Introduction to element based computing --finite volume and finite element methods. Mesh generation

Joanna Szmelter Loughborough University, UK

Traditional Discretisation Methods

Finite DifferenceFinite ElementFinite Volume

Finite Difference Method

$$\frac{\partial}{\partial t}\rho_{i,j} + \frac{((u\rho)_{i+1}, (u\rho)_{i-1,j})}{2\Delta x} + \frac{((v\rho)_{i,j+1} - (v\rho)_{i,j-1})}{2\Delta y} = 0$$

Finite Volume Method

$$\frac{\partial \rho}{\partial t} + \frac{\partial (u\rho)}{\partial x} + \frac{\partial (v\rho)}{\partial y} = 0$$
$$\int_{\Omega} \frac{\partial \rho}{\partial t} d\Omega + \int_{\Omega} \frac{\partial (u\rho)}{\partial x} d\Omega + \int_{\Omega} \frac{\partial (v\rho)}{\partial y} d\Omega = 0$$

From Gauss Divergence Theorem:

$$\frac{\partial}{\partial t} \int_{\Omega} \rho d\Omega + \int_{\Gamma} (u\rho) n_x d\Gamma + \int_{\Gamma} (v\rho) n_y d\Gamma = 0$$

$$\frac{\partial}{\partial t} \rho_i V_i + \sum_j (u\rho)_{ij} S_x + \sum_j (v\rho)_{ij} S_y = 0$$

Finite Element Method

5 4 165 15 68 (Repeated index notation is used here) $\rho \approx \rho_i N_i =$ $\rho_5 N_5 + \rho_4 N_4 + \rho_{165} N_{165} + \rho_{15} N_{15}$

Nodes

15

$$\frac{\partial \rho}{\partial t} + \frac{\partial (u\rho)}{\partial x} + \frac{\partial (v\rho)}{\partial y} = 0$$
$$\int_{\Omega} \frac{\partial \rho}{\partial t} d\Omega + \int_{\Omega} \frac{\partial (u\rho)}{\partial x} d\Omega + \int_{\Omega} \frac{\partial (v\rho)}{\partial y} d\Omega = 0$$

Element

$$\frac{\partial}{\partial t} \int_{\Omega} \rho_i N_i d\Omega + \int_{\Omega} \frac{\partial (u\rho)_i N_i}{\partial x} d\Omega + \int_{\Omega} \frac{\partial (v\rho)_i N_i}{\partial y} d\Omega = 0$$

Weighted residual analysis:

$$\frac{\partial}{\partial t} \int_{\Omega} \rho_i N_i W_j d\Omega + \int_{\Omega} \frac{\partial (u\rho)_i N_i}{\partial x} W_j d\Omega + \int_{\Omega} \frac{\partial (v\rho)_i N_i}{\partial y} W_j d\Omega = 0$$

$$\frac{\partial}{\partial t} \left(\int_{\Omega} N_i W_j d\Omega \right) \rho_i + \left(\int_{\Omega} \frac{\partial (N_i)}{\partial x} W_j d\Omega \right) u\rho_i + \left(\int_{\Omega} \frac{\partial (N_i)}{\partial y} W_j d\Omega \right) v\rho_i = 0$$

If W is chosen to be the same as N the method is called Galerkin method.

$$\frac{\partial}{\partial t} \left(\int_{\Omega} N_i N_j d\Omega \right) \rho_i + \left(\int_{\Omega} \frac{\partial (N_i)}{\partial x} N_j d\Omega \right) u \rho_i + \left(\int_{\Omega} \frac{\partial (N_i)}{\partial y} N_j d\Omega \right) v \rho_i = 0$$

For easy implementation of boundary conditions this is integrated by parts.

