

Flow dependence of error-growth mechanisms: PV diagnostics and feature framework

Sören Schmidt, Michael Riemer, Tobias Selz (DLR, LMU München)

ECMWF Workshop on Diagnostics for Global Weather Prediction

September 2024

Why diagnose error-growth mechanisms?

- The intrinsic limit of predictability is characterized by a distinct sequence of error-growth mechanisms (presentation by Tobias Selz on Monday).
- Representation of error-growth mechanisms in numerical (ensemble) models determines representation of forecast uncertainty.

Why diagnose flow dependence?

- may indicate flow situations, in which intrinsic limit is already reached
- enables more focused model verification and development
- aids in recognizing model error wrt. representation of uncertainty, a limitation of current ML models*

* (e.g., Selz, T., & Craig, G. C. (2023). Can artificial intelligence-based weather prediction models simulate the butterfly effect?. GRL, 50(20))

Potential-vorticity diagnostic for error-growth mechanisms

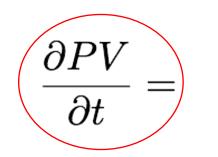
A single scalar quantity – PV – subsumes the balanced state of the atmosphere. PV is a key quantity of atmospheric dynamics

Upscale error growth eventually affects the balanced state.

A single scalar quantity – PV – subsumes the balanced state of the atmosphere. PV is a key quantity of atmospheric dynamics

Upscale error growth eventually affects the balanced state.

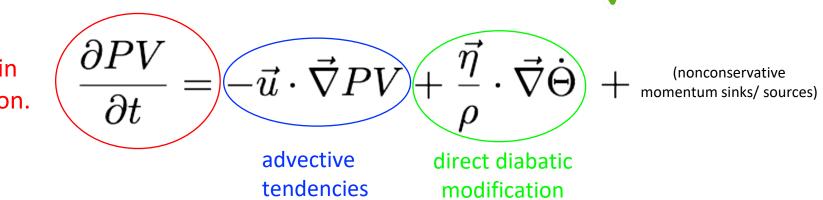
Describe evolution in terms of PV evolution.



A single scalar quantity – PV – subsumes the balanced state of the atmosphere. PV is a key quantity of atmospheric dynamics

Upscale error growth eventually affects the balanced state.

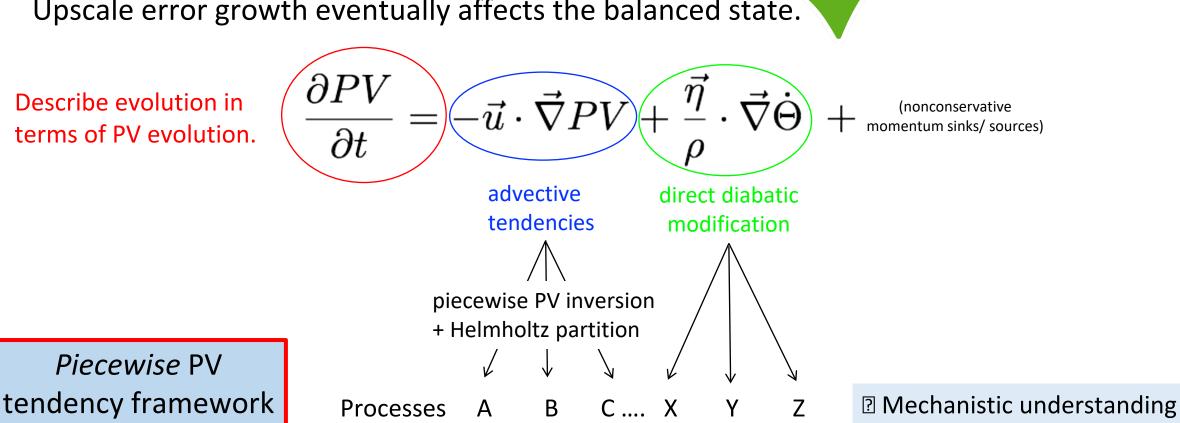
Describe evolution in terms of PV evolution.



A single scalar quantity – PV – subsumes the balanced state of the atmosphere. PV is a key quantity of atmospheric dynamics

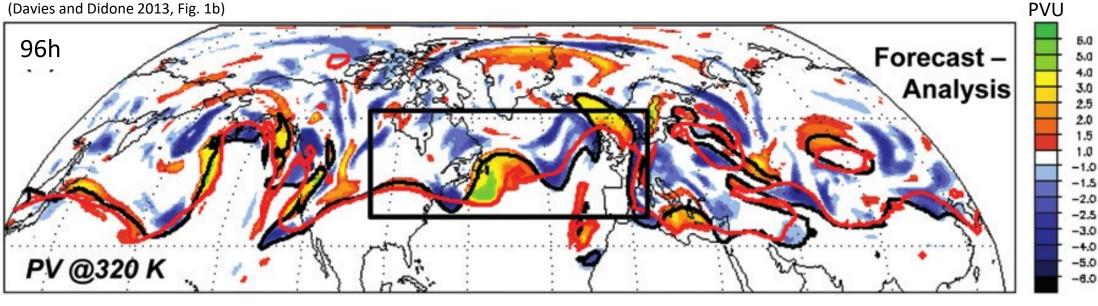
Upscale error growth eventually affects the balanced state.

Describe evolution in terms of PV evolution.



