Funding: U.S. DOE RGMA Program

Diagnosing Mesoscale Convective Systems in **DYAMOND** Models: **A Feature Tracking** Intercomparison

Zhe Feng Many contributions from coauthors

ECMWF Diagnostics Workshop September 10, 2024

PNNL is operated by Battelle for the U.S. Department of Energy

Motivation

Satellite

- Mesoscale convective systems (MCS) • produce most of the tropical precipitation (Nesbitt et al. 2006; Feng et al. 2021)
- MCS top-heavy heating profiles have • profound impacts on global circulation (Schumacher et al. 2004; Barnes et al. 2015)
- MCS disproportionally contribute to • extreme precipitation (Roca and T. Fiolleau 2020)
- Typical global models struggle to simulate MCS, convection-permitting (**km-scale**) models offer new opportunities to examine how MCSs and extreme precipitation may change in future climate (Prein et al. 2017; 2023)

How close are DYAMOND models to reality?

MCSMIP (MCS tracking method intercomparison)

 Substantial differences in the simulated characteristics of deep convection & MCSs among models (Feng et al. 2023 GRL)

Science Questions:

- How sensitive are the DYAMOND simulated MCS characteristics to different tracker formulations?
- What km-scale model biases are robust among trackers and how do the biases relate to environmental moisture?

Tracking intercomparison methods:

- Use <u>common-resolution</u> OBS and DYAMOND data (~10 km, hourly)
- Follow the same MCS definition:
 - \succ Cold cloud shield > 40,000 km², duration \ge 4 h
 - > **Precipitation** volume > 20,000 km² mm h⁻¹, contains > 10 mm h⁻¹ for \ge 4 h
- 10+ international participating groups currently
 - > 8 trackers submitted tracking results

Feng et al. (2023) GMD

MOAAP (Multi-Object Analysis of Atmospheric Phenomena) tobac (Tracking and Object-based Analysis of Clouds) **simpleTrack** (Threshold-based object tracking algorithm)

- **DL** (Deep-Learning + Tempest Extreme)
- **KFyAO** (Kalman Filter and Area Overlapping)

Models overestimate sensitivity of tropical oceanic precipitation to moisture

- Both phases have large inter-model spread in **PW** and precipitation •
- Most models overestimate precipitation/PW ratio by up to 33%, suggesting models may have higher • sensitivity to moisture than OBS

• Number of MCS may not be a good metrics to compare due to tracker formulation differences

Color patches: MCS masks

simpleTrack

• Frequency of MCS is more amiable to tracker formulation differences

simpleTrack

KFyAO

Model MCS cloud frequency variability is large

Summer

Models are generally skillful in simulating MCS frequency, though intermodal variability is large (up to 3x) •

Ocean

AAP)		AN)	(tok	ac)	(TAMS)	aTrack)	O (DL)	KFYAO)	
0(10)-	0		0	0 (simp	0	00		

e	ncy [W	inter]						_			
	4%	-3%	19%	20%	-6%	11%	-0%]/		100	
	3%	7%	17%	13%	-5%	18%	8%	-		- 80	
	14%	-51%	56%	63%	35%	30%	-73%			60	
	-38%	-27%	-17%	-37%	-32%	-31%	-35%			- 60	(%)
	33%	12%	44%	67%	23%	45%	48%			- 40	Ce
	-63%	-65%	-41%	-60%	-54%	-50%	-57%			- 20	erer
	-76%	-86%	-65%	-71%	-70%	-63%	-73%			- –20	Diff
	-1%	-33%	11%	-6%	-6%	-10%	-10%			40	ative
	-30%	-50%	-14%	-12%	-26%	-4%	-19%			40	Rela
,	227%	282%	198%	297%	100%	200%	244%			- –60	_
	-9%	18%	24%	-21%	-9%	-10%	-16%			- –80	
	-20%	-34%	-6%	-14%	-17%	-4%	-20%			100	1
	~						~		•		

