Diagnosing Mesoscale Convective Systems in DYAMOND Models: A Feature Tracking Intercomparison

Zhe Feng Many contributions from coauthors

ECMWF Diagnostics Workshop September 10, 2024

PNNL is operated by Battelle for the U.S. Department of Energy

Funding: U.S. DOE RGMA Program

- Mesoscale convective systems (MCS) produce most of the tropical **precipitation** (Nesbitt et al. 2006; Feng et al. 2021)
- MCS top-heavy heating profiles have profound impacts on **global circulation** (Schumacher et al. 2004; Barnes et al. 2015)
- MCS disproportionally contribute to **extreme precipitation** (Roca and T. Fiolleau 2020)
- Typical global models struggle to simulate MCS, convection-permitting (**km-scale**) models offer new opportunities to examine how MCSs and extreme precipitation may **change in future climate** (Prein et al. 2017; 2023)

Motivation

Satellite Radar

200 km

How close are DYAMOND models to reality?

ARPEGE

MCSMIP (MCS tracking method intercomparison)

• Substantial **differences** in the simulated characteristics of deep convection & MCSs among models (**Feng et al. 2023 GRL**)

• **Science Questions** :

- How sensitive are the DYAMOND simulated MCS characteristics to different tracker formulations?
- What km-scale model biases are robust among trackers and how do the biases relate to environmental moisture ?

MCSMIP Approach

- Use common-resolution OBS and DYAMOND data (~10 km, hourly)
- Follow the same MCS definition:
	- **Cold cloud shield** > 40,000 km2, duration ≥ 4 h
	- **Precipitation** volume > 20,000 km² mm h⁻¹, contains > 10 mm h⁻¹ for ≥ 4 h
- 10+ international participating groups currently
	- **► 8 trackers** submitted tracking results

• **Tracking intercomparison methods:**

MOAAP (Multi-Object Analysis of Atmospheric Phenomena) **simpleTrack** (Threshold-based object tracking algorithm) **tobac** (Tracking and Object-based Analysis of Clouds) **DL** (Deep-Learning + Tempest Extreme)

-
-
-

Models overestimate sensitivity of tropical oceanic precipitation to moisture

- Both phases have large inter-model spread in **PW** and **precipitation**
- Most models overestimate **precipitation/PW ratio** by up to **33%**, suggesting models may have higher sensitivity to moisture than OBS

• **Number of MCS** may not be a good metrics to compare due to tracker formulation differences

Color patches: MCS masks

simpleTrack

• **Frequency of MCS** is more amiable to tracker formulation differences

simpleTrack

Model MCS cloud frequency variability is large

• Models are generally skillful in simulating MCS frequency, though intermodal variability is large (up to 3x)

Summer Winter

Tropics

13%

 $14%$

 $-8%$

 $-5%$

 $2%$

26%

4%

 -0°

 $-17%$

 -43^o

 $-0%$

 $37%$

56% -57°

Models underestimate MCS precipitation amount

 25.0

ΓŜ

ħ

Summer Winter (a) MCS Rain (OBS) [Summer, PyFLEXTRKR]

60°N

- Models generally underestimate MCS **precipitation** over **tropical ocean** by **32%**
- Biases over **tropical land** are slightly **smaller 14%**

Models underestimate MCS contribution to total precipitation

- Models underestimate MCS **contribution to total precipitation** over **tropical ocean** by **21%**
- Biases over **tropical land** are slightly **smaller 13%**

