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A neural network as a nonlinear transfer function model
for retrieving surface wind speeds from the special
sensor microwave imager
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Abstract. A single, extended-range neural network (SER NN) has been developed to
model the transfer function for special sensor microwave imager (SSM/I) surface wind
speed retrievals. Applied to data sets used in previous SSM/I wind speed retrieval
studies, this algorithm yields a bias of 0.05 m/s and an rms difference of 1.65 m/s,
compared to buoy observations. The accuracy of the SER NN for clear (low moisture)
and clotﬁdyc(highe{ m::isllurcflighl rain) conditions equals IheI accuracy Lof NJNs trail}ed‘

* ML and AI refer to similar things: a set of algorithms
that can learn from and make predictions on data, et Mol ey 13 300at0s e
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with Al also more broadly referring to technologies
using these algorithms for robotics, problem-solving

and SO On. Challenges and design choices for global weather and climate
models based on machine learning
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Figure 3. (a) Globally integrated absolute forecast error for the best local network (9 x 9 stencil), the global network, a persistence forecast,
an IFS forecast at TL21 resolution and the operational weather forecast of ECMWF. The persistence forecast shows a 12-hourly fluctuation
since Z500 has a weak 12-hourly cycle in the tropics due to atmospheric tides. (b) The same globally integrated absolute forecast error for
the best local and global network as in (a) plus the best results for local and global networks that use 2mT as additional prognostic field.
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Figure 3. (a) Globally integrated absolute forecast error for the best local network (9 x 9 stencil), the global network, a persistence forecast,
an IFS forecast at TL21 resolution and the operational weather forecast of ECMWF. The persistence forecast shows a 12-hourly fluctuation
since Z500 has a weak 12-hourly cycle in the tropics due to atmospheric tides. (b) The same globally integrated absolute forecast error for
the best local and global network as in (a) plus the best results for local and global networks that use 2mT as additional prognostic field.
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Figure 3. (a) Globally integrated absolute forecast error for the best local network (9 x 9 stencil), the global network, a persistence forecast,
an IFS forecast at TL21 resolution and the operational weather forecast of ECMWF. The persistence forecast shows a 12-hourly fluctuation
since Z500 has a weak 12-hourly cycle in the tropics due to atmospheric tides. (b) The same globally integrated absolute forecast error for
the best local and global network as in (a) plus the best results for local and global networks that use 2mT as additional prognostic field.



How Al models are transforming
weather forecasting: a showcase of
data-driven systems

'History' of Al Forecasting

6 September 2023

First forecasting attempt: 2018 by scientists at the
European Centre for Medium Range Weather
Forecasts (ECMWTF). Dueben and Bauer (2018)

In 2022/23 enter the tech giants (Huawei,
NVIDIA, Google).

The creation of ML/AI weather forecasting
models that can rival and sometimes outperform

traditional N'WP.

Advancements in ML techniques, use of GPUs,
alongside the publication of a Weatherbench P
dataset, a 10-year roadmap for ML by the "' {f %
ECMWTE, and other developments, have changed 3

(Pangu-Weather machine
learning model: Experimental):
500 hPa geopotential height and
850 hPa temperature

(GraphCast machine learming
model: Experimental): 500 hPa
geopotential height and 850
hPa temperature

(FourCastNet machine learning
model: Experimental): 500 hPa
geopotential height and 850
hPa temperature

* Image: ECMWF

Al outperforms conventional weather
forecasting methods for first time

Google DeepMind’'s model beat world’s leading system in 90% of metrics used and took
only a fraction of the time

the landscape dramatically in recent years.

Benefits, accuracy, computational cost, ensembles,

45000x faster than current NWP.

\atl/

Our Al based weather forecasting is 45000x faster than current

weather models, while having the same accuracy. This speedup
allows us to run thousands of simulations in different scenarios

to predict what the climate will bring in the future.

* Image: Anima Anandkumar

face wind speeds taken fre ast mo ne expert sai | systems in
impressively than we expected even 1wo years ago’ © Graphcast
d I . FT
ma gc.



'HiStOry' Of AI Forecasting ARTIFICIAL INTELLIGENCE

Weather forecasting is having an Al moment

EMERGING TECHNOLOGIES

e Ranid . Al can now outperform
apld progress in conventional weather ———

weather forecasting  forecasting—inundera &
has occurred in the minute, too

\l-text detection tools are really easy to fool.