$$\frac{\partial}{\partial t} \left(\int_{\Omega} N_i N_j d\Omega \right) \rho_i - \left(\int_{\Omega} N_i \frac{\partial (N_j)}{\partial x} d\Omega \right) u \rho_i - \left(\int_{\Omega} N_i \frac{\partial (N_j)}{\partial y} d\Omega \right) v \rho_i + \left(\int_{\Gamma} N_i N_j n_x d\Gamma \right) u \rho_i + \left(\int_{\Gamma} N_i N_j n_y d\Gamma \right) v \rho_i = 0$$
$$\frac{\partial}{\partial t} \mathbf{M}_{elem} \rho_i + \mathbf{B}_{Xelem} u \rho_i + \mathbf{B}_{Yelem} v \rho_i = 0$$

Finite Element Method

1) Divides computational space into elements

$$\frac{\partial}{\partial t}\mathbf{M}_{elem}\rho_i + \mathbf{B}_{Xelem}u\rho_i + \mathbf{B}_{Yelem}v\rho_i = 0$$

$$\mathbf{M}_{elem}, \mathbf{B}_{Xelem}, \mathbf{B}_{Yelem}; \mathbf{\rho}_{elem}, \mathbf{u}\mathbf{\rho}_{elem}, \mathbf{v}\mathbf{\rho}_{elem}$$

- 2) Reconnects elements at nodes
- Agglomerates for the whole domain $\mathbf{M} = \sum_{e} \mathbf{M}_{elem}, \mathbf{B}_{X} = \sum_{e} \mathbf{B}_{Xelem}, \mathbf{B}_{Y} = \sum_{e} \mathbf{B}_{Yelem}$ $\boldsymbol{\rho} = \sum_{e} \boldsymbol{\rho}_{elem}, \mathbf{u}\boldsymbol{\rho} = \sum_{e} \mathbf{u}\boldsymbol{\rho}_{elem}, \mathbf{v}\boldsymbol{\rho} = \sum_{e} \mathbf{v}\boldsymbol{\rho}_{elem}$
- 3) As a result a set of algebraic equations is formed and its solution follows

$$\frac{\partial}{\partial t}\mathbf{M} \ \boldsymbol{\rho} \ + \mathbf{B}_{X}\mathbf{u}\boldsymbol{\rho} + \mathbf{B}_{Y}\mathbf{v}\boldsymbol{\rho} = \mathbf{0}$$

Matrix Agglomeration

Global matrix is a sum of all element matrixes

$$\frac{\partial}{\partial t}\mathbf{M} \ \boldsymbol{\rho} \ + \mathbf{B}_{X}\mathbf{u}\boldsymbol{\rho} + \mathbf{B}_{Y}\mathbf{v}\boldsymbol{\rho} = \mathbf{0}$$

e.g. For the linear triangular element the consistent mass matrix

$$\begin{bmatrix} a22 & a23 & a24 \\ a32 & a33 & a34 \\ a42 & a43 & a44 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
 Area
Element"a" /12

SHAPE FUNCTIONS

And when derivatives are of interest:

The tetrahedron family of elements

 $\frac{d\rho}{dx} \approx \sum_{i} \frac{dN_{i}}{dx} \rho_{i}$

We know functions N, they are frequently polynomials -obtaining their derivatives is easy.

After Zienkiewicz et al FEM 2000

SHAPE FUNCTIONS

Example: a linear interpolation of a scalar T in a triangle. The value of T in an arbitrary point alpha is approximated by:

SHAPE FUNCTIONS

Curvilinear elements can be formed using transformations

Isoparametric elements

Structured

Point based --- I,J,K indexing Set of coordinates and connectivities Naturally map into the elements of a matrix

Unstructured

Element based connectivity

Element 1	10 100 20 21
Element 2	21 11 13 10
Element 3	4 100 10

+ information related to shape functions

Unstructured

Edge 8 10 100

+ geometrical information

Edge based data

© Flexible mesh adaptivity and hybrid meshes

- ☺ Low storage
- © Easy generalisation to 3D,
- © Less expensive than element based data structure

More expensive operations than I,*J*,*K*

Selected Mesh Generation Techniques

Unstructured Meshes

Direct triangulation

Advancing Front Technique

Delaunay Triangulation

Others

Structured Meshes

Cartesian grids with mapping and/or immersed boundaries Variants of icosahedral meshes

