Float16(2502.0) # There is no Float16(2501.0)!

24

Floating-point numbers are weird: demonstration 3

Pathological case:

a, b are arrays of 50,000 function inner_product(a, b)
elements of all 1s except sum = a[1] = b[1]

the first which is 50 _ o ,
for (a_i, b_i) in zip(a[2:end], b[2:end])
sum += a_1 * b 1

Answer with Float32: end

52499.0

sum
Answer with Float16: end
2500.0

25

Floating-point numbers are weird: demonstration 3

Pathological case:

a, b are arrays of 50,000
elements of all 1s except
the first which is 50

Answer with Float32:
52499.0

Answer with Float16:
52499.0

function inner_product _mixed(a, b)

end

sum

= Float32(a[1] = b[1])

for (a_i, b_i) in zip(a[2:end], b[2:end])

end

sum

sum += Float32(a_i * b_1i)

26

Floating-point numbers are weird: demonstration 3

Pathological case:

a, b are arrays of 50,000
elements of all 1s except
the first which is 50

Answer with Float32:
52499.0

Answer with Float16:
52500.0

function inner_product_compensated(a, b)
sum = a[1] * b[1]
c = convert(typeof(al[1]), 0.0)

for (a_i, b_i) in zip(a[2:end], b[2:end])

y = (a_1*b i) -c
t = sum + vy
c = (t - sum) -y
sum = t

end

sum

end

27

Floating-point numbers are weird: demonstration 3

Basotype | Algorithm | Answer | FLOPs

Float32
Float16
Float16
Float16

Basic
Basic
Mixed
Compensated

52499.0
2500.0

52499.0
52500.0

2n-1 Float32
2n-1 Float16
n Float16 + n-1 Float32
5n-4 Float16

28

Floating-point numbers: recap

* Floating-point numbers have a significand and an exponent

x = fixed-point number x 2 integer-bias
W/

N _
—

exponent
significand P

« Their precision is determined by the machine epsilon

« They have a normal range and a subnormal range

« “Computational work” is measured in flops, speed in flop/s

« Only numbers decomposable into power-two sums are perfectly representable
« Caution required when adding big numbers and small numbers

29

Half-precision in practice

Half precision already demonstrated in shallow water simulations

Float64 simulation a Floatl6 simulation

Klower et al. 2021

What about in NWP models?

30

Could we use half precision in NWP?

Variable range

| |
—
" Qverflow

0 half-precision range

65504

31

Could we use half precision in NWP?

Rescale

Variable range
|

0 half-precision range

65504

32

Could we use half precision in NWP?

TCo01279 (~9 km)

500 hPa geopotential height RMSE (m) 500 hPa temperature RMSE (K)
Northern extratropics (20N-90N) Northern extratropics (20N-90N)
100 ——— double > Z 4

—-—- half

It actually works...
(for software-emulated half precision)

Southern extratropics (90S-20S)
100

80

3

60
2

40
20 !
0 0

0 2 4 6 8 10 0 2 4 6 8 10
Forecast lead time (days) Forecast lead time (days)

Hatfield et al. 2019

33

What about data assimilation?

Successful convergence of minimization in 4D-Var depends on this equality holding:

[M,,, (x,)8x]" 8y = 6x [M,,, (x,)5y]

L L
tangent-linear adjoint
model model

This equality will never hold exactly for floating-point arithmetic!
The higher the precision, the less the inequality

34

Sam Hatfield

samuel.hatfield@ecmwf.int

~ ECMWF

© ECMWF November 13 2024