Dec 14,2023
last two years
.
r : Al outperforms conventional weather
forecasting methods for first time
m \ Google DeepMind’s model beat world’s leading system in 90% of metrics used and took
only a fraction of the time
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MI. models

* All four models come from the 'tech giants":

* FourCastNet (NVIDIA - implements a vision transformer architecture
with an Adaptive Fourier Neural Operator - AFNO).

* FourCastNet v2 (NVIDIA — uses Spherical Fourier Neural Operators
SFNOs)

* Pangu-Weather (Huawei - Transformer based architecture)

* GraphCast (Google - Graph Neural Networks)

All models train on ECMWEF data.

Models are showing considerable ability: equal or better than NWP in many

domains. Their ability to forecast extremes is more open, and the focus of
analysis has been different.



Storm Ciaran

Storm Ciaran evolved from a weak disturbance to a deep storm in November 2023.

* First seen as a low-pressure weather system south of Newfoundland at about 00
UTC on 31 October 2023.

* Tracked quickly across the Atlantic before underdoing explosive deepening,
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Storm Ciaran - A Record Breaking Storm

Storm Ciaran evolved from a weak disturbance to a deep storm in November 2023.

* First seen as a low-pressure weather system south of Newfoundland at about 00
UTC on 31 October 2023.
* Tracked quickly across the Atlantic before underdoing explosive deepening,
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Storm Ciaran - Damage, Disruption

Storm Ciaran caused substantial damage and disruption in the UK and continental Europe.

* Across Northern Burope, at least 16 people were killed. -8:Jersey Met  weweregsenice
* Multiple airports, train services in Europe were shutdown.
* An estimated 1.2 million households in northern France were left R o D b i St
Cap de Yo Magwe and The de Brebat, %0 &egrees aoed and § degrovs wost ,
without electricity and more than 1 million residents were cut off led c i
. e e
from the mobile telephone network. . S
Wind Waming 1111 \ -
Issucd 08:82 UTC Wednesday 01 November 2023 '\.Vv-""-'{'" >
Closer to home: i oA e gl
* Approximately 10,000 homes in Cornwall were left without - bR
SOON 690 12 bours from the tene of e
power, hundreds of schools were closed and many train services - i o
. PV bt o0 o s . 2wl R
were disrupted by fallen trees T
* Red weather warning issued by the Jersey Met Office more than a
A COLOLR WARNING ACTION i
day ahead, closed all Channel Island Schools, airports, harbours Rt RO WARNNG - ~
Canon with wind sennitive
and many non-essential businesses on 2 November e - St
ORANGE. GaLE e

https:/ /www.metoffice.gov.uk/binaties/ content/assets/metofficegovuk /pdf/weathet/learn -about/uk-past-events/interesting/ 2023 /2023_09_storm_ciaran_1.pdf



Do Al models produce better forecasts than
physics-based models?

* Not only record breaking, extreme, but at the time it represents a valuable out-of-sample
test for the MI.-models
* FourCastNet
* FourCastNet v2
* Pangu-Weather
* GraphCast

Compared with forecasts from NWP (and reanalysis):

* ECMWF (including IFS HRES)
e Met Office

* JMA

 NCEP



Storm Ciaran - Storm Track/MSLP

First seen as a low-pressure weather system
south of Newfoundland at about 00 UTC on
31 October 2023.

Tracked quickly across the Atlantic
before underdoing explosive deepening.

Initialised forecasts at 0OOUTC on 31 October

Track 1s well forecast by IFS HRES and ML-
models

BUT small differences in the low

pressure centre location are critical for
accurate predictions needed for weather
warnings along the south coast of England.
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Figurel: (a, b) Maps of 10-m wind speed (shading) and MSLP (contours) at (a) 00 UTC and (b)
06 UTC 2 November 2023 from the IES analysis. (c) Six-hourly track points from the IFS
analysis and the IFS HRES forecasts and Al models from 06 UTC 31 October to 06 UTC 2nd
November 2023 (left to right) together with partial MSLP and 250-hPa wind speed from the IES
analysis at 06 UTC on 31 October, 1 November and 2 November (left to right).
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Storm Ciaran

MSLP and max 10m windspeed evolution — ML. Models too weak
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All forecasts of minimum MSLP closely
follow analysis

Spread between physical models is similar
to the spread between ML-models

Larger spread in max 10m windspeeds

The wind speeds forecast by the ML
models are far too weak and fail to
capture rapid intensification of the winds

after about 06 UTC 1 November

Note that this isn't the case for ERA-
5 analysis forecasts so likely not a
"training" problem (or is it?)