Others

An example of the direct triangulation

Reduced Gaussian Grid

			-			2	\sim		-1-		25		1	-	\geq	~		4	-	~	~	1		1		>	\geq	5
			\sim	\ll	$\succ \leq$	\sim				≫	7	$\rightarrow <$		<u> </u>	~	<	\geq	∢≫	-	\sim	7	\prec	~	$\rightarrow \leqslant$	-	\rightarrow	2	≫
\times	100	\sim	たた			~~	32	\sim	\rightarrow	\rightarrow	≫≪	╧	67	≫	72	≫	\sim	*	\sim	\sim	\sim		<	~	57		~	5
JAN DA			\sim	12	7	11	\sim			$7 \leq 2$			32			10	~	00		3			\overline{z}	~	25	~	1	\sim
			\sim	V	Ż	$\overline{2}$	K	4	\sim	1	7				V	\sim	K	Ż	\sim		ł	Ž			Z	K	\sim	
	$\sim\sim\sim$	XD		T		$\sim \sim \sim$	$\sim \sim$	$\sim \sim$	Xr	4	>	\rightarrow	\sim		$\sim \sim$	\sim	P	1			\checkmark		$7 \checkmark$	\searrow	\sim	$\sim \sim$	+	\rightarrow
жүжкк	\times	$\times \times \times$	\times	$x \times x$	YЖ	YXY	Ж /:	жx	XX)	\leftrightarrow		XХ	XX.	×ж	ŧЖ	i X	YX `	YЖ	**>	**	×х	×х	XX	\sim	\Leftrightarrow	⇔⇔	6¥.	ЖŸ
(**** *	(XXXX)	күжү	жкх	ххх	**	***	XX	KYX	XX	. Ж.Ж	XXX	ĸхх	×ж	XЖ	**	KK.	640	\leftrightarrow	\leftrightarrow	(x)	KY2	KYA	KX:	ΧХ	XX.	XX.	хж	***
XXXXXX	XXXXX	オボレボ	XXX.	XXX	XXX	XXX	XX	1761	. ХХ.	XXX	KY#	XXX	(XA	ホレ	ボルブ	XX	ЖĂ	ĴЖ	XX.	XX7	176	187	***	**		<u>ж</u> х	ХĂ	×7
			NN													ホレ	NA		M		$\wedge \nu$	NA			IN		NV	$\nabla $
		NIN	$\sim \sim \sim$	$\sim \sim$	$\Delta V \Delta$		\sim	$\sim \sim \sim$	$\sim \sim$	\sim	NA	M	\sim	\sim	$\overline{\mathcal{M}}$	$\overline{\mathbf{v}}$	m	$\Delta \Delta$	$\sim \sim$	$\sim \sim$	$\sim \sim$	NV	$\overline{\mathbf{v}}$	$\overline{\mathcal{N}}$	$\sim \sim$	\sim	$\sim \sim$	N
	$\sqrt{2}$			NN	$\pi \omega$	AXX	XYX	YXX		K N K		KK	WW	£ΥΥ	XXX	YXX	XXX		W.	+1	W	IXX	$\chi\chi\gamma$	ſ¥Υ	XYX	∞	<u>A¥</u>	Ť¥
XYXYXYX	* * *(*	YXYXY	****	KYAY)	КҮЖҮ.	XYX¥	***	KKYX	YXY	жiж	IX D	кіжч	жүж	YXY	***	KKY	KYX'	YXY.	KKK	++++	жүж	YXY	(XY)	кіж	181	жүж	YX)	rxn
жіжіжіж	$\lambda X \lambda X \lambda X \lambda X \lambda$	XXXXX	кжіж	***	XXX	****	***	КІЖІ.	***	***	XXXX	KXXX	XXI.	жіж	***	KAK	KXX:	к.к.ж .	k X L	жіж	7 X Y	.X.K1	31 2	YXY.	***	. ж.	жку	61 ₩
ŇŇĬŇĬŇĬŇ	ikikikik	ĴЖĬЖЙ		ЮŇŇ	ŇŇ	Kľ/Ň	ŇŇ	ŇĬ ĂĬ	ĸж	ばばか	ĴЖĬИ	<i>ŮŇ</i> Й	KĬ/NĬ	木道木	休沐	ĴŇĬ	KKA)	ЖĬЙ	ĴŇŰ	木花木	1×1	КИŃ	жи	KVKI	жħ	ŤКĬ	木ば木	ĴŇÌ
																			小小							小小		
	www		\overline{M}	\sqrt{N}	\sim	WW	$\Delta \Delta \Delta$	$\overline{\mathbf{M}}$	\sqrt{M}	\sqrt{N}	\sim	AVA	MM	YAY.	YAY	M	$\sim \sim \sim$	$\overline{\mathbf{w}}$	ΔM	$\overline{\mathbf{w}}$	NΛ	ми	$\overline{\mathbf{w}}$	ΔN	$\overline{\mathbf{w}}$	$\sim \sim$	AVA	MV.