PV perspective on forecast errors

(Davies and Didone 2013, Fig. 1b)



forecast — analysis 2 PVU contour:

Davies and Didone (2013):

- PV errors maximize near the tropopause; displacement of the tropopause
- PV-error tendency equation _

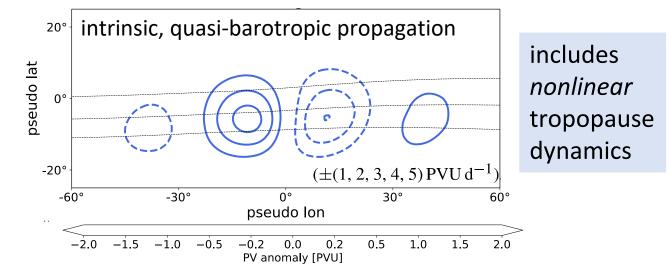
Baumgart et al. (2018, 2019); Baumgart and Riemer (2019): **Piecewise** PV-error tendencies = quantification of *individual* contributions to error/ spread growth

Piecewise PV tendencies: Illustration

Dynamics of Rossby wave packets
Upper-level perspective on isentropes
that intersect the midlatitude tropopause
Composites over ERA-5 period

(Teubler and Riemer 2021, Fig. 3, modified)

contours: dashed = negative; solid = positive tendencies



includes

nonlinear

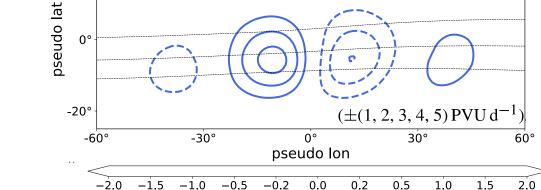
dynamics

tropopause

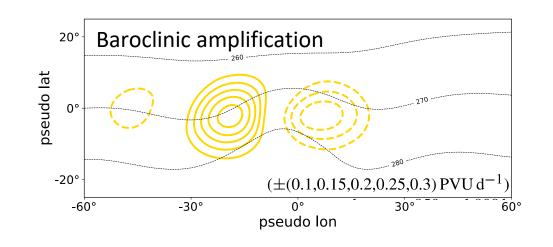
Piecewise PV tendencies: Illustration

20

- Dynamics of Rossby wave packets
- Upper-level perspective on isentropes that intersect the midlatitude tropopause
- Composites over ERA-5 period



(Teubler and Riemer 2021, Fig. 3, modified)



contours: dashed = negative; solid = positive tendencies

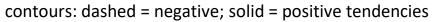
PV anomaly [PVU]

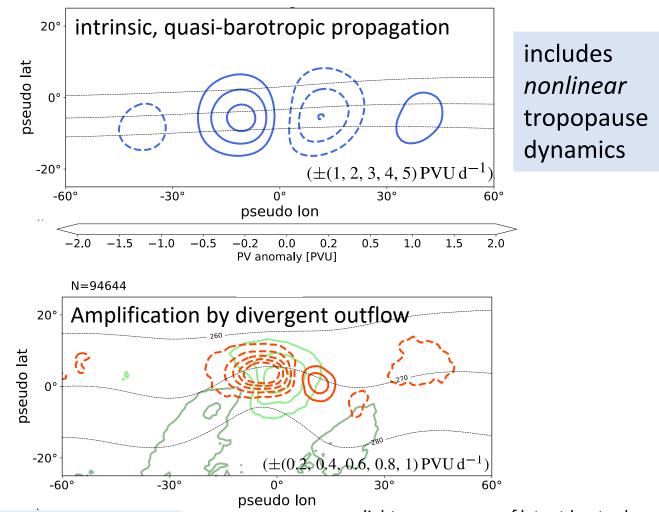
intrinsic, quasi-barotropic propagation

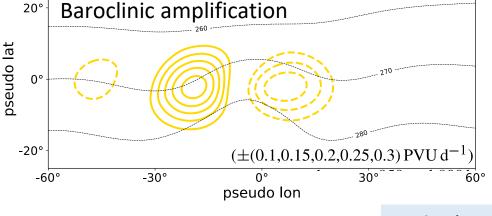
Piecewise PV tendencies: Illustration

- Dynamics of Rossby wave packets
- Upper-level perspective on isentropes that intersect the midlatitude tropopause
- Composites over ERA-5 period

(Teubler and Riemer 2021, Fig. 3, modified)

