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What is a “forecast bust™? Q]

The UNIVERSITY of OKLAHOMA

gffofoo ACC 500 hPa geopotential T+144h
80 | XY w V “Forecast busts”
60 -
= | 40- — HRES When forecast skill
2 20 —— UKMO suddenly drops producing a
§ \ NCEP very poor forecast within
S S i | 5 short lead times
= [ =20 - Mon 7 50% ens members (Rodwell et al., 2013)
—40 - ' Mar All ens members
| Grams et al. (2018)
_60 | | | T | | |
v Thu4 Suni14 Wed24 Sat5 Tuel15 Fri25 Mon4
poor Feb Mar Apr
2016



Research on "forecast busts” over Europe
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Research on "forecast busts” over Europe

Open questions addressed
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What happens between day 0 and day 6 in the “reanalysis world”?



Systematic analysis: 45 years of ERAS reforecasts Q]
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Data set | ERAS5 re-forecasts (1979-2023) ......cnecat oo,

@ 45 years of 10-day forecasts based on a constant model version (IFS Cy41r2)

@ Northern Hemisphere, 1° spatial resolution, twice-daily initial times (00 and 12 UTC)
@ ’'True’: ERAS5 reanalysis

1.0 Definition of forecast busts (days, Europe)
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Rodwell et al. (2013)
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Part 1

Characteristics of exceptionally

poor and good forecast
in ERAS reforecasts




Results | Rate and seasonality of poor/good forecasts

Trend of exceptionally poor and good 6-day forecasts over Europe

Definition based on ACC only and based on percentiles

Lowest 5% in ACC, 6

== = ERA-Interim, Rodwell critera
== ERAS5, lowest 5%
--=- rate trend: -1.77% per decade

14

12 1

rate of poor forecasts (in %)

0 T T T T T T T T
1980 1985 1990 1995 2000 2005 2010 2015 2020

@ Decreaseinthe number of “forecast busts” with time

— Good agreement with ERA Interim definition
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rate of good forecasts (in %)
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@ Upward trend in exceptionally good forecasts

—> Number and quality of observations improved

Largest 5% in ACC, 6

10 -

ERAS5, percentile criterion
rate trend: +1.69% per decade

The UNIVERSITY of OKLAHOMA



Results | Rate and seasonality of poor/good forecasts

Distinct differences in seasonal occurrence

fraction of poor forecasts (%)

(a) poor forecasts

12 - ——— 10-days running mean
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@ Peak occurrence from June to October

@ Link to summertime convection/hurricane
season?

fraction of good forecasts (%)
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(b) good forecasts

——— 10-days running mean

@ Peak occurrence in the cold season,
minimum in summer

@ Increased wintertime skill related to low-
frequency modes?
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Results | Patterns of exceptionally poor vs. good forecasts Q]

The UNIVERSITY of OKLAHOMA

“Rockies

Trough” SC)"Z._OO' a

ooooooo

Poor forecasts

-12-10-8 -6 -4 -2 2 4 6 8 10 12 —45 =35 —=25 =15 -5 5 15 25 35 45 -22-18-14-10-6 -2 2 6 10 14 18 22
Z500 anomalies (gpm) CAPE anomalies (] kg™1) Z500 anomalies (gpm)



Results | Patterns of exceptionally poor vs. good forecasts Q]
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How can we capture what happens within those 6 days and investigate variability? 7



Results | Weather regime perspective

®
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Year-round definition of North Atlantic-European weather regimes (Gramsetal, 2017)
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Results | Regime development day 0 — day 6
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Results | Regime development day 0 — day 6
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Results | The timing of the transition matters!

regime transition frequency (% of all cases)

When do regime transitions occur?

22 1
=== poor forecasts

mmmm good forecasts

3 2 1 0 1 2 3 4 5 6 7 8 9
days around forecast initial time (days)
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»=mms QO transition
== = 7 transition

@ Transitions occur earlier in good forecasts and later in
poor forecasts

[ Alternatively, if no transition occurs within the forecast
period, transitions occur immediately beforehand

—> Timing matters!
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Summary | Part 1
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(a) poor forecasts

== = ERA-Interim, Rodwell critera
= ERAS, lowest 5%
12 --- rate trend: -1.77% per decade

=
o

Redefined the definition of large-scale forecast busts and extended it to
exceptionally good forecasts in a 45-years period of ERAS5 re-forecasts

rate of poor forecasts (in %)

o N IS o ®
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(a) 2500, day 0

Decreasing (increasing) number of poor (good) forecasts with time despite no £7.398
changes in model physics probably due to improved observations :

High agreement in the large-scale patterns atinitial time of forecast busts between =
ERA-Interim (Rodwell et al., 2013) and ERAS5 busts, indicating struggles independent 2500 anomalies (gom)
of the model version ‘

)

cy (% of all cases

Very clear differences in the seasonality and patterns (good vs. poor forecasts)

sition frequen:

® ©

Similar characteristics in the number of regime transitions during the 6-day period N
but some differences in certain transitions and in particular the timing of transitions ¢,

3 2 10 1 2 3 4 5 6 7 8 9
days around forecast initial time (days)
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Part 2

Prediction of exceptionally

poor and good forecast
(preliminary results, work in progress!)
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Predicting forecast skill over Europe Q]
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@ Recap Part 1: composites and variability of patterns linked to exceptionally poor and good
large-scale forecasts

— Do we miss certain precursors of exceptionally poor/good forecasts?

— Can we use artificial intelligence (Al) to identify which variables and regions are important to
look at to predict the occurrence of good/poor forecasts?

Step 3

Explainable Al (XAl)

— e o o o o o o o e o —
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Predicting forecast skill over Europe Q]
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Convolutional neural network (CNN)
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2D lat-lon fields at initial time (day 0), full Northern Hemisphere
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Predicting forecast skill over Europe

®
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CNN prediction of forecast accuracy at day 6

Testing on 6575 forecast initial times

Class 1
(poor)

True class
Class 3 Class 2

Class 4

Class 5
(good)

Class 1
(poor)

Confusion Matrix

165

1
Class 2 Class 3

292

Class 4

Predicted class

500

450

400

350

300

- 250

- 200

- 150

- 100

Class 5
(good)

Number of cases

Modelis not ’perfect’: correct
predictions in only 29% of all test cases

If predicting the neighboring class is
considered as ‘correct prediction’:
65%

Very poor and very good forecasts
(20, 80t percentile) show highest hit
rate

Very poor skill of the CNN for the
“medium skill classes”
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Summary | Part 2 Q]
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@ Builtup a classification CNN to predict the forecast skill class over Europe at day 6
just based on fields at forecast initial time (no ensemble information!)

@ CNNiis partly successful, better in predicting skill of very good/poor forecasts

@ Furtherimprove model (Redefine classes? Check/change predictors? Change CNN
architecture? ...)

@ Once model performance is acceptable: Which predictor is important for decision
and are there specific regions the model focusses on?

Happy for feedback and ideas!

seraphine.hauser-1@ou.edu
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