KIXIXIXI	XIXIXIXI	YIYIY	XIXN	<u>TXIX</u>	XX	XIX	¥₩	¥I¥T	¥Ж	¥Ж	WΥΥΥ	КIYA	KIKT	**	ЖЖ	TXA	∕₩₽	*I¥	K Na	£¥£	*I¥	IVN	<u>AA</u>	¥Ψ	TKA	*I¥I	ЖŅ	ÆЖ
YIYIYIY	777777777	YYYYYY	(IYIYI	YIYI	KIYN	Ή¥I¥	IYIY	IYIY	TYTY	YYYY	YYYY	YYYY	IYN	(IYF)	YIY!	¥I¥	$ \Psi \Psi $	TYN	447	ΨIΨ	(YY)	YYY	¥YY	YYYY	(Y FY	TYP	441	IYN
					+++++	++++	++++	++++	++++	****	++++	++++	++++			++++	+++	+++	+++	+++		+++				++++		r+++
						****		****			1111		1111						+++			+++				***		rttt
																												αH
				HШ	ΗШ	ΗП	ΗП	ΗП	ΗП	ШΠ	Π	Π	ΗT		ΗП	ΗТ	$+\Pi$	HΤ	$+\Pi$	ΠT	\square	ΗT	++T	ΗП	\square	ΠT	$+\Pi$	HΠ
						+++++		++++			++++	111	++++			11	++++	11	++++	+++		+++				++++		нн
					+++++	++++	+++++	++++	++++	++++	++++	++++	++++			++++	+++	+++	+++	+++		+++	+++			++++		HH
					+++++	++++		++++			++++	++++	1111				+++		+++	+++		+++				++++		r+++
																						111						dН
					+++++	++++	+++++	++++	++++	++++	++++	++++	++++	++++		++++	+++	++++	+++	++++		++++	+++-			++++		HH
					+++++	++++	++++	++++	++++	****	++++	++++	++++			++++	+++	+++	+++	+++		+++				++++		HH
						++++				++++	++++	++++	1111				+++		+++	111		111				++++		r+++
												1111	1111						+++			111						
																												ан
	www	\sim	WW	$\overline{\mathcal{M}}$	WW	WW	$\overline{\mathbf{w}}$	WW	$\overline{\mathbf{w}}$	\sim	$\overline{\mathcal{M}}$	$\sim \sim \sim$	ич	$\Psi \Psi$	NAV	NΛ	AΥΛ	$\overline{\mathbf{w}}$	VN	AVA	ww	\sim	$\sim \sim \sim$	$\overline{\mathbf{w}}$	W/A	ич	W	AΥ
XXXXXX		TXIXIN	TXIXI	XIXD	KIYIN	(YIY	TATA	\mathcal{X}	TAN	4YN	KINY	IYIY	IYIY	<u>AYP</u>	KKK	KIKI	XX	TWD	er kri	ЖЖ	TXP	KIXI	XIX	<u>TYT</u>	¥Ж	IXN	4¥1	ЖŊ
<u>KIXIXYXYX</u>	YXYXYAYA	YAYAYA	YAYAY	(XYXY	ЖҮЖҮ.	XYXY.	KYAY.	жүжү	***	YXYX	.ҮЖҮХ	YXY	KYA¥	***	KAYA	¥X¥.	күжү	XYX	YKY.	***	K AR	KYKI	(AYA	(XX)	(XYX	YXY.	*(*	аж і
	NNKK	私私米	水氷		XLXL	жIжt	XXX	XJXt	JXV	NЖ	ЖK	ЖŇ	ばあげあい	1XV	NKU	私迷	t KUX	ЧЖU	私迷	J₩₽	ĸж	UNU	NЖ	жЙ	ЧЖL	жiж	JXU	жX
	www.ht	$\wedge NNN$	WW	NVV	씨사	INIV	$\sim \sim \sim$	иń	W	$\sqrt{\lambda}$	ΔM	\sim	W/A	\sqrt{N}	\overline{M}	NA	ΜV	\sim	NIA	\sqrt{N}	\sim	NЙ	\sqrt{N}	ww	$\overline{\mathcal{M}}$	小小	w	$\overline{\mathcal{M}}$
			\sqrt{M}		MМ	ИИ	\sqrt{V}	NN	$\Delta \Lambda$	\sqrt{V}	NΛ	ИV	\sqrt{V}	$\Delta \Delta$		NV	ИV	NΛ		TM	\sqrt{N}	ΩФ	Y/N	ИV	TM	$\sqrt{1}$	ΥИ	NΛ
YXYXXX	(XXXXX)	(XXYX)	KAYA	KXYX	XXX	(XXI	**	XXX	XXX	KYA	KKY.		\leftrightarrow	(XI)	KIK.	¥ЖХ	XXX	YX)	KK Y	XYX	¥Ж	YXX	XЖ	CXA	$* \mathbb{N}$	(XX)	¢₩	.¥ ¥
жажккк	ххүхүж	XXXX	KAXA)	KYXY	ЖΧ	күж	(XX)	(ХХХ	XX)	KY A	KKK.	KYX)	кхх	ххх	ххү	XYX	күж	XXX	κкЖ	XЖX	жĸ	₩ЖҰ	ЖY	жүж	(XX)	ххх	жĸ	жÐ