-6%

Models underestimate MCS precipitation amount

- Models generally underestimate MCS precipitation over tropical ocean by 32% ٠
- Biases over tropical land are slightly smaller 14% •

Winter

-40%	-45%	-36%	-32%	-43%	-30%	-40%	100
-23%	-31%	-30%	-26%	-39%	-19%	-26%	- 80
-62%	-82%	-53%	-42%	-52%	-47%	-91%	- 60
-52%	-47%	-41%	-47%	-46%	-43%	-47%	
-29%	-32%	-25%	-12%	-36%	-16%	-20%	- 40 a
-65%	-67%	-53%	-56%	-56%	-51%	-58%	- 20
-87%	-82%	-65%	-61%	-65%	-59%	-70%	20
-20%	-44%	-11%	-17%	-19%	-19%	-23%	-40
-50%	- 64%	-48%	-39%	-53%	-37%	-48%	
20%	33%	-18%	14%	-37%	10%	11%	60
-28%	-28%	-21%	-32%	-29%	-26%	-34%	80
-41%	-49%	-34%	-31%	-36%	-27%	-38%	100
AP) oc	AN) inst	ac) - N	MS) TH	ack) o	DL)	ьO)	•

Models underestimate MCS contribution to total precipitation

Summer Winter (a) MCS Rain Fraction (OBS) [Summer, PyFLEXTRKR] (b) MCS Rain Fraction (OBS) [Winter, PyFLEXTRKR] 60°N 60° 45°N 45°N 80 · 70 ______% 30°N 30°N 60 15°N 15°N 50 g 0° - 40 - 20 - 20 - 20 - 20 15°S 30°S 10 45°S 45°S 60°S 60°S 150°E 180° 120°E 180 180 (c) Model Relative Mean Difference in MCS Rain Fraction [Summer (d) Model Relative Mean Difference in MCS Rain Fraction All Models **-9%** -13% -11% -12% -15% -20% -17% -15% -18% -20% -18% -16% -21% -23% -21% -20% 50 All Models -12% SCREAMv1 40 -5% -11% -7% -5% -11% -13% -11% -10% -9% SCREAMv1 -5% -6% ICON 30 FV3 --9% -11% -14% -14% -12% -13% -13% -11% -15% -17% -18% -16% -6% GEOS 20 **XSHiELD** -14% -14% -19% UM --15% -17% -17% -14% -10% -16% -16% -16% -16% 10 SCREAM -15% -24% -24% -20% -26% -27% -25% -26% SAM -5% -12% -11% -14% -18% -16% -16% GRIST -10 D -16% -10% -12% -12% -11% NICAM 2% 2% -10% -8% -11% LIM -139 -20 MPAS --13% -15% -23% -25% -26% -22% -24% SAM -21% -18% -5% -30 MPAS IFS -10% -40 IFS ARPEGE -50 ARPEGE -5% -6% -2% L (NTYAU) O (PYFLEXTRKR) O (TOOCAN) (TOOCAN) O (PYFLEXTRKR) TOOCAN (tobac) TAMS) (MOAAP) O (tobac) (MOAAP) "L (tobac) L (PYFLEXTRKF (TAMS) (TAMS) nleTrack) Track) aTrack, Land Ocean Land

- Models underestimate MCS contribution to total precipitation over tropical ocean by 21% ٠
- Biases over tropical land are slightly smaller 13% •

Ocean

-														
	ND)		(IA .		ac)		(DA		~~		<u> (10</u>		(0)	
ı٩	pri /	ഹ	PUL	(10)	.ao,	MA	NO'	2110	3011	0	UL	1FN	pO7	
~	ITC)U -	0	(1-	0	(''.	imp	e.		0	0	r. i		
O	(.				-	06					0			
						U ·								

