Earth System Models – From Equations to Exascale Supercomputers

Peter Dueben

Head of the Earth System Modelling Section

The strength of a common goal

Outline – From Equations to Exascale Supercomputers

- 1. Deriving equations
- 2. From equations to models
- 3. From models to supercomputing
- 4. State of the art: How good are we? And what's next?

How to derive the equations?

Let's consider a volume of a fluid with a specific density $\rho(x,y,z,t)$ and velocity $\mathbf{u}(x,y,z,t)$

Resume:

We obtain the continuity equation of mass by evaluating mass conservations

world \rightarrow continuous math description

The total mass inside the volume is given by

$$M=\int_V \rho \ dV.$$

The change of mass in the volume is given by:

$$\frac{dM}{dt} = \frac{d}{dt} \int_{V} \rho \ dV = \int_{V} \frac{d\rho}{dt} \ dV.$$
(1)

We can also evaluate the change of mass by looking at fluxes through the boundaries:

$$\frac{dM}{dt} = -\int_{S} \rho \mathbf{v} \ d\mathbf{S} = -\int_{V} \nabla \cdot (\rho \mathbf{v}) \ dV.$$
(2)

(1) and (2) together form the mass continuity equation

$$\int_{V} \frac{d\rho}{dt} \, dV + \int_{V} \nabla \cdot (\rho \mathbf{v}) \, dV = 0.$$

If we shrink the volume to an infinitesimal small area $(\lim_{\Delta x \to 0}, \lim_{\Delta y \to 0}, \lim_{\Delta z \to 0})$ we end up with the differential form of the continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = \mathbf{0}.$$

We know the equations, so what's the problem?

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \,\mathbf{v} = -\frac{\nabla \rho}{\rho} + \nu \nabla^2 \mathbf{v} + \frac{\mathbf{F}}{\rho} - 2\mathbf{\Omega} \times \mathbf{v}$$
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = \mathbf{0}$$

The equations are non-linear and we cannot solve them...

How do we still make weather predictions?

world \rightarrow continuous math description \rightarrow discretised equations

Finite difference method

We discretise our function f(x) at specific grid points f(0), $f(\Delta x)$, $f(2\Delta x)$...

Derivatives are described by differential quotients

 \rightarrow There are plenty of different discretisation schemes

We need to discretise in both space and time

Popular grids

Yang

See also Annual Seminar 2020, ECMWF

https://www.ecmwf.int/en/learning/workshops/annual-seminar-2020

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Slide from Nils Wedi

Yin-Yang

A cubic octahedral grid

(Wedi et al, 2014, 2015)

Atlas: a library for NWP and climate modelling

Spectral discretisation in the Integrated Forecast System (IFS)

FFT: Fast Fourier Transform, LT/FLT: Legendre Transform

The equations of motion can also be evaluated for spherical harmonics.

