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How should we represent model uncertainty?
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How should we represent model uncertainty?

 Why MY chosen stochastic parametrisation?
* Practical performance vs. theoretical underpinning
e Should every model use the same scheme?
* Different modeling assumptions
* Different resolutions
* Different regional foci
* To what extent can one scheme ‘mop up’ all uncertainty

* Do we need multiple schemes or will this lead to double counting?
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How should we represent model uncertainty?

 Why MY chosen stochastic parametrisation?
* Practical performance vs. theoretical underpinning
* Should every model use the same scheme?
e Different modeling assumptions
* Different resolutions
* Different regional foci
* To what extent can one scheme ‘mop up’ all uncertainty,

* Do we need multiple schemes or will this lead to double counting?

* What about the climate modelling community?
* Do multiple models/parametrisations span model uncertainty?
* How much of structural errors can we attribute to poor tuning?

* How can stochastic approaches complement multi-physics?
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How can we begin to answer these questions?

- Require a large database of model error

* For different models

* For different global regions

* For different seasons

* For different model resolutions

Ideally accompanied by

* Information on model parametrised tendencies
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Use a high resolution simulation as ‘truth’

* Use high resolution simulation, that resolves process of interest, to inform
parametrisation at lower resolution

* “nature run” should be extended in space and time -> learn spatio-temporal
correlations needed by stochastic parametrisations

E.g. LES = inform stochastic parametrisation for LAM e

E.g. convection permitting LAM - inform stochastic parametrisation for global EPS

* Caveat: the high resolution benchmark is not the real atmosphere
» Compare model to multiple benchmarks, including those from other models

Image credits: (L) M. Herzog (C) COSMO (R) ECMWF
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Use a high resolution simulation as ‘truth’

1. Long, free-running,
high resolution simulation

3. Forecast model

4. compare to
learn statistics of
error

Christensen et al, 2018, JAMES.
Christensen, 2020, QJRMS
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Single Column Model (SCM) as Forecast Model

A SCM consists of:
— subgrid parametrisations from parent model
— forced with dynamical tendencies

e How do we use an SCM? -

— Use coarsened high-res simulation to prescribe
Initial conditions, Dynamical forcing and
Boundary conditions

> initial conditions
3. SCM » dynamical forcing
> boundary conditions

* Benefits of using SCM?

— Supply dynamical tendencies targets
uncertainty in the parametrisation schemes

— SCM portable and cheap
— Tile many SCM to cover domain

— New DEPHY format facilitates sharing of
SCM driver files

Christensen, Dawson and Holloway, 2018, JAMES
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First MUMIP experiment: Indian Ocean domain

e Last 30 days of ICON 2.5km Dyamond
Summer simulation
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Rapid progress over recent months!
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Complete datasets from four models!

- CCPP SCM + Global Forecast System (GFSv17) physics  (X. Sun, NOAA/DTC, K. Newman, NCAR/DTC)

- CCPP SCM + Rapid Refresh (RAP) physics (X. Sun NOAA/DTC, K. Newman, NCAR/DTC)
- ECMWEF OpenlFS CY48r1 (E. Groot, U. Oxford)
- Météo France ARPEGE-Climat SCM (W. Lfarh, Météo France)

UK Met Office runs in production, available shortly (K. Singh, Univ Exeter)



Analysing the data: multiplicative noise?

SPPT: T:D+(1+Q)ZE
i=1



Analysing the data: multiplicative noise?
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IFS U tendencies

mean and standard deviation of reference conditioned on SCM prediction

g 131-137
124-130
117-123
110-116
103-109
096-102
089-095
082-088
075-081
068-074
061-067

o

) W
o0 ®®® ® ® ©eeq 0062 ¢
L s L |
[} o o o oo OOCQM P W
oor®

121 hPa

%
o
Q
[
o
1 o
o
]
o
éj
L ]
[
[ ]
o,
O 0000 © 0 © 0 0 0 @

240 hPa P L e- s W ¥ T

/‘q_ ——.’,— ———— ,:~~~ [eX5Y ]
® RS g == B[ ™" =e=o__ ST 054-060
g‘/‘——’.’—’— oo;oﬁf.‘—. e T o -
= o O s e ~—"
435hPa 3 f7TT, g -
=" = .oo:w__ —_.,—’
. .‘/": -
715hPa :’— ) '.,—.’ _,.—.i——. |