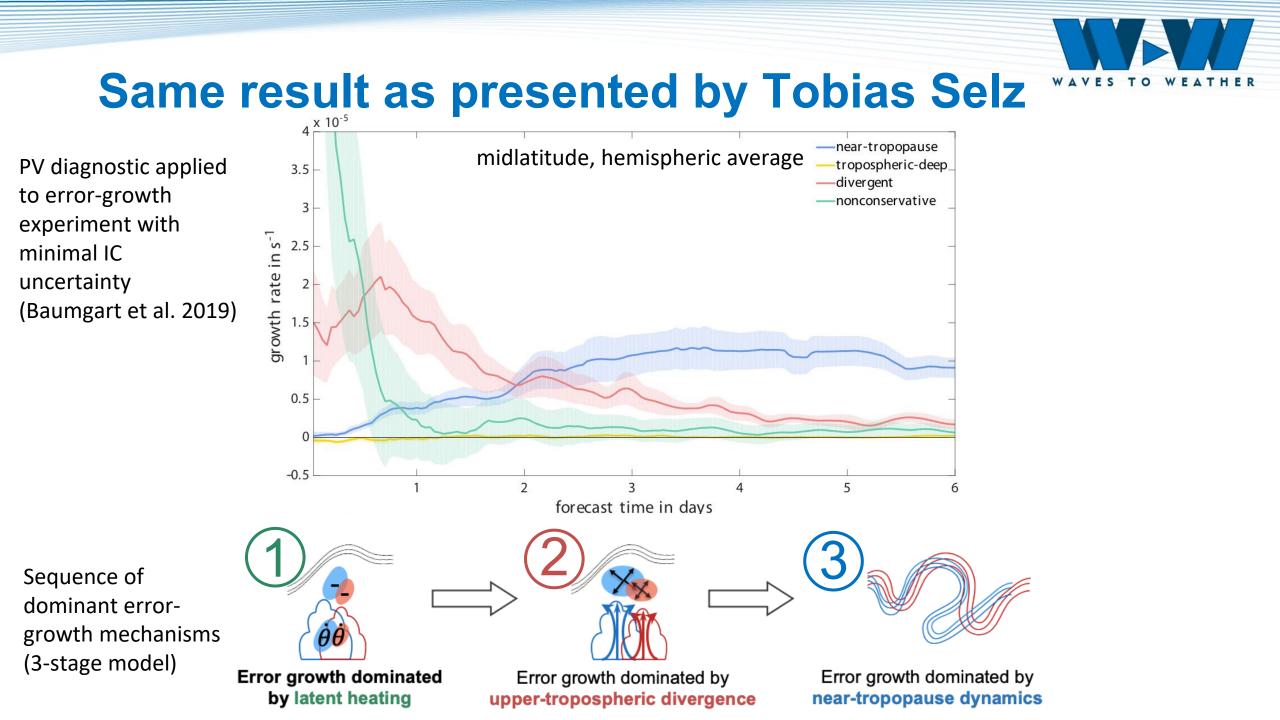


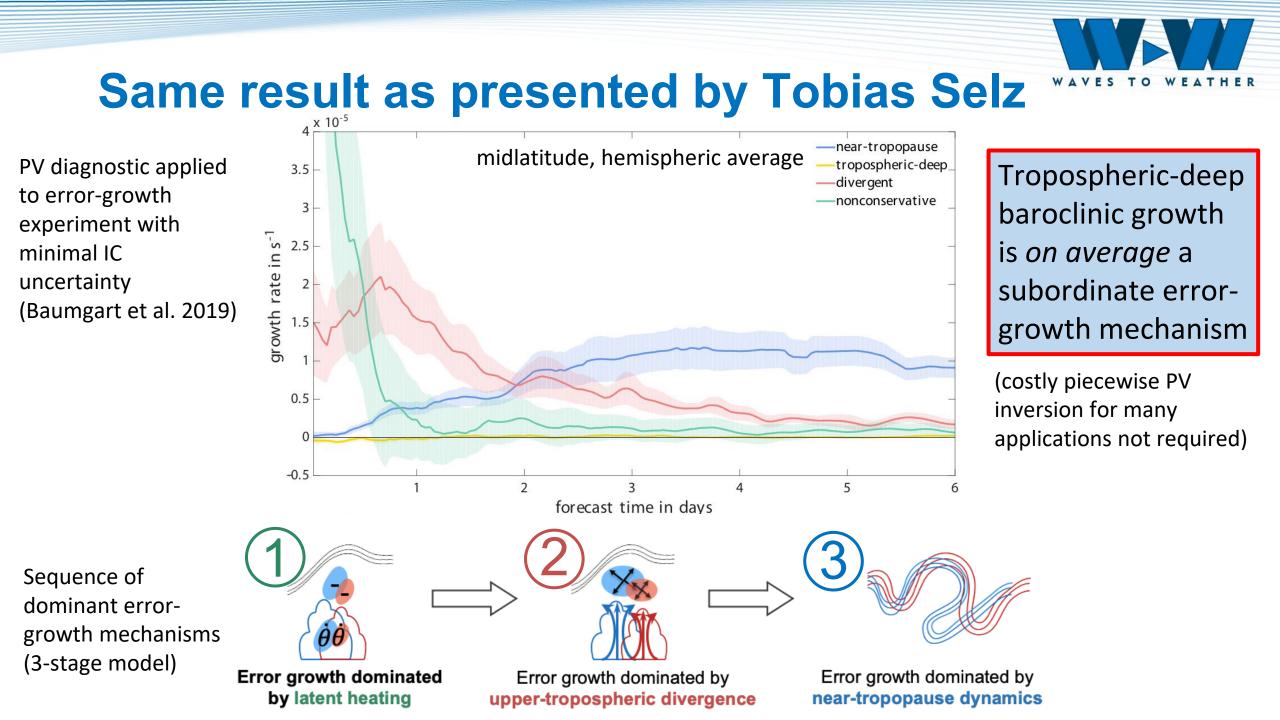




moist-baroclinic development

light green: proxy of latent heat release

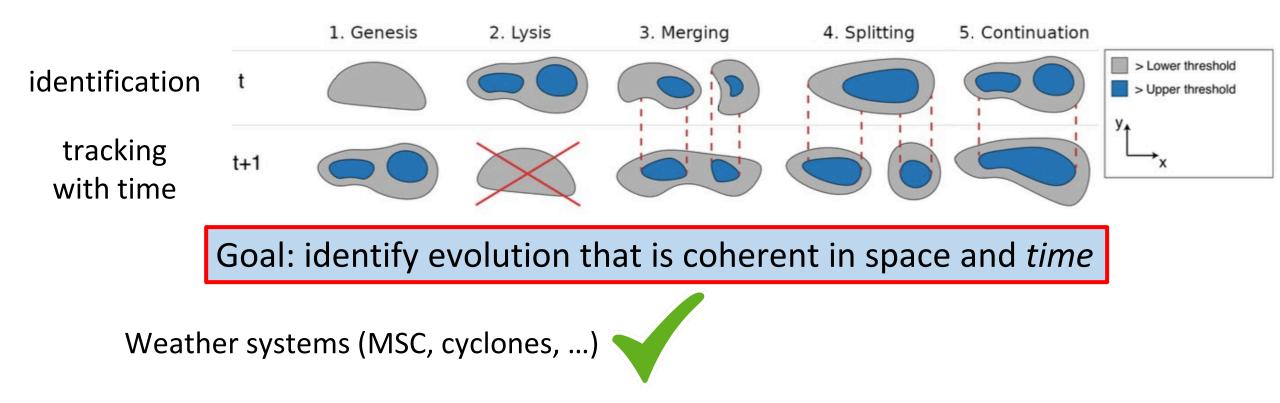




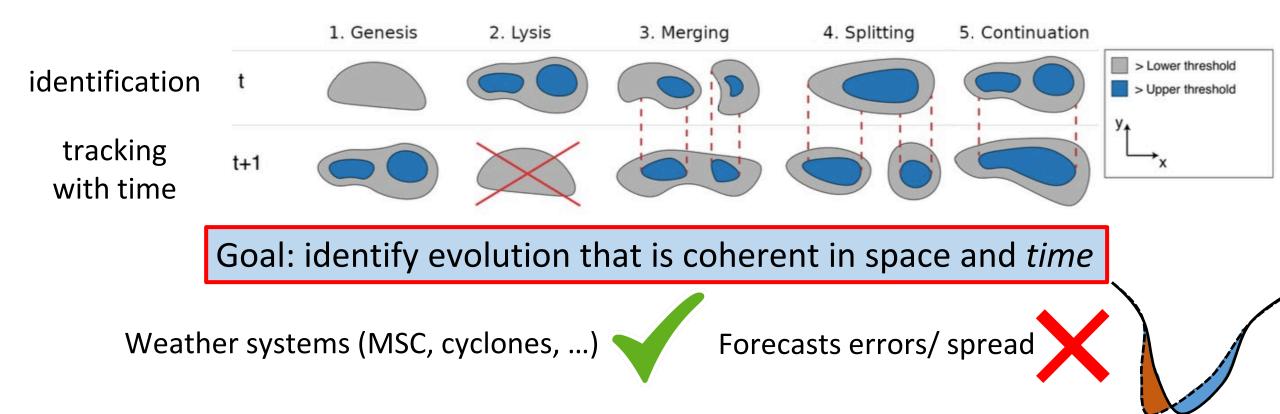
next talk: case study

Efficient analysis of a large number of "cases" feature-based analysis

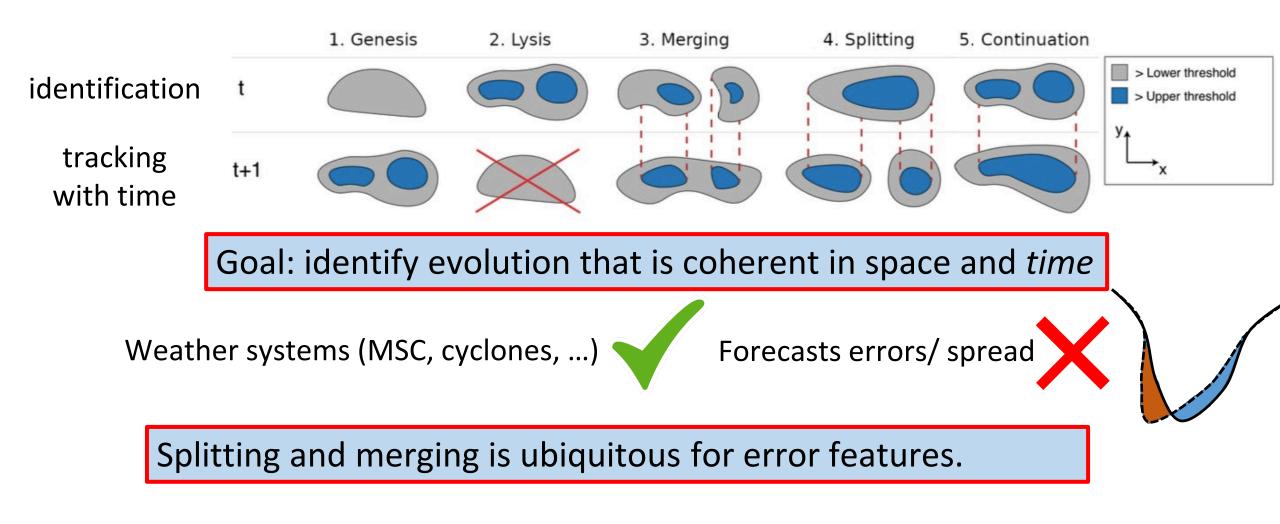