KIKIKIK	XXXXXX	XXXX	KKXX	XXX.	жіж	ŧжÐ	ĸĸЖ	ТЖĽ	жүж	(TAX)	ťЖĽ	ĸтж	(XX)	ſЖĽ	ĸĭЖ	чж	ŧЖì	жĽ	ĸк	ЧX	жĭ	ťÆť.	Ж¥	木半	ĸки	ЧX	YЖ	iЖ
		TH A		THT.	AT A	$\sim \times$		NX	$^{\times}$	$\overline{\mathcal{N}}$	ΖŇŬ	171	7// 7	VX.	177	$\overline{\mathcal{X}}$	N.	ホン	Ŵ	~	$\pi \nu$	NX	大ズ	八八	NŬ	J.	$\sim \sim$	\sim
			W	$\sim \sim$	$\sim \sim \sim$	\sim	V Å		$\overline{\mathcal{N}}$	$\sim \sim$	$\sim \sim$	$\sim \sim$	V		NV		\sim	$\sim \sim$	\sim	\overline{NN}			Ŵ	Ŵ	$\nabla \nabla$	$\sim \sim$	\sim	$\overline{\mathcal{N}}$
VNVV		\sqrt{N}	\sqrt{X}	S		NA	4	\sqrt{N}		$\Delta \Delta$	$\Delta \nabla$	$\sqrt{\nabla}$	$\sqrt{2}$	X V	T P	NR	NZ		VZ	$_{YY}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$\sim \sim$	$\Delta \Delta$	$\Delta \Delta$		\sqrt{T}
$\langle \vee \times \vee \rangle$	$ \times \times \times $	\leftrightarrow	$(\forall \mathcal{R})$	$* \times$	\leftrightarrow	\times	~~~	ΥXY	ж¥	XY		<**	Ŷ	œ	\leftarrow	ĸХ	YЖ	\rightarrow		++	**	\leftrightarrow	×х	\times	\sim	×Υ	\times	⊬₩
∖⋇≀≫КҮ	\times \times \times	5642	~~~	XX	YX	XXX	××	YЖ	$\times \times$	77	⇔	\Leftrightarrow	⇔>	×Υ	\times	\times	1	YX	×	$\star \varkappa$	*	K AR	\times	⇔≻	×Υ	∽	\leftrightarrow	\leftrightarrow
***	$\rightarrow \gamma \times$.1×		**	エト	**	⇔	*	≫∼	**	≪∽	ᢣ	\times	/>*	<+≫	*~*	~	\times	\sim	≫	\rightarrow	K \	≫	~~	$\prec >$	×	*	ᆇ
	***	7-1-3	1/7	*	~	× L	\rightarrow			*~	52	≫	\rightarrow	\leq	\rightarrow	37	≺≥		X	\prec	1>	1	\rightarrow	z	~	\neq	~~	
	20	\sim		\triangleleft	13	~~	$ \rightarrow $	~	57			S		\rightarrow	2	~	D	7	Ď	\sim		V	~	V	~	\checkmark	~~	\triangleleft
		\sim		<u> </u>	\sim		200	\sim		~		\sim	\sim	22	-1	\sim	\sim	\searrow	~	\sim	\sim	\sim	\sim			~	_	-7
~~~		$\rightarrow$			A	$\sim$				-	$\sim \sim$			-	~ ` `	~~		1-		~	$\sim$	-	_	-		~	~	-

#### Primary mesh



#### Dual mesh

#### Rossby-Haurwitz Wave



5 days



14 days



#### An example of bespoke mesh



*Source: Gorski et al Astrophysical Journal 2005* 

# Oct.N80 and reduced meshes





#### Oct.N80 fine and 'odd' reduced meshes

# Reduced Mesh – Baroclinic Instability



Day 8, horizontal velocity and potential temperature





## **Delaunay Triangulation**



How to connect a given set of points?



Create Voronoi polygons, i.e. The construct that assigns to each point the area of the plane closer to that point than to any other point in the set. A side of a Voronoi polygon must be midway between the two points which it separates