925 hPa i ——"'—.:/0 |

1009 hPa

w (P)

Well calibrated, especially near surface Uncertainty minimum
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mean and standard deviation of reference conditioned on SCM prediction
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RAP U tendencies

mean and standard deviation of reference conditioned on SCM prediction
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Multi-model vs SPPT

* Consider vertical profiles of physics T tendency in two sample columns
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Multi-model vs SPPT

* Consider vertical profiles of physics g tendency in two sample columns
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MU-MIP plans

e Assess structural error across different models
— Exeter lead: H. Lambert and K. Singh

* Assess parametric uncertainty
— Meteo France lead: R. Roehrig and W. Lfarh

* Assess random error, foundations of stochastic parametrisations
— Oxford lead: H. Christensen and E. Groot
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Please see Edward Groot’s poster for more analysis
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Model Uncertainty-Model Intercomparison Project
(MU-MIP)

A dataset for model physics intercomparison and model erro

Edward Groot?, and MU-MIP core team: Hannah Christensen?, Xia Sun?, Kathryn Newman2, Wahiba Lfarh3, Kasturi Singh5, Romain

Roehrig?, Hugo Lambert4, J

eff Beck? and Keith Williams®

niversity of Oxford; 2: Developmental Testbed Center; 3: Meteo France; 4: University of Exeter; 5: UK MetOffice
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Introduction

MU-MIP is an i project for model uncertainty in which we intercompare the physics
parameterization suites used in numerical weather and climate modelling. Each physics suite consists
of a package of izati e.g. for i iation, surface with
land/ocean and cloud processes. These are thought to be the de ibution to model

uncertainty across all GCMs and numerical weather prediction models.

We run the simulations with parameterization suites by utilizing the single-column version of
operational models (SCM) over the Indian Ocean domain about ten million times. To ensure fixed
and rep i we assume a ground truth derived from DYAMOND

i and insert its as initial and boundary conditions in the SCMs. One month of
2016 is covered based on the storm-resolving ICON (AX = 2.5 km) and driven by three-hourly
archived dynamics.

After re-gridding to 0.2 degrees, we currently carry out an ocean-only intercomparison over a
subdomain of 44.000 tiles. Two parameterization packages from the Developmental Testbed Center at
NCAR have been utilized: RAP and GFS (version 17).

The OpenlFS-SCM dataset with cycle 48 physics is near completion (as of August 2024) and
MeteoFrance and UK MetOffice/University of Exeter will follow.

Throughout, we Sfr('lxﬁ '[gi_' fﬂfi'ffq{, ogmparability of parameterization suites.

e N B> 01 Mgy 40, 46 s

PDF of Mixed-layer (ML) values of VZCAPE and VZCIN from three parameterization suites on a log-axis at 6 hour lead
time (enclosed: 3 hours). The lines indicate PDFs across variation across the diurnal cycle.

Grey: ground truth (ICON 2.5km-derived conditions prescribed as initials)

Right, black: same ground truth MLCIN following slightly different IFS levels define the ML (further investigation needed)

We intercompare conditional PDFs of tendencies and the model state to learn
about multi-model uncertainty, eventually at benefit of stochastic
perturbation schemes (Christensen, 2020, QJRMS).

‘SPal Gistribution of +6h 507 QUINLIE MLssun, CAPE. RAP-physics

00 Of 460 30 QuNIIE Misoap CAPE. GFS PSS

How can we learn about model physics, and what the numerical models do?