า	[Winte	r]								
5	-22%	-19%	-16%	-24%	-28%	-23%	-26%		- 50	
>	-13%	-13%	-13%	-18%	-25%	-14%	-16%		- 40	
5	-30%	-32%	-20%	-26%	-30%	-29%	-52%		- 20	
5	-25%	-18%	-15%	-29%	-26%	-25%	-26%			%
5	-19%	-16%	-13%	-15%	-26%	-17%	-18%		- 20	g
5	-36%	-29%	-24%	-42%	-38%	-39%	-38%		- 10	erer
5	-45%	-34%	-28%	-46%	-44%	-43%	-44%		-10	Ē
5	-15%	-20%	-9%	-18%	-17%	-19%	-19%		20 -	utive
5	-29%	-28%	-22%	-33%	-37%	-31%	-33%		- 20	Hele Hele
,	19%	21%	-2%	21%	-16%	18%	16%		30 -	-
5	-1 7%	-13%	-11%	-25%	-21%	-20%	-23%		40	
5	-21%	-20%	-14%	-21%	-22%	-18%	-22%		50	
	1	1		1	1	1		•		

Biases in MCS precipitation characteristics are more consistent among trackers than clouds

*Exclude tracks with max CCS area during first & last 10% of their lifetime (split or merge)

Models underestimate stratiform rain contribution to **MCS** precipitation

- Most models underestimate stratiform rain (< 5 mm/h) contribution to MCS rainfall compared to both IMERG • & DPR, vice versa for convective rain contribution (> 10 mm/h)
- Biases are larger over land than ocean. Implications on diabatic heating profiles & upscale effects. •

7

7

3

Models capture PW evolution with MCS lifecycle

Ocean

*PWV: averaged within 100 km radius center at MCS tracks

- **Ocean:** models generally capture steady increase in PW prior to MCS initiation, and plateau/decay after initiation, despite difference in PW magnitude
- Land: rapid increase occur ~6 h before initiation, possibly associated with the diurnal cycle
- Results are **consistent** across all **trackers** and **seasons**

Land

Models overestimate sensitivity of **MCS** precipitation intensity to moisture

- Most models show **higher MCS** precipitation intensity sensitivity to PW than ERA5 •
- After rescaling PW, some biases at high PW remain, but precipitation pick-up near critical PW compares • better

- DYAMOND models generally underestimate MCS rainfall amount and their contribution to total rainfall
- MCS cloud shield evolution is better simulated than MCS precipitation
- Many models overestimate observed MCS • precipitation sensitivity to PW

MCSMIP in the future

- All data are open to the community
- Diagnostics codes are on GitHub
- Many MCS tracking codes are opensourced (e.g., **PyFLEXTRKR**)

Contact: Zhe Feng (<u>zhe.feng@pnnl.gov</u>)

16

Thank you

Contact: Zhe Feng (<u>zhe.feng@pnnl.gov</u>)

PNNL is operated by Battelle for the U.S. Department of Energy

Summer (Africa)

 MCS cloud frequency differences

2016-08-10 00:00:00 UTC

2016-08-10 00:00:00 UTC TOOCAN 9386 15°N 12.5°N 2.5°N ---- MCS Track

15°E

20°E

25°E

5°E

10°E

30°E

2016-08-10 00:00:00 UTC

25°E

30°E

- Spread in low T_b will cause differences in tracking of deep convective systems and MCSs
- Spread in precipitation intensity also affects MCS identification

Spread in tropical mean PWV & precipitation

 Both phases have large inter-model spread in PWV and precipitation

- Most models overestimate precipitation/PWV ratio by up to 33%, suggesting models may have higher sensitivity to moisture than OBS
- OBSv7 PWV is from SSM/I (<u>HOAPS4.0 product</u>) 0.5° x 0.5°, 6hourly, averaged to daily

Tracker variation on observed MCS contribution to total rainfall is large

- Tracker differences are large (up to a factor of 2)
- **Consistent discrepancies** among trackers across different geographic **regions** and **seasons** •

Tracker variation on observed MCS contribution to total rainfall is large

- Tracker differences are large (up to a factor of 2)
- Consistent discrepancies among trackers across different geographic regions and seasons

