

Diagnosing tropical waves

Peter Knippertz, M. Gehne, G. N. Kiladis, K. Kikuchi, A. Rasheeda Satheesh, P. E. Roundy, G. Y. Yang, N. Žagar, J. Dias, A. H. Fink, J. Methven, A. Schlueter, F. Sielmann & M. C. Wheeler

www.kit.edu

The intricacies of identifying equatorial waves

Peter Knippertz¹[©] | Maria Gehne²[©] | George N. Kiladis² | Kazuyoshi Kikuchi³ | Athul Rasheeda Satheesh¹ | Paul E. Roundy⁴[©] | Gui-Ying Yang⁵[©] | Nedjeljka Žagar⁶[©] | Juliana Dias² | Andreas H. Fink¹[©] | John Methven⁷[©] | Andreas Schlueter⁸[©] | Frank Sielmann⁶ | Matthew C. Wheeler⁹[©]

What are tropical waves?

- Zonally propagating, synoptic- to planetary-scale disturbances with frequencies from a few days to several weeks
- Dynamical solutions to linear wave theory ("equatorial waves", *Matsuno 1966*)
 - Kelvin waves (KW)
 - equatorial Rossby waves (ER)
 - mixed-Rossby gravity waves (MRG)
 - inertio-gravity waves (IG)
- Other modes: Tropical disturbances (TDs), Madden-Julian Oscillation (MJO), ...
- Coupling with convection creates link to clouds / rainfall

Solutions to rotating, linearized shallow-water equations on tropical β -plane (D=8m & 90m)

Spatial structures

- Linear modes have theoretical patterns in wind, geopotential and convergence.
- The other modes (TD, MJO etc.) only have empirical patterns!

Why do tropical waves matter?

How to identify tropical waves?

	Broad filter windows (space only)		Narrow filter windows (time & space)		
emphasize spatial characteristics	3DS-HF 3D SPATIAL PROJECTION USING HOUGH FUNCTIONS Žagar et al. (2009b, 2016), Castar Ogrosky & Stechmann (2015, 201 Castanheira (2018)	$ [u.v.\phi] (x.y_n.\sigma_m/p_m) $ AL PROJECTION OUGH FUNCTIONS al. (2009b, 2016), <u>Castanheira</u> & Marques (2015), & <u>Stechmann</u> (2015, 2016), Marques & <u>eira</u> (2018)		FWF-PCF Scalar (x,y_n,t) FREQUENCY-WAVENUMBER FILTERING emphasize USING PARABOLIC CYLINDER FUNCTIONS propagation Gehne & Kleeman (2012), Li & Stechmann propagation (2020) characteris	
	Broad filter windows (
can be applied to short time-series	2DS-PCF 2D SPATIAL PROJECTION USING PARABOLIC CYLINDER FUN Yang et al. (2003), Yang et al. (200 (2013), Ferrett et al. (2020)	u/v/ <mark>ф (x,y_n,t)</mark> CTIONS 07a,b,c), Yang & Hoskins	FWF-FFT FREQUENCY-WAVENUME USING FAST-FOURIER TR/ Takayabu (1994a,b), Who (1999), <u>Kiladis</u> et al. (200	Scalar (x,ÿ,t) BER FILTERING ANSFORM eeler & <u>Kiladis</u> 19), Roundy (2020)	can only be applied to long
	laterna dista filtar uir deux (time 9 anna)				time-series
from Knippertz et al. (2022)	2DS-EOF 2D SPATIAL PROJECTION USING TIME-EXTENDED EMPIRICA Roundy & Schreck (2009), Roundy	OLR (<u>x.y.t</u>) OLR (<u>x.y.t</u>) AL ORTHOGONAL FUNCT. (2012)	FWF-Wavelet FREQUENCY-WAVENUME USING WAVELETS Wong (2009), Kikuchi & W (2014), Dias & <u>Kiladis</u> (20	Scalar (x,y,t) BER FILTERING Wang (2010), Kikuchi D14), Roundy (2018)	

3D Spatial Projection – Hough Functions

3DS-HF *Žagar et al. (2016)*

- Hough Functions (HFs) are 3D solutions of the rotating, linearized shallow-water equations on the sphere
- Full multivariate, instantaneous projection of dynamical fields (u,v,Z)

Restrict zonal wavenumber to $1 \le |\mathbf{k}| \le 15$

Time filtering $(2d \le |T| \le 30d)$ after reprojection into physical space

k

2D Spatial Projection – Parabolic Cylinder Funct.