There are plenty of options to discretise... and they are used

Short name	Equation set	Prognostic variables	Horizontal grid	Numerical method	Horizontal staggering
ACME-A	H/NH	$\boldsymbol{u}_{\mathrm{h}}, w, \rho_{\mathrm{s}}, \rho_{\mathrm{s}}\theta, \Phi, \rho_{\mathrm{s}}q_{i}$	Cubed sphere (Sect. 3.2)	SE	A grid
CSU	NH (unified)	ζ , D, w, $p_{\rm s}$, $\theta_{\rm v}$, q_i	Geodesic (Sect. 3.4)	FV	Z grid
DYNAMICO	H/NH	$\boldsymbol{v}_{\mathrm{h}}, \rho_{\mathrm{s}}w, \rho_{\mathrm{s}}, \rho_{\mathrm{s}}\theta_{\mathrm{v}}, \Phi, \rho_{\mathrm{s}}q_{i}$	Geodesic (Sect. 3.4)	FV	C grid
FV ³	NH	$\boldsymbol{u}_{\mathrm{h}}, w, \rho_{\mathrm{s}}, \rho_{\mathrm{s}}\theta_{\mathrm{v}}, \Phi, \rho_{\mathrm{s}}q_{i}$	Cubed sphere (Sect. 3.2)	FV	D grid
FVM	NH (D)	$ ho_{\rm d}, \boldsymbol{u}_{\rm h}, w, \theta', q_i$	Octahedral (Sect. 3.6)	FV	A grid
GEM	NH	$\boldsymbol{u}_{\mathrm{h}}, w, \dot{\boldsymbol{\zeta}}, T_{\mathrm{v}}, p, q_{i}$	Yin-Yang (Sect. 3.7)	FD	C grid
ICON	NH (D)	$\boldsymbol{u}_{\mathrm{h}}, w, \rho, \theta_{\mathrm{v}}, \rho q_{i}$	Icosahedral triangular (Sect. 3.3)	FV	C grid
MPAS	NH	$ \rho_{\rm d} \boldsymbol{u}_{\rm h}, \rho_{\rm d} w, \rho_{\rm d}, \rho_{\rm d} \theta_{\rm v}, \rho_{\rm d} q_i $	CCVT (Sect. 3.5)	FV	C grid
NICAM	NH	$\rho \boldsymbol{u}_{\mathrm{h}}, \rho w, \rho, \rho e, \rho q_{i}$	Geodesic (Sect. 3.4)	FV	A grid
OLAM	NH (D)	$\rho \boldsymbol{u}_{\mathrm{h}}, \rho w, \rho, \rho \theta_{\mathrm{il}}, \rho q_{i}$	Geodesic (Sect. 3.4)	FV	C grid
Tempest	NH	$\boldsymbol{u}_{\mathrm{h}}, w, \rho, \rho \theta_{\mathrm{v}}, \rho q_{i}$	Cubed sphere (Sect. 3.2)	SE	A grid

DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models, Ullrich et al 2016

IFS dynamical core options at ECMWF

Model aspectIFS-FVMIFS-STIFS-ST (NH option)Equation systemfully compressiblehydrostatic primitivefully compressiblePrognostic variables $\rho_d, u, v, w, \theta', \varphi', r_V, r_I, r_r, r_i, r_s$ $\ln p_s, u, v, T_V, q_V, q_I, q_r, q_i, q_s$ $\ln \pi_s, u, v, d_4, T_V, \hat{q}, q_V, q_I, q_r, q_i, q_s$ Horizontal coordinates λ, ϕ (lon-lat) λ, ϕ (lon-lat) λ, ϕ (lon-lat) λ, ϕ (lon-lat)Vertical coordinategeneralized heighthybrid sigma-pressurehybrid sigma-pressureHorizontal discretizationunstructured finite volume (FV)spectral transform (ST)spectral transform (ST)Vertical discretizationstructured FD-FVstructured FEstructured FD or FEHorizontal staggeringco-locatedco-locatedco-locatedVertical staggeringco-locatedco-locatedco-locatedHorizontal gridoctahedral Gaussian or arbitraryoctahedral Gaussianoctahedral GaussianTime stepping scheme2-TL SI2-TL constant-coefficient SI2-TL constant-coefficient SI			currently operational	
Equation systemfully compressiblehydrostatic primitivefully compressiblePrognostic variables $\rho_d, u, v, w, \theta', \varphi', r_V, r_l, r_r, r_i, r_s$ hydrostatic primitivefully compressibleHorizontal coordinates λ, ϕ (lon-lat)ln $p_s, u, v, T_V, q_V, q_l, q_r, q_i, q_s$ h $\pi_s, u, v, d_4, T_V, \hat{q}, q_V, q_l, q_r, q_i, q_s$ Vertical coordinategeneralized heighthybrid sigma-pressurehybrid sigma-pressureHorizontal discretizationunstructured finite volume (FV)spectral transform (ST)spectral transform (ST)Vertical discretizationstructured FD-FVstructured FEstructured FD or FEHorizontal staggeringco-locatedco-locatedco-locatedVertical staggeringco-locatedco-locatedco-locatedVertical gridoctahedral Gaussian or arbitraryoctahedral Gaussianoctahedral GaussianTime stepping scheme2-TL SI2-TL constant-coefficient SI2-TL constant-coefficient SI	Model aspect	IFS-FVM	IFS-ST	IFS-ST (NH option)
Advestion non-concernative CI non-concernative CI	Equation system Prognostic variables Horizontal coordinates Vertical coordinate Horizontal discretization Vertical discretization Horizontal staggering Vertical staggering Horizontal grid Time stepping scheme	fully compressible ρ_{d} , u , v , w , θ' , φ' , r_{v} , r_{l} , r_{r} , r_{i} , r_{s} λ , ϕ (lon–lat) generalized height unstructured finite volume (FV) structured FD–FV co-located co-located octahedral Gaussian or arbitrary 2-TL SI	hydrostatic primitive ln p_s , u , v , T_v , q_v , q_l , q_r , q_i , q_s λ , ϕ (lon–lat) hybrid sigma–pressure spectral transform (ST) structured FE co-located co-located octahedral Gaussian 2-TL constant-coefficient SI	fully compressible $\ln \pi_s$, u , v , d_4 , T_v , \hat{q} , q_v , q_l , q_r , q_i , q_s λ , ϕ (lon–lat) hybrid sigma–pressure spectral transform (ST) structured FD or FE co-located co-located, Lorenz octahedral Gaussian 2-TL constant-coefficient SI with ICI