Feature framework



Feature framework difficult for errors/ spread



Feature framework difficult for errors/ spread



Feature framework difficult for errors/ spread

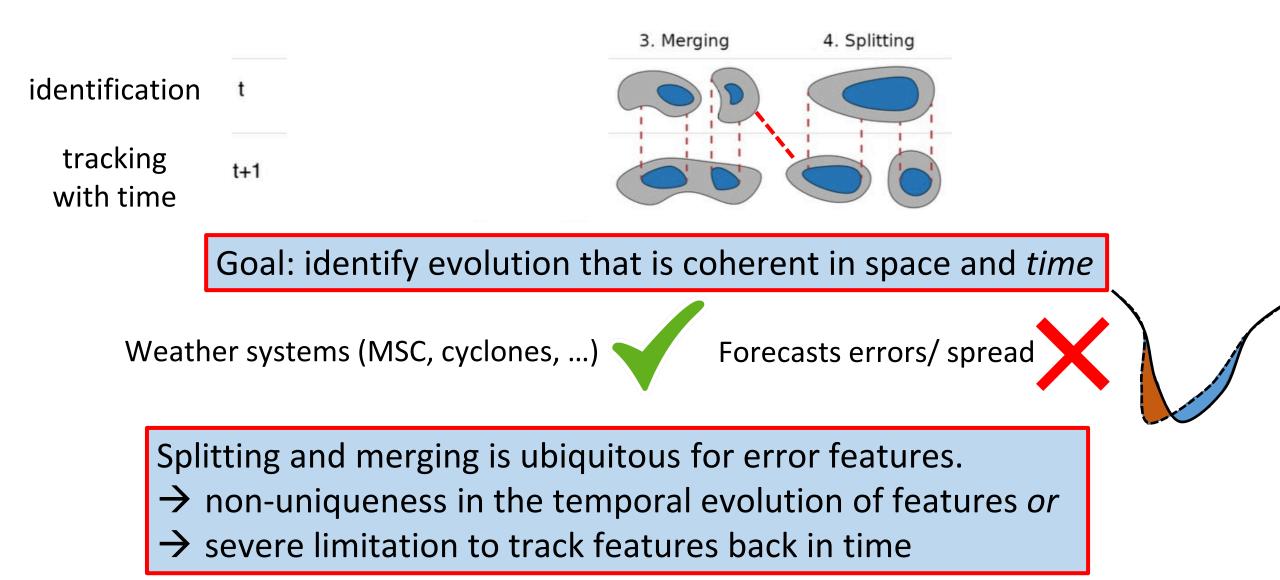
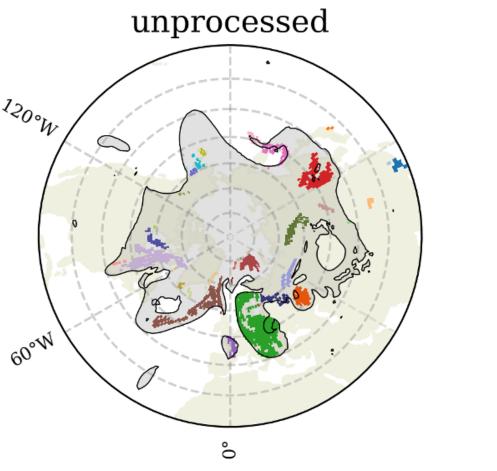


Illustration of problem (grey features) lead time 72h



Colors: Features identified at 72h lead time