IMERG v6 rain rate agrees better with DPR Pacific

• IMERG v6 underestimates very heavy rain rates (> 30 mm/h) over land more than over ocean, but biases are smaller than v7

Supplementary

Tropical MCS Diurnal Cycle (Land)

Tropical MCS Diurnal Cycle (Ocean)

Supplementary

Models capture PWV evolution with MCS lifecycle

Ocean: models generally capture steady increase in **PWV** prior to MCS initiation, and plateau/decay after initiation, despite difference in PWV magnitude

Pacific

Northwest NATIONAL LABORATORY

Land: rapid increase occur ~6 h before initiation, possibly associated with the diurnal cycle

*PWV: averaged within 100 km radius center at MCS tracks

100km

ARPEG

IFS

MPAS

SAM

UM

GRIST

SCREAM

GEOS

ICON

\checkmark

MCS precipitation vs. PWV

Pacific Northwest

•

- Summer: most simulated MCS precipitation have slightly lower sensitivity to PWV than ERA5
 - IFS, UM, SAM have lower tropicsmean PWV than ERA5
- Winter: most models have stronger MCS precipitation at high PWV values (> 60 kg m⁻²) than OBS
- Results are **robust** across all trackers

*Collocated Tropical PWV & MCS precipitation regridded to 0.25°

Models overestimate sensitivity of **MCS** precipitation intensity to moisture

- Most models show **higher MCS** precipitation intensity sensitivity to PW than ERA5 •
- After rescaling PW, some biases at high PW remain, but precipitation pick-up near critical PW compares • better

PyFLEXTRKR Capabilities

Zhe Feng Many contributions from coauthors

PNNL is operated by Battelle for the U.S. Department of Energy

PyFLEXTRKR Overview

- PyFLEXTRKR is an open-source Python framework to track 2D atmospheric objects
- Specialized capability to track convective systems in high-resolution datasets
 - Works with multiple variables
 - Multi-object identification algorithms
 - Treats merging/splitting
 - Optimized for large datasets with scalable parallelization
 - Visualization, statistical analysis notebooks
- It facilitates **advanced model evaluations** by extracting most relevant storm statistics

km²)

(x10³

32

Current Capabilities

- Tracking **convective cells** using radar reflectivity data [Feng et al. (2022) MWR]
- Tracking MCSs using satellite (T_b) data, or model outgoing longwave radiation (OLR) data, with optional collocated precipitation or 3D radar reflectivity data to identify robust MCSs [Feng et al. (2021) JGR]
- General 2D feature tracking using simple methods to define objects (easy to add new custom functions)
 - Threshold & connectivity
 - Local maxima & watershed

33

Basic Tracking Methodology

- Objects with area overlap exceeding a user-defined fraction between two times are considered the same feature and tracked
- Treat merging and splitting explicitly

Multi-Variable MCS Tracking Algorithms

- IR T_b is required, surface precipitation, 3D radar reflectivity are optional but adds significant values
- Using **both** precipitation and 3D radar reflectivity is also supported (applicable to European radar network?) •
- SL3D convective/stratiform/anvil classification algorithm (Starzec et al. 2017 MWR) •

Cold Cloud System Identification

(a) Identify CCS

(b) Merge CCSs sharing a PF

- Cold Cloud System (CCS) identification algorithm based in PyFLEXTRKR uses **detect and spread** approach • with two T_b thresholds (user-defined)
 - Cold core: contiguous area (T_b < T_b-cold), optional smoothing can be applied to T_b
 - **Grow cold cores outwards** to reach T_b-warm thresholds
- Optional function to merge CCSs that share the same Precipitation Feature (PF)
 - PF can be defined by either precipitation or radar reflectivity (e.g., contiguous area with smoothed rain rate > 3 mm/h)

Precipitation Feature

Multi-Variable MCS Identification

Identify robust MCS based on radar signatures of convection and precipitation •