Richardson's forecast factory, 1922

So let's just discretise the equations and all problems are solved...?

Sketch by A. Lannerback (© Dagens Nyheter, Stockholm) Found at http://mathsci.ucd.ie

Why is it difficult to predict the weather?

- The Earth is huge, resolution is limited and we cannot represent all important processes within model simulations
- We do not know the exact initial conditions
- The Earth System shows "chaotic" dynamics which makes it difficult to predict the future based on equations
- All Earth System components (atmosphere, ocean, land surface, cloud physics,...) are connected in a non-trivial way
- Some of the processes involved are not well understood

The Earth system as a multi-scale problem

From Dickey (2003)

Range of fast and slow waves ...

Ocean model - resolution

Hewitt et al. (2017)

Hallberg (2013)

Ocean – Land – Atmosphere – Sea ice

Earth System model complexity

Development of Climate Models

The Earth system as a coupled system

Analysis						Observations				
Northern hemisphere Southern		Southern hemisphere	Tropics			Northern hemisphere	Southern hemisphere	Tropics		
	Forecast day Forecast day Forecast day			Loval	Forecast day	Forecast day	Forecast day			
Parameters	(hPa)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		(hPa)	1 2 3 4 5 6 7 8 9 101112131415	5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
	100					100				
Coonstantial	250					250				
Geopotential	500					500				
	850					850				
	100					100				
Temperature	250					250				
	500					500				
	850					850				
	100					100				
Wind	250					250				
Wind	500					500				
	850					850				
Relative humidity	200					200				
	700					700				
2 m temperature										
10 m wind										
Significant wave height										

Symbol legend: for a given forecast step...

- SP better than DP statistically significant with 99.7% confidence
- riangle SP better than DP statistically significant with 95% confidence

SP better than DP statistically significant with 68% confidence no significant difference between DP and SP

SP worse than DP statistically significant with 68% confidence

 \bigtriangledown SP worse than DP statistically significant with 95% confidence

▼ SP worse than DP statistically significant with 99.7% confidence

Dueben et al. ECMWF Newsletter 2018

Beyond the grid...

- Not all processes can be discretised on a given grid
- Sub-grid-scale processes need to be parametrised including very important processes of the Earth system such as clouds, boundary layer turbulence, gravity wave drag, ocean eddies, land/snow/ice processes...