If all point pairs of which have some boundary in common are joint by straight lines, the result is a triangulation of the convex hull of the points.

#### Delaunay Triangulation mesh constructed from the reduced Gaussian grid points





Geometry conforming meshes

#### Meshing techniques for mesh adaptivity

-for lower order elements are:

point enrichment (h-refinement),

#### and automatic regeneration



#### The Edge Based Finite Volume Discretisation



Edges

Median dual computational mesh Finite volumes

#### Geospherical framework



(Szmelter & Smolarkiewicz, J. Comput. Phys. 2010)

#### A stratified 3D mesoscale flow past an isolated hill



Reduced planets (Wedi & Smolarkiewicz, QJR 2009)

# Stratified (mesoscale) flow past an isolated hill on a reduced planet

#### 4 hours





Hunt & Snyder J. Fluid Mech. 1980; Smolar. & Rotunno, J. Atmos. Sci. 1989; Wedi & Smolar., QJR 2009

## Fr=0.5

#### $Ro \gg 1$

 $Ro \gtrsim 1$ 



Smith, Advances in Geophys 1979; Hunt, Olafsson & Bougeault, QJR 2001

# Multigrid techniques







# Multigrid using Atlas

### Octahedral 16 mesh:

## Remove odd latitudes

computational domain

Single level of mesh coarsening



# Nonhydrostatic Boussinesq mountain wave

Szmelter & Smolarkiewicz , Comp. Fluids, 2011

$$\begin{split} \nabla \bullet (\mathbf{V}\rho_o) &= 0 \ ,\\ \frac{\partial \rho_o V^I}{\partial t} + \nabla \bullet (\mathbf{V}\rho_o V^I) &= -\rho_o \frac{\partial \tilde{p}}{\partial x^I} + g\rho_o \frac{\theta'}{\theta_o} \delta_{I2} \\ \frac{\partial \rho_o \theta}{\partial t} + \nabla \bullet (\mathbf{V}\rho_o \theta) &= 0 \ . \end{split}$$



 $NL/U_{o} = 2.4$ 

Comparison with the EULAG's (structured mesh) results --- very close with the linear theories (Smith 1979, Durran 2003): over 7 wavelenghts : 3% in wavelength; 8% in propagation angle; wave amplitude loss 7%  $\frac{\partial \Phi}{\partial t} + \nabla \bullet (\mathbf{V} \Phi) = \mathbf{R}$ 

# Gravity wave breaking in an isothermal stratosphere

 $\nabla \cdot (\bar{\rho}\mathbf{v}) = 0$ ,  $\frac{D\theta}{Dt} = 0$ ,  $\frac{D\mathbf{v}}{Dt} = -\nabla \Phi' - g\frac{\theta'}{\bar{\rho}}$ , Lipps & Hemler  $\nabla \cdot (\bar{\rho}\bar{\theta}\mathbf{v}) = 0$ ,  $\frac{D\theta}{Dt} = 0$ ,  $\frac{D\mathbf{v}}{Dt} = -c_p\theta\nabla\pi' - \mathbf{g}\frac{\theta'}{\bar{\rho}}$ Durran  $D\psi/Dt = R$ by combining  $\rho^* \cdot (D\psi/Dt = R)$  with  $\psi \cdot (\nabla \rho^* \mathbf{v} = 0)$ ,  $\frac{\partial \rho^* \psi}{\partial t} + \nabla \cdot (\rho^* \mathbf{v} \psi) = \rho^* R \; .$  $\psi_{i}^{n+1} = \mathcal{A}_{i}(\tilde{\psi}, \mathbf{v}^{n+1/2}, \rho^{*}) + 0.5\delta t R_{i}^{n+1}$  $S_{\theta} = d \ln \bar{\theta} / dz = 4.4 \cdot 10^{-5} \text{ m}^{-1}$  $\mathbf{v}_{e} = (u_{e}, 0) \quad u_{e} = U = 20 \mathrm{ms}^{-1}$ 