Lead time evotution fo three physics packages, ugper and lower

Left: mixed-layer CAPE as function of lead time for the ITCZ band; right: mixed-layer CIN as a function of lead time for the
entire domain, with enclosed net physics and dynamics tendencies of IFS across the diurnal cycle.
Below: time evolution of 3 and 6 hour change of mixed-layer CAPE (left) and CIN (right) over the full domain.

ator fo s

(Conditional) PDFs of mixed-layer CIN change (left) and CAPE change (center) at 6 (3) hours lead time across various
suites; left and center: full PDF; right: conditioned PDF for mixed-layer CAPE over precipitating parts of the grid (at least
1.7 mm per 6h). GFS has much more of such precipitating cells than RAP.

Convective adjustment from a model’s non-native regime is linked to precipitation intensity, which
could link to {{ ity in izd ipitation rates i by p ized deep-
convection in ERAS (Buschow, 2024, QJRMS).
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mumip.web.ox.ac.uk
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Home

Model Uncertainty - MIP Q)

Welcome to the Model Uncertainty - Model Intercomparison Project (MUMIP)

An initiative of the WCRP Working Group for Numerical Experimentation and the WWRP Predictability, Dynamics and Ensemble Forecasting Working Group

Introduction News

—a 'wfig Oxford Workshop on

MU-MIP is an international project which seeks to characterise systematic and random
component of model error across many different climate models. This is the first coordinated Model Uncertainty, 23-26
intercomparison of random model error, and will be used to inform stochastic . Sept

parametrisation development. & g 29 August 2024 CECMWE D
= s P e 10 June 2024

== New MUMIP data
~ B available for analysis

Some key questions:

® How should we best represent model uncertainty/random error using stochastic
approaches?

® To what extent should this representation be model specific or a fundamental property
of atmospheric models?

® Are current approaches justified? How can they be improved?

® Can a coarse-graining approach be used to validate and compare high-resolution
simulations and their behaviour across scales?

n MUMIP Meeting 5 Leverhulme Trust
Research Project Team

3 29 April 2024 reveruuine QYNNI
m_j 21 February 2024

Leverhulme Trust
Research Project team
AL Meeting 1

% MUMIP Meeting 4
4 October 2023

12 January 2024

Contact

The MU-MIP team consists of scientists from 10+ institutes spanning three continents. Please n 2 3 next last
get in touch bv emailing Hannah Christensen on hannah.christensen 'at' phvsics.ox.ac.uk if



Thanks for listening

Hannah.Christensen@physics.ox.ac.uk



Extra Slides




Coarse graining details

1. Local area averaging for coarse graining
I
l//n,k — ZWn,iwi,k
i

2. Linearly interpolate in time
3. Vertical interpolation

880 hPa

* Evaluate coarse-scale grid box mean p,
* Coarse-grain other fields along model levels

* Interpolate from native model levels to
target model levels

4. Above high-resolution model top, pad data using ECMWF analysis
5. Advective tendencies estimated from the coarsened fields

adv(y)|,, = —Up 4 '§k(ll/n,k)

6. Specify sensible and latent heat fluxes from high-resolution dataset, but
take static boundary conditions from operational ECMWF model at T639

Christensen et al, 2018, JAMES.



What we do

* Coarse-grain Cascade to T; 639

* Run anindependent SCM simulation, initialised every hour, from
every lat-lon point (>68,000) in the coarse-grained domain

 Run each SCM simulation for two hours, discard the first hour to
avoid focus on spin up

* Repeat for entire 9-day Cascade simulation

Initialise 2-hour SCM simulations every hour
Only consider 2" hour of SCM forecast to avoid focus on spin-up

Cascade

SCM

>

0 1 2 3 4 5 Time/hr




Cf. existing approaches to identify model error

e E.g. Initial tendency approach in which physics tendencies in
data assimilation cycle are compared to the analysis

* E.g. Transpose AMIP in which climate models are runin
weather forecasting mode from common initial conditions

Initial Transpose AMIP My SCM

tendency approach

Decompose model evolution @ @
(& error) into single processes

No data assimilation capabilities @ @
needed to evaluate forecast model

Comparison of model with its native @
analysis may mask errors

Inconsistencies in IC can lead to
systematic drifts @ @
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Consider T tendency

Mean tendency Uncertainty in tendency
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