Illustration of problem (grey features) lead time 72h

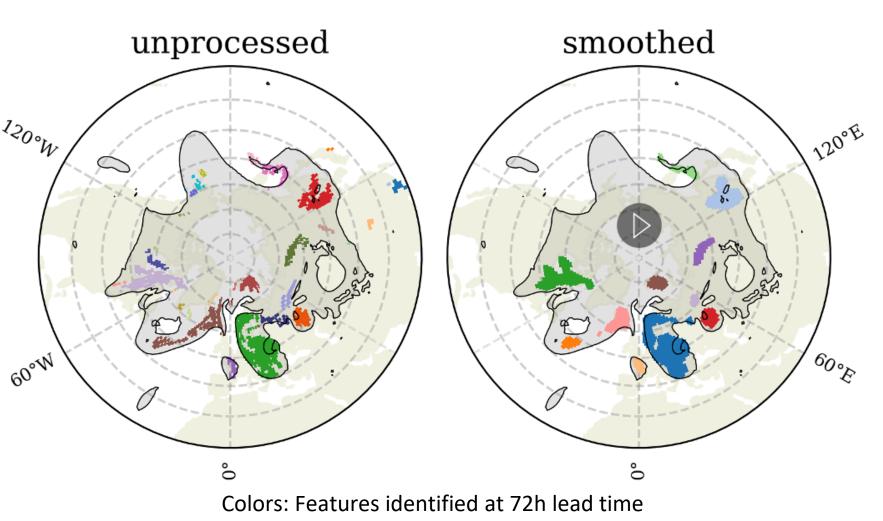
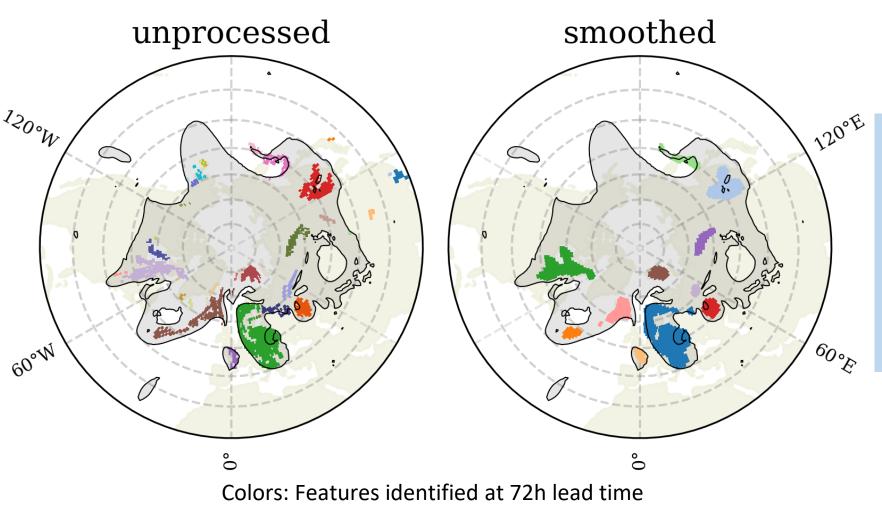


Illustration of problem (grey features) lead time 72h

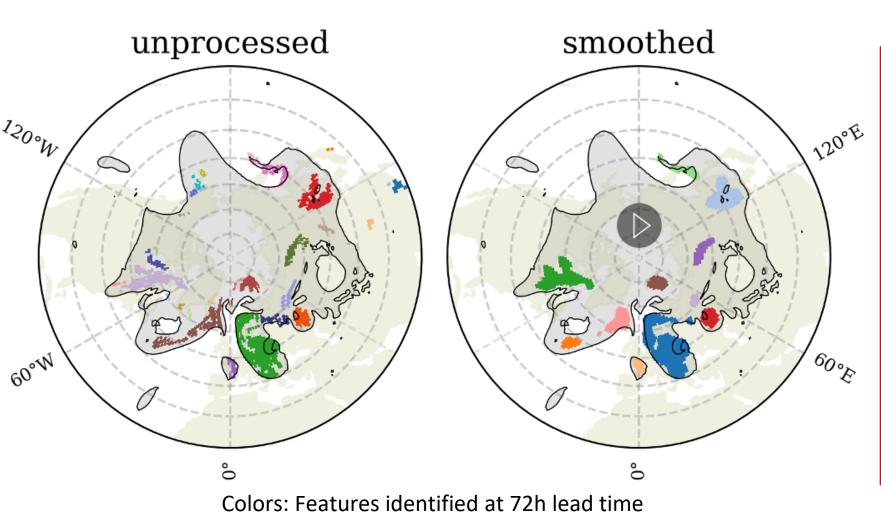


Smoothing of underlying data and size-filtering of features improves the situation, but

- ... does *not* solve the fundamental problem.
- ... implies loss of information.