(Prusa et al JAS 1996, Smolarkiewicz & Margolin, Atmos. Ocean 1997

Klein, Ann. Rev. Fluid Dyn., 2010, Smolarkiewicz et al Acta Geoph 2011) Isentropes at t = 60, 90, and 120 min.



Smolarkiewicz et al Acta Geoph 2011

60.

45.

15.

0.

.06 (km) 20. z Gravity wave breaking in an isothermal stratosphere

Nonhydristatic Edge-Based NFT



#### Static mesh adaptivity with MPDATA based error indicator

#### Schär Mon. Wea. Rev. 2002





Coarse initial mesh 80x45 = 3600 points and solution



Adapted mesh 8662 points and solution

Szmelter et al JCP 2015

1121192 Cartesiandx=100692533 Distorted prismsdx=100-400441645 tetradx=50 -450

Stratified flow past a steep isolated hill









#### Stratified flow past a steep isolated hill

Hunt & Snyder JFM 1980 Smolarkiewicz & Rotuno JAS 1989



7.6

#### The effect of critical levels on stratified flows past an axisymmetric mountain



a = 5000 m,  $h(r) = h_0 \left(1 + \frac{r^2}{a^2}\right)^{-\frac{3}{2}}$ ,  $r \equiv \sqrt{x^2 + y^2}$ 

Szmelter et. al. JCP 2015

**Prismatic mesh** 

$$\tilde{z}_{i,k} = \tilde{z}_{i,k-1} + \delta \tilde{z}_k$$
$$\tilde{z}_{i,k} = \tilde{z}_{i,k} \left( 1 - \frac{h_i}{H} \right) + h_i$$



Triangular surface mesh

#### The effect of critical levels on stratified flows past an axisymmetric mountain



ĥ =	$=\frac{h_0N}{m}$	$T = \frac{tU_0}{}$
	$U_0$	a

Experiment	Ri	$\hat{h}$	$D/D_{0}(6)$	$D/D_{0}(10)$	$D/D_0(18)$
LS2 (linear)	1	0.05	0.923	0.954	0.997
LS3 (nonlinear)	1	0.1	0.983	1.02	1.160
LS4 (nonlinear)	1	0.2	1.04	1.15	1.26
LS5 (nonlinear)	1	0.3	1.09	1.22	1.23

Grubisic and Smolarkiewicz J. Atmos Sci 1997

#### The effect of critical levels on stratified flows past an axisymmetric mountain







Fig. 13. As in Fig. 12 but at T=18.



the isentrope with undisturbed height  $z = 0.94z_c$  LS5.



Szmelter et al JCP 2015



Stratified flow past two spheres, Fr=0.625, Re=300



Fr=0.625 Tilted configuration



*Fr=0.625* 



Cocetta et al PoF 2021

#### Smolarkiewicz et al JCP 2013



#### **Selected references for further details**

Cocetta F, Szmelter J, Gillard M (2021) Simulations of stably stratified flow past two spheres at Re=300, *Physics of Fluids*, 334, 046602.