Storm Ciaran

10m winds - 00 UTC 2 November (time of maximum intensity)

(o) ERAS Reanalysis (b) IFS HRES (c) Graphcast * ML models fail to predict the
\ - i strongest winds in a band

w
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following the isobars in the
region of the tightest MSLP
gradient

w
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ML models fail to capture the
structure and magnitude of the
winds in (as seen in the IFS

HRES forecast/ERA5/IFS
analysis)
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* (*despite ML models being
trained on ERAS).
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* Mixed messages.



Shifted lead time predictions — Hazard Warnings

* Forecasts are initialised at 00 UTC 1 November, during the onset of
Ciaran’s rapid intensification phase. They are evaluated 18 hours later and
24 hours later, when Storm Ciaran’s peak wind speeds were observed.

* By shifting the focus to these short lead times from the previous
section, the aim is to highlight both the similarities in and
differences between, the NWP and ML forecasts on timescales
relevant for refining hazard warnings.



Dynamical structure ot Storm Ciaran (18 UTC on 1

November 2023)

* ML models accurately capture the
general shape of Storm Ciaran, but
struggle to represent frontal
structures conducive to mesoscale
high-impact features.

* Similarly: maximum wind speeds

are weaker in the M. models than
in ERADS.

(a) ERA5 Reanalysis (b) IFS HRES (c) Graphcast

Figure 4: Maps of wind speed at 850 hPa (shading), wind speed at 250 hPa
(65 ms-1, cyan contour with high values in the bottom left of the panels), wet-
bulb potential temperature at 850 hPa ( dark blue, light blue, light red and
dark red contours), MSLP (thin grey contours), relative humidity with respect
to water at 700 hPa (grey shading encircling regions above 80%), vertical
component of relative vorticity at 850 hPa (light-to-dark green shading).
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Dynamical structure of Storm Ciaran at 00 UTC on

2 November 2023.

The structures of the MSLP fields
are similar for the different
models despite the differences in
the wind speed structure and
magnitude.

Wind maxima are consistently
underestimated in the ML models
when compared to the
benchmarks provided by the
ERADS5 and IFS forecast.

(a) ERA5 Reanalysis 4 (b) IFS HRES ) ~ (c) Graphcast

As previous figure but for the dynamical structure of Storm

Ciaran at 00 UTC on 2 November 2023.
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Conclusions

Forecasts of the rapid MSLP deepening and track of the storms produced by the ML-
models were essentially indistinguishable to NWP forecasts. Many important dynamical
features of the storm were well captured by the ML models.

ML-models failed to represent the strength of the cross-front thermal gradient in the
bent-back front.

All four ML models failed to produce the narrow band of very strong winds at the
surface that led to the most severe impacts.

This is important not least as the economic loss resulting from strong surface
winds is often assumed to scale as the cube of normalised wind gust speed over
a threshold.

Ability of ML models to forecast more dynamically unusual storms is an open
question.

(Starting to explore this now)

Physical consistency between models.



Next steps — Aurora Showing the Way?

* "A recent study by Charlton-Perez et al. (2024)

underscored the challenges faced by even the most
advanced Al weather-prediction models in capturing

the rapid intensification and peak wind speeds of Storm
Ciaran.

To help address those challenges, a team of Microsoft

researchers developed Aurora, a cutting-edge Al

foundation model that can extract valuable insights

heric data.
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Next steps — Aurora Showing the Way?

* "By operating at a high spatial resolution of 0.1°
(roughly 11 km at the equator), Aurora captures
intricate details of atmospheric processes, providing
more accurate operational forecasts than ever
before—and at a fraction of the computational cost

of traditional numerical weather-prediction systems. "

A flexible 3D foundation model of the atmosphere

PRETRAINING FINETUNING & INFERENCE :
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Figure 1: Aurora is a 1.3 billion model for high- of weather and Aurora is a flexible 3D Swin Transformer with 3D
Perceiver-based encoders and decoders. At pretraining time, Aurora is optimized to minimize a loss on multiple heterogeneous datasets with different resolutions, variables, and pressure
levels. The model is then fine-tuned in two stages: (1) short-lead time fine-tuning of the pretrained weights and (2) long-lead time (rollout) fine-tuning using Low Rank Adaptation (LoRA).