Addressing the fundamental problem Schmidt, S., et al.: A feature-based framework to investigate atmospheric predictability. *MWR*, in revision

lead time 72h



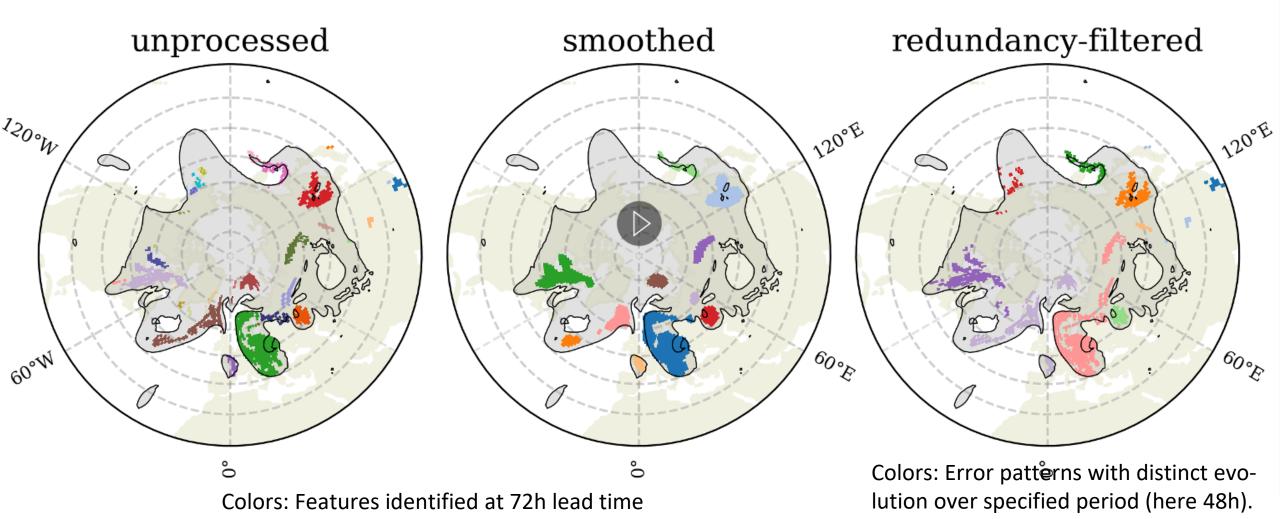
Basic idea:

- Group together features, for which the temporal evolution over a specified period is *not* sufficiently distinct.

- The groups of features define spatio-temporally coherent error patterns with *sufficiently distinct* evolution.