Smolarkiewicz, PK, Szmelter, J, Xiao, F (2016) Simulation of all-scale atmospheric dynamics on unstructured meshes, *Journal of Computational Physics*, *322*,pp.267-287

Szmelter, J, Zhang, Z, Smolarkiewicz, PK, (2015) An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution, *Journal of Computational Physics*, 249,pp.363-381

Smolarkiewicz, PK, Szmelter, J, Wyszogrodzki, AA (2013) An unstructured-mesh atmospheric model for nonhydrostatic dynamics, *Journal of Computational Physics*, 254,pp.184-199

Smolarkiewicz, PK and Szmelter, J (2011) A Nonhydrostatic Unstructured-Mesh Soundproof Model for Simulation of Internal Gravity Waves, *Acta Geophysica, 59(6)*,pp.1109-1134

Szmelter, J and Smolarkiewicz, PK (2011) An edge-based unstructured mesh framework for atmospheric flows, *Computers and Fluids*, 46(1), pp.455-460.

Szmelter, J and Smolarkiewicz, PK (2010) An edge-based unstructured mesh discretisation in geospherical framework, *Journal of Computational Physics*, 229, pp.4980-4995.

Smolarkiewicz, PK and Szmelter, J (2009) <u>Iterated upwind schemes for gas dynamics</u>, *Journal of Computational Physics*, 228(1), pp.33-54

Smolarkiewicz, PK and Szmelter, J (2008) <u>An MPDATA-based solver for compressible flows</u>, *International Journal for Numerical Methods in Fluids*, 56(8), pp.1529-1534

Szmelter, J and Smolarkiewicz, PK (2006) <u>MPDATA error estimator for mesh adaptivity</u>, *International Journal for Numerical Methods in Fluids*, 50(10), pp.1269-1293

Smolarkiewicz, PK and Szmelter, J (2005) <u>MPDATA: An Edge-Based Unstructured-Grid Formulation</u>, *Journal of Computational Physics*, 206(2), pp.624-649

Zienkiewicz OC, Taylor RL, The Finite Element Method,5th Ed, Butterworth-Heineman, (2000)

Szmelter, J, Marchant, MJ, Evans, A, Weatherill, NP (1992) Two-dimensional Navier-Stokes Equations -

Adaptivity on Structured Meshes, Comp. Meth. Appl. Mech. Eng, 101, pp.355-368.

Evans, A, Marchant, MJ, Szmelter, J, Weatherill, NP (1991) Adaptivity for Compressible Flow Computations Using Point Embedding on 2-D Structured Multiblock Meshes, *International Journal for Numerical Methods in Engineering*, 32, pp.896-919

Wu, J, Zhu, JZ, Szmelter, J, Zienkiewicz, OC (1990) Error Estimation and Adaptivity in Navier-Stokes Incompressible Flows, *Computational Mechanics*, 6, pp.259-270.