		Sustained performance										
		200 megaflops	500 megaflops	250 gigaflops	4 teraflops	250 teraflops	د.	ć				
	100 m					shallo	to w co	ornados, nvection	, ,]			
	1 km					deep surfa	conve ce dra	ection, Ig				
ion	10 km		sharp frontal gradients, thunderstorms									
solut	25 km		medium mountain ranges, severe storms									
Re	50 km		tropical cyclones, major floods									
	100 km	we fro	weather regimes, fronts, squall lines									
	250 km	baroclinic waves, synoptic scales										
		00 megaflops	1 gigaflops	1 teraflops	20 teraflops	4 petaflops	exascale	с.	•			
	Peak performance											

Adjusted from Neumann et al. Phil. Trans. A 2019

HPC and HPDA for weather and climate modelling

Bauer et al. ECMWF SAC paper 2019

Current challenges in high performance computing?

- Individual processors will not be faster
 - \rightarrow Parallelisation / power consumption / hardware faults
- Hardware is heterogeneous \rightarrow CPUs / GPUs / FPGAs / ASICs
- Machine learning has strong impact on hardware development
 → High floprate at low precision
- I/O is becoming a nightmare and the optimisation of data movement will be the key

Source: venturebeat.com

Energy-aware computing

- All 51 ENS members consume about 300KWh, approximately the same as a single (~5km) global 10-day forecast
- The energy consumption of one ENS member is equivalent to leaving the Kettle on for 2 hours !

Time-to-Solution vs. Energy-to-Solution

http://ukbusinessblog.co.uk

Beyond the grid...

- Not all processes can be discretised on a given grid
- Sub-grid-scale processes need to be parametrised including very important processes of the Earth system such as clouds, boundary layer turbulence, gravity wave drag, ocean eddies, land/snow/ice processes...

		Sustained performance										
		200 megaflops	500 megaflops	250 gigaflops	4 teraflops	250 teraflops	د.	ć	•			
	100 m					shallo	to w co	ornados, nvection	, ,]			
	1 km					deep surfa	conve ce dra	ection, Ig				
ion	10 km		sharp frontal gradients, thunderstorms									
solut	25 km		medium mountain ranges, severe storms									
Re	50 km		tropical cyclones, major floods									
	100 km	we fro	weather regimes, fronts, squall lines									
	250 km	baroclinic waves, synoptic scales										
		00 megaflops	1 gigaflops	1 teraflops	20 teraflops	4 petaflops	exascale	с.	•			
	Peak performance											

Adjusted from Neumann et al. Phil. Trans. A 2019

But progress in km-scale modelling is tough...

Compute power?

 $9 \text{ km} \rightarrow 1 \text{ km} \rightarrow \text{Factor } 9^3 = 729 \text{ compute power}$

Waiting for Moore's law. $\rightarrow 2^9 = 512 \rightarrow \text{Let's wait for 18 years?}$

Data and storage? 9km: 6,599,680 points x 137 levels x 10 variables \rightarrow 9 billion points \rightarrow > 0.5 TB

1.5km: 256,800,000 points x 137 levels x 10 variables \rightarrow 352 billion points \rightarrow > 20 TB

Uff...

TOP500 LIST - JUNE 2023

R_{max} and R_{peak} values are in PFlop/s. For more details about other fields, check the TOP500 description.

R_{peak} values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into account the Turbo CPU clock rate where it applies.

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,824,768	238.70	304.47	7,404
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096

Destination Earth to the rescue...

Check for updates
 Comment

A digital twin of Earth for the green transition

For its green transition, the EU plans to fund the development of digital twins of Earth. For these twins to be more than big data atlases, they must create a qualitatively new Earth system simulation and observation capability using a methodological framework responsible for exceptional advances in numerical weather prediction.

Peter Bauer, Bjorn Stevens and Wilco Hazeleger

The digital revolution of Earth-system science

Peter Bauer[®]¹[⊠], Peter D. Dueben¹, Torsten Hoefler², Tiago Quintino[®]³, Thomas C. Schulthess⁴ and Nils P. Wedi¹

Computational science is crucial for delivering reliable weather and climate predictions. However, despite decades of high-performance computing experience, there is serious concern about the sustainability of this application in the post-Moore/ Dennard era. Here, we discuss the present limitations in the field and propose the design of a novel infrastructure that is scalable and more adaptable to future, yet unknown computing architectures.