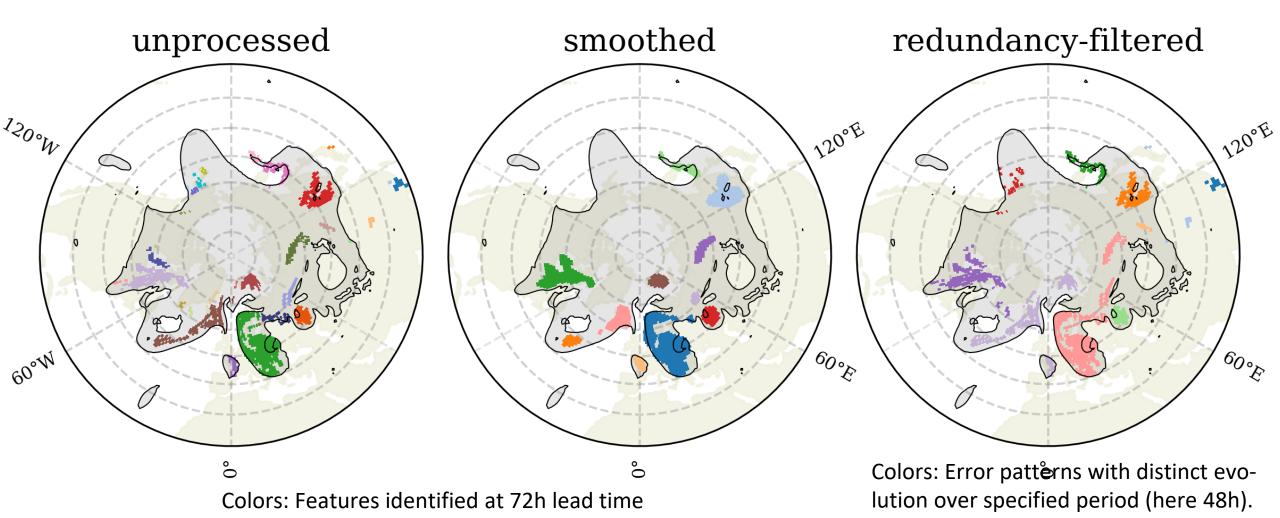
Error patterns with distinct evolution

lead time 72h



Error patterns with distinct evolution

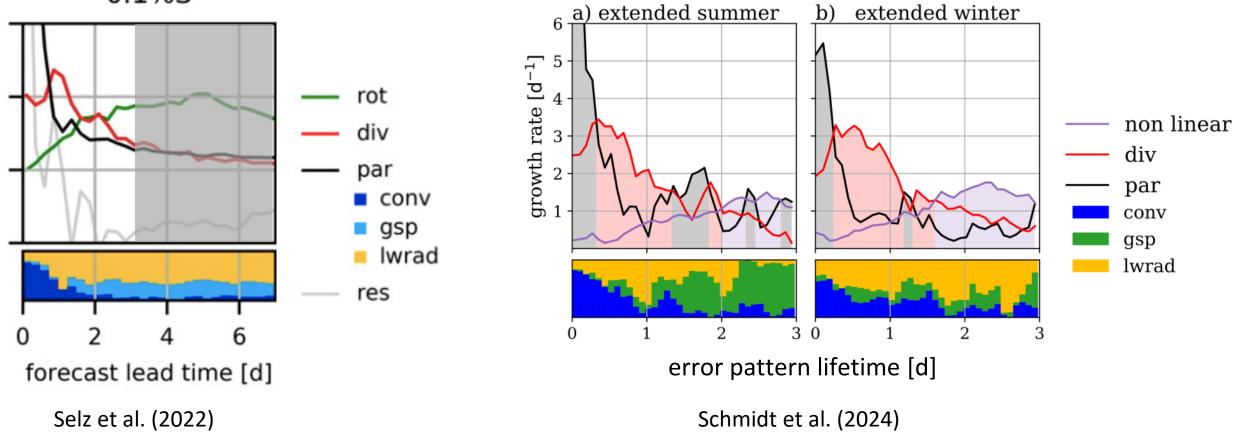
lead time 72h



Identify flow configurations that will first reach the intrinsic limit (one application; preliminary results)

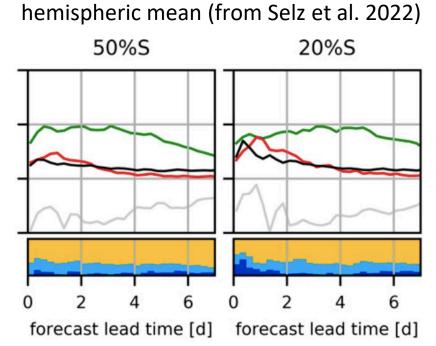
Average picture reproduced

0.1%S



Contrasting error-growth regimes

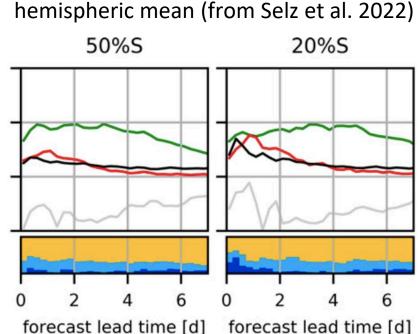
Most error patterns exhibit 'operational' characteristics.



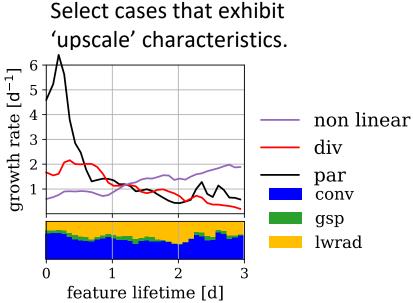
Most error patterns exhibit 'upscale' characteristics.

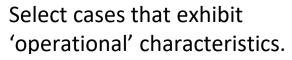
Contrasting error-growth regimes

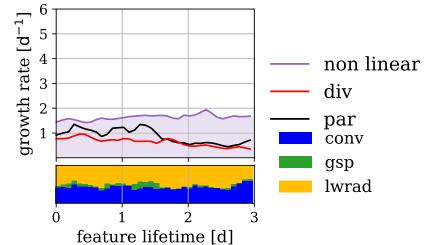
Most error patterns exhibit 'operational' characteristics.



Most error patterns exhibit 'upscale' characteristics.



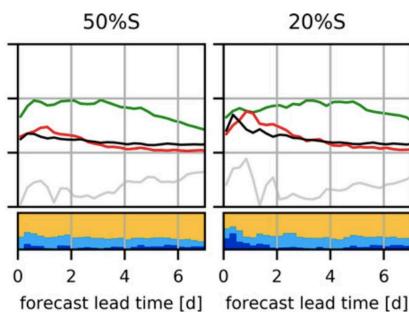




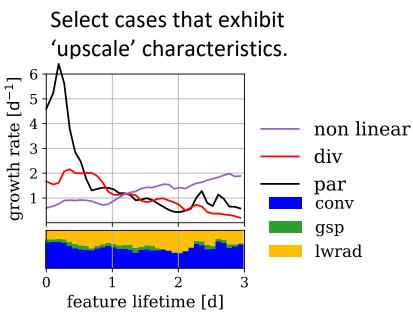
Contrasting error-growth regimes

hemispheric mean (from Selz et al. 2022)

Most error patterns exhibit 'operational' characteristics.



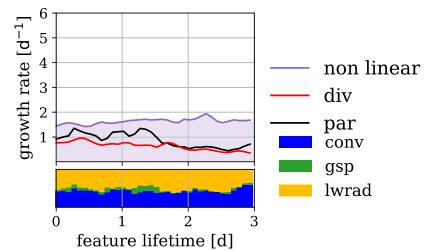
Most error patterns exhibit 'upscale' characteristics.



