The Maritime Continent barrier effect on MJO predictability

Hyemi Kim^{1,2} ¹Ewha Womans Univ., Seoul, S. Korea ²Stony Brook Univ., NY, USA

MJO prediction: S2S & SubX models

- Kim et al. (2019)
- Lim et al. (2019)
- Jiang et al. (2020)

Common Issues in MJO prediction

- Lack of ensemble spread (under-dispersive)
- Quick decay of MJO signal
- Weaker convection-moisture coupling
- Missing interaction with other sources of predictability (e.g., QBO)
- MJO Maritime Continent prediction/propagation barrier

among many others...

H. Kim, F. Vitart, D. Waliser, 2018: Prediction of the Madden-Julian Oscillation: A Review (J. Climate)

Maritime Continent prediction barrier

(b) Zonal profile of topography

Maritime Continent prediction barrier

8

10 12

-12 -10

Maritime Continent prediction barrier

Kim et al. (2018, modified Table 1 from Vitart 2017)

MJO eastward propagation process (moisture mode theory)

Observation (ERAI, NOAA OLR)

Winter mean moisture (Q850)

 $-\langle V'\cdot
abla \overline{Q}
angle$ MJO wind Mean Q

→ Advection of seasonal mean moisture (\overline{Q}) by anomalous MJO circulation (V') controls the <u>MJO</u> <u>eastward propagation</u>

Kim et al. (2019)

Mean State Bias

Precipitation distribution

• 4-weeks average

Control simulation

Land area excluded

Kim et al. (2019)

Moisture-Precipitation coupling

- Convection starts too early and occurs too frequently in the low moisture regime
- Deep convection is not sufficiently inhibited when tropospheric moisture is low
- This is likely due to the representation of entrainment
- \rightarrow Moisture-depleted atmosphere (dry bias)

Kim et al. (2019)

Deep Learning for MJO bias correction

Output

16**0**W

Summary of Part I

- One of the main hurdles that plague the modeling and forecasting communities \$\frac{2}{21}\$, is the exaggerated MJO Maritime Continent (MC) barrier effect in models.
- This limits the global subseasonal predictability.
- S2S models have common biases in the mean state: Drier lower troposphere weakens the moisture advection process and MJO propagation signal
- \rightarrow This limits the MJO prediction skill and global subseasonal predictability.
- \rightarrow Deep learning bias correction may help to improve the prediction.

CESM2 Aquaplanet (0.9°×1.25°resolution, 32 vertical levels, 10yr)

- Earth is completely covered by water.
- Prescribed SST, no topography, no sea-ice.

Reasonable tropical intraseasonal variability

"MCbarrier" run

rate over the MC.

"Aqua-mountains": SST

decreases with 6.5K/km lapse

MCbarrier run: Colder and Drier

MJO activity

• MC barrier run: Weaker MJO activity near the MC

MJO propagation

- MCbarrier: MJO propagation is disturbed by the MC
- \rightarrow mimics the S2S models.

- OLRa (shading), U850a (contour)
- Reference: filtered OLR over IO (60°-90°E, 10°S-10°N)
- Dashed lines: 5m/s phase speed.

Perfect-model ensemble forecast experiment

MJO Predictability

MJO Predictability

- Bold lines: ensemble mean
- Thin lines: mean of ensembles
- Bar: ± 1.0 STD of skill by ensembles
- Whiskers: min and max values.

Q: What is the upper limit of the MJO prediction? ~ 6 weeks if the model is perfect.

(S2S/SubX model forecast skill: 3-4 weeks)

Q: How much skill is reduced by the Maritime Continent barrier? ~ 10 days

Summary of Part II

- We address the sole MC barrier effect on MJO predictability with a reducedcomplexity model (CESM2 Aquaplanet with WarmPool SST).
- The intrinsic MJO predictability is approximately **6 weeks**, and skill reduces to about **4.5 weeks when the MJO is impeded by the MC barrier**.
- Given that the recent operational forecasts (S2S, SubX) show an average of 3-4 weeks of MJO skill, improving the MJO propagation could improve the MJO skill to 4.5-5.5 weeks, close to its potential predictability (6 weeks).

* Kim, H., and J. J. Benedict, 2023: The idealized aqua-planet Maritime Continent barrier effect on the MJO predictability. J. Climate.

Forecast lead days

0.4 -

0.2