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• Why MY chosen stochastic parametrisation?
• Practical performance vs. theoretical underpinning
• Should every model use the same scheme?

• Different modeling assumptions
• Different resolutions
• Different regional foci

• To what extent can one scheme ‘mop up’ all uncertainty
• Do we need multiple schemes or will this lead to double counting?
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• Why MY chosen stochastic parametrisation?
• Practical performance vs. theoretical underpinning
• Should every model use the same scheme?

• Different modeling assumptions
• Different resolutions
• Different regional foci

• To what extent can one scheme ‘mop up’ all uncertainty, 
• Do we need multiple schemes or will this lead to double counting?

• What about the climate modelling community?
• Do multiple models/parametrisations span model uncertainty?
• How much of structural errors can we attribute to poor tuning?
• How can stochastic approaches complement multi-physics?



How can we begin to answer these questions?

→  Require a large database of model error

Ideally accompanied by
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• For different models
• For different global regions
• For different seasons
• For different model resolutions

• Information on model parametrised tendencies



Model Uncertainty - MIP

• Joint initiative of WWRP’s PDEF and 
WCRP’s WGNE
• model error identification
• Aim: intercomparison of random and 

systematic error characteristics 
across many models

• Will provide new database of model 
error

• Funding secured to support work
• NCAR/NOAA DTC – June 2021-June 2025
• Leverhulme Trust: Oxford (with ECMWF), 

Exeter (with UK Met Office), Météo 
France – Sept 2023-Sept 2026
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https://mumip.web.ox.ac.uk



Use a high resolution simulation as ‘truth’
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• Use high resolution simulation, that resolves process of interest, to inform 
parametrisation at lower resolution

• “nature run” should be extended in space and time -> learn spatio-temporal 
correlations needed by stochastic parametrisations

E.g. LES → inform stochastic parametrisation for LAM
E.g. convection permitting LAM → inform stochastic parametrisation for global EPS

• Caveat: the high resolution benchmark is not the real atmosphere
Ø Compare model to multiple benchmarks, including those from other models

Image credits: (L) M. Herzog   (C) COSMO   (R) ECMWF



1. Long, free-running, 
high resolution simulation

2. coarse 
grain

3. Forecast model
       

4. compare to 
learn statistics of 

error

2. coarse 
grain
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Christensen et al, 2018, JAMES.
Christensen, 2020, QJRMS

Use a high resolution simulation as ‘truth’

Hannah Christensen            Coarse-graining to constrain stochastic parametrisations



Single Column Model (SCM) as Forecast Model

• A SCM consists of:
– subgrid parametrisations from parent model
– forced with dynamical tendencies

• How do we use an SCM?
– Use coarsened high-res simulation to prescribe 

Initial conditions, Dynamical forcing and 
Boundary conditions

• Benefits of using SCM? 
– Supply dynamical tendencies targets 

uncertainty in the parametrisation schemes
– SCM portable and cheap
– Tile many SCM to cover domain
– New DEPHY format facilitates sharing of 

SCM driver files

Christensen, Dawson and Holloway, 2018, JAMES
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1. Long, free-running, high 
resolution simulation

2. coarse 
grain 3. SCM

‣ initial conditions
‣ dynamical forcing
‣ boundary conditions

4. compare2. coarse 
grain

t

t + Δt



First MUMIP experiment: Indian Ocean domain

• Last 30 days of ICON 2.5km Dyamond
Summer simulation

• Data archived 3 hourly
• CG to resolution of 0.2 degrees (~22 km)
• Domain in Indian Ocean: (51-95E,5N-

35S)
• See website: mumip.web.ox.ac.uk
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Rapid progress over recent months!

Complete datasets from four models!

- CCPP SCM + Global Forecast System (GFSv17) physics    (X. Sun, NOAA/DTC, K. Newman, NCAR/DTC)
- CCPP SCM + Rapid Refresh (RAP) physics                         (X. Sun NOAA/DTC, K. Newman, NCAR/DTC)
- ECMWF OpenIFS CY48r1      (E. Groot, U. Oxford)
- Météo France ARPEGE-Climat SCM     (W. Lfarh, Météo France)

UK Met Office runs in production, available shortly    (K. Singh, Univ Exeter)



Analysing the data: multiplicative noise? 
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Very preliminary analysis so far!

 

 

- 3 models

 

- 5 days simulation considered:  

 

       
  = 1.8 millio

n simulations



IFS
mean and standard deviation of reference conditioned on SCM prediction

U tendencies

1009 hPa

925 hPa

715 hPa

435 hPa

240 hPa

121 hPa

Uncertainty minimumWell calibrated, especially near surface
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GFS
mean and standard deviation of reference conditioned on SCM prediction

U tendencies

1008 hPa

905 hPa

730 hPa

525 hPa

325 hPa
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RAP
mean and standard deviation of reference conditioned on SCM prediction

U tendencies
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Multi-model vs SPPT

OBS
IFS
GFS
RAP

• Consider vertical profiles of physics T tendency in two sample columns



Multi-model vs SPPT

OBS
IFS
GFS
RAP

• Consider vertical profiles of physics q tendency in two sample columns



MU-MIP plans

• Assess structural error across different models
– Exeter lead: H. Lambert and K. Singh

• Assess parametric uncertainty
– Meteo France lead: R. Roehrig and W. Lfarh

• Assess random error, foundations of stochastic parametrisations
– Oxford lead: H. Christensen and E. Groot
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Fig: Hugo Lambert Fig: Hourdin, …, Roehrig, et al, 2020, JAMES



Please see Edward Groot’s poster for more analysis
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mumip.web.ox.ac.uk
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Thanks for listening

Hannah.Christensen@physics.ox.ac.uk



Extra Slides



880 hPa

900 hPa

920 hPa

level 91
level 90

level 89

Coarse graining details

1. Local area averaging for coarse graining

2. Linearly interpolate in time
3. Vertical interpolation

4. Above high-resolution model top, pad data using ECMWF analysis
5. Advective tendencies estimated from the coarsened fields

6. Specify sensible and latent heat fluxes from high-resolution dataset, but 
take static boundary conditions from operational ECMWF model at T639

• Evaluate coarse-scale grid box mean psfc
• Coarse-grain other fields along model levels
• Interpolate from native model levels to 

target model levels

Christensen et al, 2018, JAMES.



What we do
6

• Coarse-grain Cascade to TL639
• Run an independent SCM simulation, initialised every hour, from 

every lat-lon point (>68,000) in the coarse-grained domain
• Run each SCM simulation for two hours, discard the first hour to 

avoid focus on spin up
• Repeat for entire 9-day Cascade simulation

Time / hr

Cascade

SCM

0                      1                      2                      3                      4                      5

Initialise 2-hour SCM simulations every hour
Only consider 2nd hour of SCM forecast to avoid focus on spin-up



• E.g. Initial tendency approach in which physics tendencies in 
data assimilation cycle are compared to the analysis 

• E.g. Transpose AMIP in which climate models are run in 
weather forecasting mode from common initial conditions

Initial 
tendency

Transpose AMIP My SCM
approach

Decompose model evolution          
(& error) into single processes J J
No data assimilation capabilities 
needed to evaluate forecast model J J
Comparison of model with its native 
analysis may mask errors L
Inconsistencies in IC can lead to 
systematic drifts L L

Cf. existing approaches to identify model error
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Standard deviation vs. mean

Consider T tendency
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stratosphere stratosphere

surface

Data grouped by level. 
Dark blue: levels 91—87 (ground—995 hPa)
Yellow: levels 32—36 (86—60 hPa)
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