2DS-PCF Yang et al. (2003)

- Parabolic Cylinder Functions (PCFs) are the meridional basis of solutions of the rotating, linearized shallow-water equations on the tropical β-plane
- Fourier filter for wavenumber $1 \le |\mathbf{k}| \le 15$
- Fourier filter for wave periods $2d \le |T| \le 30d$
- Single-variate, instantaneous projection of dynamical fields (u,v,Z) onto PCFs with fixed meridional scale of 6°

k

2D Spatial Projection – Time-Extended EOFs

2DS-EOF Roundy & Schreck (2009)

- Define empirical wave patterns using past fields of Outgoing Longwave radiation (OLR) and Time-Extended Empirical Orthogonal Functions (EEOFs)
- Use Fast Fourier Transform (FFT) to filter for broad frequency-wavenumber (ω-k) windows specific for individual wave types

Project OLR fields of interest onto EEOFs

FWF-FFT Wheeler & Kiladis (1999)

- Use Fast Fourier Transform (FFT) to filter for narrow ω-k windows specific for individual wave types
- These filter windows have been defined on basis of spectral peaks in OLR
- They can be applied to **any scalar**!
- Average fields meridionally to obtain equator-symmetric (for KW & ER) and -antisymmetric (for MRG) signals

Freq.-Wavenumber Filtering – Wavelets

FWF-waveletKikuchi (2014)

- Use wavelets to filter for narrow ω-k windows specific for individual wave types
- Wavelets allow localization in longitude and time
- They can be applied to **any scalar**!
- Average fields meridionally to obtain equator-symmetric (for KW & ER) and -antisymmetric (for MRG) signals

Freq.-Wavenumber Filtering using PCFs

FWF-PCF Gehne & Kleeman (2012)

- Project fields on Parabolic Cylinder Functions (PCFs) to obtain equatorsymmetric (for KW & ER) and -antisymmetric (for MRG) signals of different meridional wavelength
- They can be applied to **any scalar**!
- Use Fast Fourier Transform (FFT) to filter for narrow ω-k windows specific for individual wave types

Case study 20 February – 20 May 2009

(also discussed in "Year of Tropical Convection" overview paper [*Waliser et al. 2012*])

KIT Unfiltered normalized anomalies – clouds & rain rlsruhe Institute of Technology NOAA broadband OLR **IMERG** precipitation **CERES** narrowband IR MRG 2.5 MR MRG 2.5 2009-03-01 5.2 2.0 2.0 2009-03-15 4.2 1.0 1.0 units ліts л.2 с units 0.5 0.5 2009-04-01 norm. -0.5 g -0.5 g 2009-04-15 2.2 -1.5-1.52009-05-01 1.2 -2.0-2.02009-05-15 -2.5 2.5 0.2 270 90 180 90 180 270 90 180 270

Unfiltered full fields – U wind & divergence

KW – OLR – Randomization

KW – OLR – Comparison of methods

KW – U wind – Comparison of methods

KW – U wind & Z – Comparison of methods

Setting a meridional scale in 2DS-PCF confines signal to inner tropics!

KW – U wind & Z – Comparison of methods

MRG – V wind – Comparison of methods

Explained variance for climatological period 2001–2018

(method is based on squared correlation between wave-filtered signals and variance in raw data [*Schlueter et al. 2019*])

Equator-symmetric variance in OLR

li(frim)

Forecast evaluation

(comparison of model vs. data-driven forecasts based on the BSc thesis of *Marie Müller* at KIT)

5-day forecasts of KW in U_{850hPa} (FWF-FFT)

Conclusions

- Tropical waves shape synoptic- to planetary variability in the tropics with important ramifications for predictability (and data assimilation).
- Here we presented the first ever systematic comparison of the six most common objective identification methods.
- A case study and a climatological analysis show considerable differences with respect to amplitude, spatial scale, and phase speed.
- KW: Frequency-wavenumber filter (FWF) methods show more fine-scale structure and slower propagation than spatial projection methods
- MRG (& ER): Generally large discrepancies between methods
- Combine time-space filtering & spatial projection methods for robust results!
- Think about underlying assumptions when interpreting discrepancies!