Summer Winter (a) MCS Rain Fraction (OBS) [Summer, PyFLEXTRKR] (b) MCS Rain Fraction (OBS) [Winter, PyFLEXTRKR] $60°$ $60°1$ 45°N 45°N 80 $30°N$ $30°N$ $60 \approx$ 15° N 15° N 50 ਫ਼ 3
20
20
MCS Rain Fra 0° 15° S $30°S$ 10 $45°S$ $45°S$ $60°S$ $60°S$ $150^{\circ}E$ 180° 120°E 180° 120°E 150°E 180 (c) Model Relative Mean Difference in MCS Rain Fraction [Summer (d) Model Relative Mean Difference in MCS Rain Fractio **All Models** -13% -11% -12% -15% -20% -17% -15% -18% -20% -18% -16% <mark>-</mark>21% -23% -21% -20% 50 All Models -12% SCREAM_{v1} 40 -11% -7% -11% -13% -11% -10% -9% SCREAM_{v1} -5% -5% $-6%$ -5% **ICON** 30 FV3 $-11%$ $-14\% -14\% -12\%$ $-13%$ $-13%$ -15% -17% -18% -16% **GEOS** 20 **XSHIELD** UM $-15%$ $-17%$ -17% -14% $-14%$ $-14\% -19\%$ $-10%$ $-16%$ -16% -16% -16% $10₁$ **SCREAM** SAM $-5%$ $-12\% -11\%$ $-14%$ -16% -16% -15% -24% -24% -20% -26% -27% -25% -26% $-18%$ -10 ≏ **GRIST** $-16\% -10\%$ **NICAM** $2%$ $2%$ -10% $-5%$ -8% -11% $-12\% -12\% -11\%$ -1.3^c **IIM** -20 SAM MPAS- $-21%$ $-18\% -19\%$ $-5%$ $-13% -15%$ $-23\% -25\% -26\%$ $-22\% -24\%$ -30 **MPAS** $-3%$ **IFS** $-10%$ -40 **IFS** ARPEGE -50 ARPEGE $-5%$ $-10%$ $-6%$ (DL) KFYAO)
L (KFYAO) TRKR)
O (PYFLEXTRKR) **FRKA**)
O (MOAAP) **IOAAPI**OCANI (DL) KFYAO)
L (KFYAO) TRKR)
O (PYFLEXTRKR) AP) OCAN) $\sqrt[4]{(100ac)}$ $\binom{c}{r}$ (TAMS) $\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}$ (tobac) **AAP)**
(TOOCAN) M) (tobac) $\binom{1}{1}$ (TAMS) S)
npleTrack) TAMS)
(simpleTrack) M) (tobac) (TAMS)
O (simpleTrack) O (DL) (KFYAO) LaTrack) $\sqrt{(2MA)^2}$ $O(MO_{O}(\sqrt[4]{100C^{AM}}))$ **Land Ocean Land Ocean**

Biases in MCS precipitation characteristics are more consistent among trackers than clouds

*Exclude tracks with max CCS area during first & last 10% of their lifetime (split or merge)

Models underestimate stratiform rain contribution to MCS precipitation

- Most models underestimate stratiform rain (< 5 mm/h) **contribution** to MCS rainfall compared to both IMERG & **DPR**, vice versa for convective rain **contribution** (> 10 mm/h)
- Biases are larger over land than ocean. Implications on **diabatic heating profiles** & **upscale effects**.

 $7\overline{ }$

 $\overline{7}$

Models capture PW evolution with MCS lifecycle

- **Ocean**: models generally **capture steady increase in PW** prior to MCS initiation, and **plateau/decay after initiation**, despite difference in PW magnitude
- **Land**: **rapid increase** occur **~6 h before initiation**, possibly associated with the diurnal cycle
- Results are **consistent** across all **trackers** and **seasons**

Ocean

*PWV: averaged within 100 km radius center at MCS tracks

Land

Models overestimate sensitivity of MCS precipitation intensity to moisture

- Most models show **higher** MCS precipitation intensity sensitivity to PW than ERA5
- After rescaling PW, some biases at high PW remain, but precipitation pick-up near critical PW compares better

- DYAMOND models generally underestimate MCS rainfall amount and their contribution to total rainfall
- MCS **cloud shield** evolution is better simulated than MCS **precipitation**
- Many models overestimate observed MCS precipitation sensitivity to PW

• **MCSMIP in the future**

- All data are open to the community
- **Diagnostics codes are on GitHub**
- Many MCS tracking codes are open-sourced (e.g., [PyFLEXTRKR](https://github.com/FlexTRKR/PyFLEXTRKR))

Contact: Zhe Feng (zhe.feng@pnnl.gov)

Thank you

Contact: Zhe Feng [\(zhe.feng@pnnl.gov](mailto:zhe.feng@pnnl.gov))

PNNL is operated by Battelle for the U.S. Department of Energy

- MCS Tracks

180

 $\mathsf{5}^{\circ} \mathsf{E}$ $15^{\circ}E$ 20° E $25^{\circ}E$ $10^{\circ}E$

 $30^{\circ}E$

 $5^{\circ}E$ $10^{\circ}E$

2016-08-10 00:00:00 UTC

2016-08-10 00:00:00 UTC

- **Spread in low T_b** will cause differences in tracking of deep convective systems and MCSs
- **Spread in precipitation** intensity also affects MCS identification

7,

Spread in tropical mean PWV & precipitation

• Both phases have large inter-model spread in **PWV** and **precipitation**

- Most models overestimate **precipitation/PWV ratio** by up to **33%**, suggesting models may have higher sensitivity to moisture than **OBS**
- **OBSv7 PWV** is from **SSM/I** ([HOAPS4.0 product](https://doi.org/10.24381/cds.92db7fef)) 0.5° x 0.5°, 6 hourly, averaged to daily