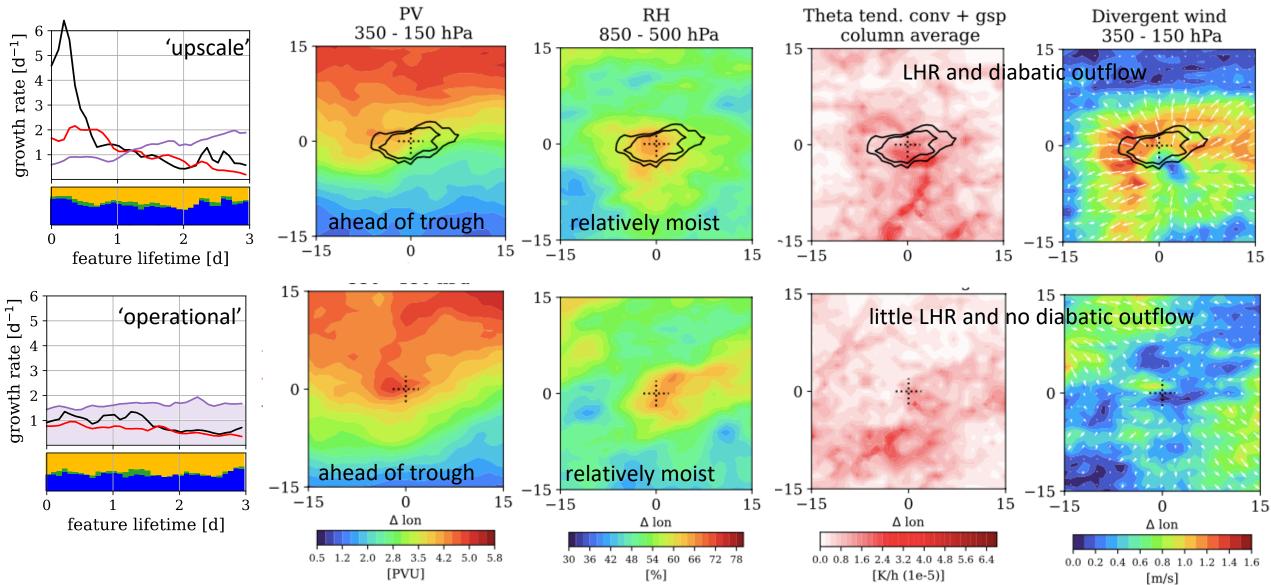
50 error patterns each 2 years of experiments, Initialized every 4 days,

extended summer

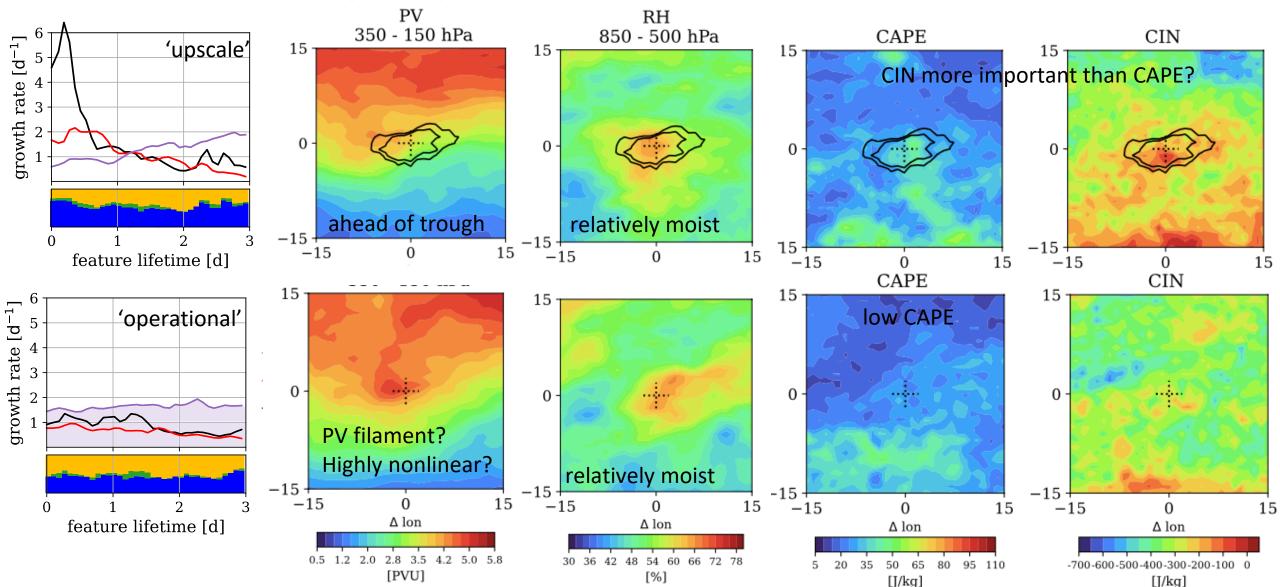
Select cases that exhibit 'operational' characteristics.



preliminary – preliminary – preliminary – Contrasting regimes: environmental conditions



preliminary – preliminary – p



Summary

- Piecewise PV-tendency framework quantifies (upscale) error growth mechanisms (midlatitude tropopause region).
- Error-feature framework enables efficient analysis of many 'cases'.

preliminary:

- Intrinsic limit of predictability may first be reached in high-CIN convective situation ahead of a trough.
- Highly nonlinear tropopause evolution with little LHR may benefit most from reduction in initial condition uncertainty.

References:

Baumgart et al. 2018: Potential vorticity dynamics of forecast errors: A quantitative case study. *MWR*, *146*, 1405-1425. Baumgart et al. 2019: Quantitative view on the processes governing the upscale error growth ... using a stochastic convection scheme. *MWR*, *147*, 1713-1731. Baumgart and Riemer 2019: Processes governing the amplification of ensemble spread in a medium-range forecast *QJRMS*, *145*, 3252-3270. Schmidt et al. 2024: A feature-based framework to investigate atmospheric predictability. *MWR*, in revision Selz et al. 2022: The transition from practical to intrinsic predictability of midlatitude weather. *JAS*, *79*, 2013-2030.