The digital revolution to allow for km-scale models

More realistic at local scale

More realistic at global scale

Better results via a coupled model system

Global km-scale models improve realism of simulations significantly and are now becoming available.

The digital revolution to allow for km-scale models

Propagation characteristics of the Madden-Julian Oscillation and composition from (a) observations, (b) IFS 9km simulation and (c) IFS 4.4km simulation with FESOM

next GEMS

Andreas Mueller and Philippe Lopez

Rackow et al. GMDD 2024 **C**ECMWF

Current Systems

CECMWF

DestinE's Digital Twin Engine

Framework for Digital Twin Workflows

- High Performance Computing adaptation / Digital Twin optimisation
- IO and data workflows
- Software management, controlling workflows, cloud environments
- Visualization

A Game Engine type framework but for Earth Systems...

HPC Medicine List of ingredients: workflow manager, data structures/parallelization library, model plugin architecture for interactive capabilities, key-value object storage with semantic, data access API, IO-Server API, on-the-fly post-processing API, data notification system, data cube API, visualisation & rendering services

Global storm resolving models

Big steps toward operational use of global storm resolving simulations

- Month-long integration of a number of models at < 5 km grid-spacing as part of DYAMOND
- Season-long integrations of the IFS model at 1.45 km grid-spacing on Summit as part of INCITE
- Year-long coupled ICON integration with 5 km grid-spacing
- 1024-member ensemble data assimilation with 3.5-km grid-spacing with NICAM
- NextGems and DestinE coming

But rather a digital family than digital twins? Figures by Roland Schrödner and Thibaut Dauhut

Are our current models up for the challenge?

Wide variation. The response patterns of clouds and precipitation to warming vary dramatically depending on the climate model, even in the simplest model configuration. Shown are changes in the radiative effects of clouds and in precipitation accompanying a uniform warming (4°C) predicted by four models from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) for a water planet with prescribed surface temperatures.

Stevens and Bony, Science, 2013.

A story of uncertainties

Tebaldi et al. Earth System Dynamics 2021

Sources of uncertainty: accounting for model uncertainty

Slide from Sarah-Jane Lock

What about hybrid machine-learned physics-based models?

What is the best way to combine machine learning and physical models?

One of the general assumptions of the quiet revolution and physical modelling:

The large scales of the model simulations are well resolved and therefore correct.

The small scales of the model simulations are not well resolved and therefore incorrect.

 \rightarrow Higher resolution leads to better predictions

However... Machine learned models are coarse, fail to represent small scales, and are still competitive.

\rightarrow Get best of both worlds by nudging large scales of machine learned models to the physical models.

What is the best way to combine machine learning and physical models?

What about hybrid models? – see NeuralGCM from Google

Kochkov et al., *Nature* **632**, 1060–1066 (2024)

What is the best way to combine machine learning and physical models?

Machine learned models can now also do AMIP simulations.

Kochkov et al., *Nature* **632**, 1060–1066 (2024)

Change of gear in Earth system modelling

Workmode of 2010:

- Earth system models consist of 1,000,000 lines of Fortran Code
- Code is shared via tarballs, data is stored locally
- Models run on CPUs and Moore's law is still working

Slide from Estela Suarez

Workmode of 2020:

- A team of software developers is needed to use heterogeneous hardware
- Models start to run on GPUs, Moore's law is dying
- Data is stored locally but meta information is available online
- Online code repositories are used to control quality and share model code

Tim Palmer's A380 comparison

Workmode of 2030:

- Machine learning models of 10,000 lines of Python code compete with conventional models
- There will hundreds of machine learning applications using a couple of Foundation models
- HPC is federated
- Data is federated

- Equations \rightarrow Discrete Models \rightarrow Supercomputing
- Numerical models can act as a virtual laboratory for weather and climate
- Numerical models are not perfect and need to be evaluated critically with quantified uncertainties

We need your help to build the models of the future!