

Diagnostic approaches for the GLObal-to-Regional ICON (GLORI) Digital Twin

Chiara Marsigli^{1,2}, Michael Krayer¹, Katerina Kusakova¹, Daniela Littmann¹, Zahra Parsakhoo¹, Xu Xu¹

¹ Deutscher Wetterdienst, Offenbach am Main, Germany ² Agenzia Italia Meteo, Bologna, Italy

with contributions of Alberto de Lozar, Ina Blumenstein-Weingartz, Vanessa Fundel, Jan-Peter Schulz, Günther Zängl, Tommaso Diomede, Thomas Gastaldo, Virginia Poli

The GLORI Digital Twin

resolution Digital Twin configurable on-demand based on the prediction capability of the **ICON** modeling system and the

> Data Assimilation Coding Environment DACE

GLORI Partners

GLORI HPC infrastructure

DWD

Model development ...

GLORI Digital Twin Configuration

Flow over complex terrain

- The flow and boundary layer over complex terrain are probably under resolved for current NWP resolutions (2km). This improves for higher resolutions.
- Resolved thermal circulations can produce quite different surface fluxes.

Daniela Littmann

Experimental Model Domain

700 1050 1400 1750 2100 2450 2800 Surface above sea level [m]

Daniela Littmann

- Inn Valley and Wipp Valley
- Fall & early winter
- Study erosion and cold air pools

MOMAA weather station data M0* Radiosonde data INN

Flux station data EC*

Gohm et al. 2021

0 300 600 900 1200 1500 1800 2100 2400 2700 Surface above sea level [m]

Case study: The Cold Air Pool 2017

Vertical cross sections in the Inn Valley for horizontal grid scales of 2 km, 1 km, and 500 m for a cold air pool case during the night of 15-16 October 2017

Coloured contours: averaged horizontal wind speed

Arrows: wind direction

Contour lines: potential temperature

A strong jet (observed) is resolved by higher resolutions

Measurements from Gohm et al. 2017 marked as dots (in the map) and as lines (in the cross sections)

DWD

9

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

- 1. The wind over complex terrain is better resolved at higher resolutions.
- 2. 1-km simulations are in the gray zone; improvements can be expected for higher resolutions (here 500m)

Experiments:

- Compare forecasts over the Alps at 2 km and 1 km resolution
- Compare 1km and 500m domain

Model top	22 km	
Vertical level	65 full (66 half)	
Hor. grid scale	2 km, 1 km, 500 m	
LATBC (at start)	Forecast (ICON-EU)	
Forecast restart	12 h	
Duration	36 h	
1-way-Nesting		

Experiments:		
Experiment	Resolution	Model
ICON-D2	2 km	Reference
ICON-A1	1 km	Reference
ICON-A05	500 m	Reference
ICON-mix	500 m	No convection, \heartsuit turlen (t ₀ =80 m)

Model version icon-2024.07

ICON-mix:

- reduced asymptotic length scale I = 80m instead of =300m
- no shallow convection

Wind verification over valley stations

Clear improvement for wind speed, but not much differences for other parameters (not shown)

Wind verification over all stations

improvement for wind almost disappears

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Mean Error for wind speed

Daniela Littmann

Verification for all (standard) variables

- → Refining the mesh size from 2 km to 500 m tends to improve the model skill in various aspects
- → But there are issues that require further model development

2023/10/31-22UTC - 2023/11/21-00UTC

INI: 00 UTC, DOM: ALL , STAT: ALL

DWD

Gust parametrisation

Hindcast for June 2020

10-m winds used for verification are still instantaneous values

2 km REF 500 m REF 2 km NEW 500 m NEW

Adapted gust parameterization

- → Based upon 10-min averaged 10-m winds rather than instantaneous values
- → Limitation of gust excess speed to resolved PBL wind maximum (times tuning factor)

DWD **Deutscher Wetterdienst** Wetter und Klima aus einer Hand

9

WMO WWRP Research Demonstration Project Paris 2024 Olympics

WMO WWRP Research Demonstration Project Paris 2024 Olympics

longitude (degrees_east)

DWD 9

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

the Olympic Village

VENUE MAP FOR THE OLYMPIC GAMES

C Zenith Paris

Stade de Fra

Aquatics Centr Mater Polo Centr

Co-Design in hydro-meteorological partnership

9

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Co-Design in hydro-meteorological partnership

extreme events in observations and forecasts from different models and ensemble members (also for GLORI) will be verified based on the catchment areas

 catchment predictability plot

GLOR RI

Use case flood: May 2023 events in Italy

T. Diomede (Arpae), T. Gastaldo, C. Marsigli, V. Poli (Agenzia ItaliaMeteo)

DWD

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Concluding remarks

- High-resolution modeling allows a more sophisticated representation of some physical processes
- Process-based verification is often needed
- High-resolution observations are needed to diagnose the high resolution models!
- Data for verifying precipitation at high resolution are still an issue
- Campaign and experiments are a precious source of data
- Diagnostics based on the usage of impact models complement the standard verification

er state transformer ander ander

Chiara Marsigli

Assimilation of 3D radar data

Radar Reflectivity Composites Obs

202205051900

Precipitation Forecast

Stochastically perturbed parameterization (SPP) in ICON

- An uncertain parameter is perturbed with a specific temporally evolving stochastic pattern for each member
- Perturbation fields should have both spatial and temporal correlations
 SPP properties:
- Fourier Series vs. Legendre Polynomial
- Pattern length scale = 50km
- Pattern time scale = 1 hour
- Pattern modes = 50
- Pattern variance = 0.1

Test on a real case

-8.4 -6.3 -4.2 -2.1 0.0 2.1 4.2 6.3