The fine-tuned models are then deployed to tackle a diverse collection of

at different

Table 3: Summary of the 10 datasets used to pretrain the different Aurora configurations presented in this work.

Prewraining Datasets

o _ Surface Aunospheric  Num o Num
Name Resolution  Timeframe vartuee e um size(TB) UM
ERAS 0.25% % 0. 1979-2020  2T.U10, V10, MSL U, V.T. Q. Z 13 105.43 367.920
HRES-0.25 0. 0. 2TLUIO. VIO, MSL  U.V.T. Q. Z 13 42.88 149,650
IFS-ENS-0.25 0. 0. 2T U10. W10, MSL  U.V.T. Q. Z 3 51841 6.570.000
GFS Forecast o 0.2 JT.UIO. VIO.MSL U.V.T.Q.Z 13 130.39 560,640
GFS Analysis 0. 0. 3T.UI0. W10 MSL  U.V.T. Q. Z 13 204 8760
GEFS Reforecast o. 0. 2T. MSL U V.T.Q.Z 3 194,02 2.920.000
CMCC-CM2-VHR4 0. 0. 2T.UTO. VIO.MSL  U.V. T Q 7 126 94900
ECMWF-TFS-HR o. 0.4 2T.UI0. VIO, MSL  U.V.T.Q 7 389 94900
MERRA-2 0. =0 2T.UI0. VIO, MSL  U.V.T.Q 13 5.85 125,560
IFS-ENS-Mean 0. 0. 20182020 2T.UI0. VIO.MSL U, V.T.Q.Z 3 10.37 131,400
Total 121991 11.023.730
Table 4: Summary of the datasets used to fine-tune the differcnt Aurora experiments presented in this work.
Fine tuning Datasets
Name Resolution  Timeframe Surface Atmospheric — Num g, gy, Num
Variables Variables levels frames
HRES-0.25 2016-2021 2T U10, V10, MSL U.V.T.Q.Z 13 5146 179.580
HRES-0.1 2016-2022 2T, U110, V10, MSL U. V. T, Q,Z 13 1829 10,220
2T, U10, V10, MSL., U. V. T.
TC CO. TC NO, TC NO,,. , Vo T Z, s
CAMSRA 2003-2021 e SOn e O AL CO,NO,Noz. 13 364 55480
PMoa . PMy 0 202, Ca
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VerAl Workshop

* Co-organized by Jochen Brocker and myself.
* Verifying, explaining etc. the AI models.
* Writing up report on this. (can send)

“In a report on extreme weather risks, the House of Commons Public
Accounts Committee raised concerns about UK government’s approach
in being able to strengthen UK’s resilience to society-wide risks (including
extreme weather risks), saying it “lacks the required robust leadership,
oversight and urgency”.

... Storm Ciaran was not an unusual storm, and as part of UK
preparedness, further work must also go into understanding how much

the AI models’ predictions can be trusted for more dynamically unusual
storms.”

This is especially important with an increase in the likelihood of
extreme weather events as climate change continues.

Digital Construction News

Al forecasting: Storm Ciaran and
UK resilience to extreme weather
events

May 14, 2024

Wi ith the increasing urgency for the UK to
strengthen its resilience to extreme weather events,
Dr Simon Driscoll and Dr Natalie Harvey from the
University of Reading looks at the Al forecasting
revolution and the mixed ability of this approach to
capture a record-breaking windstorm


https://committees.parliament.uk/committee/127/public-accounts-committee/news/200939/extreme-weather-government-approach-to-societywide-risks-lacks-leadership-and-urgency/

Thank you tor listening!
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Abstract

There has been huge recent interest in the potential of making operational weather forecasts

using machine learning techniques. As they become a part of the weather forecasting
toolbox, there is a pressing need to understand how well current machine learning models
can simulate high-impact weather events. We compare short to medium-range forecasts of

Storm Ciardn, a European windstorm that caused sixteen deaths and extensive damage in

— — — —
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