Tracker variation on observed MCS contribution to total rainfall is large

- Tracker differences are large (up to a factor of 2)
- **Consistent discrepancies** among trackers across different geographic **regions** and **seasons**

Tracker variation on observed MCS contribution to total rainfall is large

- Tracker differences are large (up to a factor of 2)
- **Consistent** discrepancies among trackers across different geographic regions and seasons

IMERG v6 rain rate agrees better with DPR

• IMERG v6 underestimates very heavy rain rates (> 30 mm/h) over land more than over ocean, but biases are smaller than v7

Supplementary

Tropical MCS Diurnal Cycle (Land)

 $\overline{\mathcal{L}}$

Tropical MCS Diurnal Cycle (Ocean) Supplementary

4

Models capture PWV evolution with MCS lifecycle

• **Ocean**: models generally **capture steady increase in PWV** prior to MCS initiation, and **plateau/decay after initiation**, despite difference in PWV magnitude

Pacific

Northwest NATIONAL LABORATORY

*PWV: averaged within 100 km radius center at MCS tracks

• **Land**: **rapid increase** occur **~6 h before initiation**, possibly associated with the diurnal cycle

MCS precipitation vs. PWV

 \equiv OBS

 \equiv OBSv7

ARPEGE

IFS

- NICAM

- UM

 $-$ FV3

MPAS

SAM

Pacific Northwest NATIONAL LABORATORY

Ţ,

- **Summer:** most simulated MCS precipitation have slightly lower sensitivity to PWV than ERA5
	- **IFS UM, SAM** have lower tropicsmean PWV than ERA5
- **Winter:** most models have stronger MCS precipitation at high PWV values (> 60 kg $m⁻²$) than $\overline{O}BS$
- Results are **robust** across all trackers

*Collocated Tropical PWV & MCS precipitation regridded to 0.25°

Models overestimate sensitivity of MCS precipitation intensity to moisture

- Most models show **higher** MCS precipitation intensity sensitivity to PW than ERA5
- After rescaling PW, some biases at high PW remain, but precipitation pick-up near critical PW compares better

PyFLEXTRKR Capabilities

Zhe Feng Many contributions from coauthors

PNNL is operated by Battelle for the U.S. Department of Energy

32

PyFLEXTRKR Overview

- PyFLEXTRKR is an open-source Python framework to **track 2D atmospheric objects**
- Specialized capability to track convective systems in **high-resolution datasets**
	- **Works with multiple variables**
	- **Multi-object identification algorithms**
	- **Treats merging/splitting**
	- Optimized for large datasets with scalable parallelization
	- Visualization, statistical analysis notebooks
- It facilitates **advanced model evaluations** by extracting most relevant storm statistics

 $(x10^{3}$

33

- Tracking **convective cells** using radar reflectivity data [\[Feng et al. \(2022\)](https://doi.org/10.1175/MWR-D-21-0237.1) *MWR*]
- Tracking **MCSs** using satellite (T_b) data, or model outgoing longwave radiation (OLR) data, with optional collocated precipitation or 3D radar reflectivity data to identify robust MCSs [\[Feng et al. \(2021\)](https://doi.org/10.1029/2020JD034202) *JGR*]
- **General 2D feature tracking** using simple methods to define objects (easy to add new custom functions)
	- **Threshold & connectivity**
	- **Local maxima & watershed**

Current Capabilities

Basic Tracking Methodology

- Objects with **area overlap** exceeding a **user-defined fraction** between two times are considered the same feature and tracked
- Treat **merging** and **splitting** explicitly

Multi-Variable MCS Tracking Algorithms

- IR T_b is required, surface precipitation, 3D radar reflectivity are optional but adds significant values
- Using **both** precipitation and 3D radar reflectivity is also supported (applicable to European radar network?)
- SL3D convective/stratiform/anvil classification algorithm (Starzec [et al. 2017 MWR](https://doi.org/10.1175/MWR-D-16-0089.1))

- Cold Cloud System (CCS) identification algorithm based in PyFLEXTRKR uses **detect and spread** approach with two T_b thresholds (user-defined)
	- **Cold core:** contiguous area ($T_b < T_b$ -cold), optional smoothing can be applied to T_b
	- **Grow cold cores outwards** to reach T_b -warm thresholds
- Optional function to **merge CCSs** that **share the same Precipitation Feature (PF)**
	- PF can be defined by either precipitation or radar reflectivity (e.g., contiguous area with smoothed rain rate > 3 mm/h)

Cold Cloud System Identification

(a) Identify CCS

(b) Merge CCSs sharing a PF

• Identify **robust MCS** based on **radar signatures** of **convection** and **precipitation**

Multi-Variable MCS Identification