# **Developing next-generation weather models in Python**

Christian Kühnlein





#### After decades of steady progress, we are seeing challenges and opportunities



#### After decades of steady progress, we are seeing challenges and opportunities



#### After decades of steady progress, we are seeing challenges and opportunities



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

## Preparing the existing Integrated Forecasting System at ECMWF for GPUs

#### **Standalone components**

![](_page_4_Figure_2.jpeg)

The front-end remains in Fortran and hybrid GPU/CPU execution is enabled mostly by means of directives/pragmas.

**ECMUF** EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Source-to-source

#### **The Integrated Forecasting System in Destination Earth**

![](_page_5_Figure_1.jpeg)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Slide courtesy Nils Wedi, ECMWF

#### Two ECMWF model & software development streams

Operational IFS: ECMWF software efforts are in full swing to prepare the spectral-transform IFS forecast model with the SISL (semi-implicit semi-Lagrangian) integration and the IFS physical parametrization package for hybrid CPU & GPU execution. The Loki automatic code translation tool is developed and applied to restructured model components and various technical infrastructure packages such as ECMWF Atlas library. The front-end remains in Fortran and hybrid execution is enabled mostly by means of directives/pragmas.

Future fully portable high-resolution model for the IFS developed on longer time scale: We build on FVM and develop the forecast model entirely in Python with the domain-specific GT4Py framework and leverage also other libraries/tools. This project happens in close collaboration with partners at CSCS, ETH Zurich and MeteoSwiss.

![](_page_6_Picture_3.jpeg)

#### **Future model development and coding practices**

![](_page_7_Figure_1.jpeg)

Inspired by slides from O. Fuhrer (MeteoSwiss)

**ECMUF** EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

#### **Future model development and coding practices**

![](_page_8_Figure_1.jpeg)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

## GT4Py high-performance framework in Python

- The goal is to provide a productive programming environment to write and maintain performant weather and climate model code
- https://github.com/GridTools/gt4py, https://pypi.org/project/gt4py/ (public, open source, BSD-3 license)

![](_page_9_Picture_3.jpeg)

GT4Py (GridTools for Python) works as an optimizing compiler for various backends

- Code generation optimized for a specific architecture
- Backend selects HPC implementation strategy (e.g., parallelization, memory layout, data flows)
- Backends for new technologies can be added without any change to the application
- DaCe (Data-Centric Parallel Programming, Ben-Nun et al. 2019, 2022) framework takes key role in optimization

## **GT4Py high-performance framework in Python**

![](_page_10_Picture_1.jpeg)

![](_page_10_Figure_2.jpeg)

#### □ Two main versions of GT4Py

- gt4py.cartesian: established version supporting 3D structured (I, J, K) grids
- gt4py.next: new version additionally supporting horizontally unstructured (IJ, K) grids (ongoing development)

## **Domain-specific GT4Py framework in Python**

**GT4Py** is embedded in the **Python** eco-system

- Versatile, portable, productive programming language
- Broad selection of modules/libraries

**TensorFlow** 

learn

Keras

**O** PyTorch

- Enables new user and developer workflows
- Low barrier of entry for domain scientists and academia
- Favourable choice with respect to ML/AI applications

![](_page_11_Picture_7.jpeg)

## **GT4Py domain-specific library**

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_2.jpeg)

- > Comprehensive atmospheric model applications are rewritten/developed in Python with GT4Py
  - Pace (Ben-Nun et al. 2022; Dahm et al. 2023) is the GT4Py.cartesian implementation of the FV3GFS/SHiELD model of GFDL and NOAA

https://github.com/NOAA-GFDL/pace

![](_page_12_Picture_6.jpeg)

• ICON4Py is the GT4Py.next implementation of the ICON model at MeteoSwiss and in the EXCLAIM project at ETH Zurich

https://github.com/C2SM/icon4py

![](_page_12_Picture_9.jpeg)

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederazion svizza

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

![](_page_12_Picture_13.jpeg)

![](_page_12_Picture_14.jpeg)

## **GT4Py domain-specific library**

![](_page_13_Picture_1.jpeg)

- **PMAP** (Portable Model for Multi-Scale Atmospheric Prediction) is an advancement of the **FVM** model from ECMWF. Currently two configurations exist:
  - PMAP-LES is structured grid LES model currently using GT4Py.cartesian
  - > PMAP-GO is Global horizontally unstructured with the Octahedral grid using GT4Py.next

#### PMAP-GO: Global FVM on Octahedral grid fully in Python with GT4Py.next

![](_page_14_Figure_1.jpeg)

### **Enabling new global grids and numerical schemes in PMAP**

![](_page_15_Picture_1.jpeg)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

0

#### **Developing PMAP-LES LAM functionalities for member states and research**

![](_page_16_Figure_1.jpeg)

- LAM (Limited-Area Model) functionalities relevant for some of ECMWF's member states and ETH Zurich research
- Structured quadrilateral grid, rotated spherical coordinates
- Large-eddy simulation (LES) schemes and capabilities (Krieger et al. in prep.; Kühnlein et al. in prep)

![](_page_16_Figure_5.jpeg)

**EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS** 

## Portability and scalability of PMAP on diverse architectures and supercomputers

![](_page_17_Figure_1.jpeg)

- Tested Nvidia vs AMD GPUs, vs CPUs, GridTools vs DaCe GPU backends, 32 vs 64 bit
- Optimization of PMAP, GT4Py and the distributed model using GHEX (Generic exascale-ready library for halo-exchange operations) is an ongoing process!

**EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS** 

## Portable IFS physical parametrizations in Python with GT4Py

- Developed procedures for manually porting IFS physical parametrizations to Python with GT4Py and conducted comprehensive performance study using the CLOUDSC in Ubbiali et al. (<u>https://gmd.copernicus.org/preprints/gmd-2024-92/</u>)
- CLOUDSC CY49R1 ready and coupled, from here each IFS cycle will be updated and validated using the established procedures
- > ecRad porting to Python with GT4Py has started (G. Vollenweider and S. Ubbiali at ETH Zurich)
- Land-surface and other parametrizations will be addressed in 2025-2026, porting will be accelerated by automatic code translation tool Loki

PMAP physics-dynamics interface in Python will enable flexibility and various coupling strategies

![](_page_18_Figure_6.jpeg)

![](_page_18_Picture_7.jpeg)

## Exploring GT4Py for the NWP domain using ECMWF microphysics schemes

![](_page_19_Figure_1.jpeg)

- Performance testing Python implementations of CLOUDSC, simplified nonlinear CLOUDSC2, tangent-linear CLOUDSC2, and adjoint CLOUDSC2 with GT4Py
- > GPU vs CPUs, 64-bit vs 32-bit precision, various GT4Py backends
- Ubbiali et al. (<u>https://gmd.copernicus.org/preprints/gmd-2024-92</u>/)

![](_page_19_Figure_5.jpeg)

#### Exploring GT4Py for the NWP domain using ECMWF microphysics schemes

![](_page_20_Figure_1.jpeg)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

## Exploring GT4Py for the NWP domain using ECMWF microphysics schemes

![](_page_21_Figure_1.jpeg)

Exploring the Python overhead vs time spend in stencils (generated low-level code)

![](_page_21_Picture_3.jpeg)

![](_page_22_Figure_0.jpeg)

The strength of a common goal