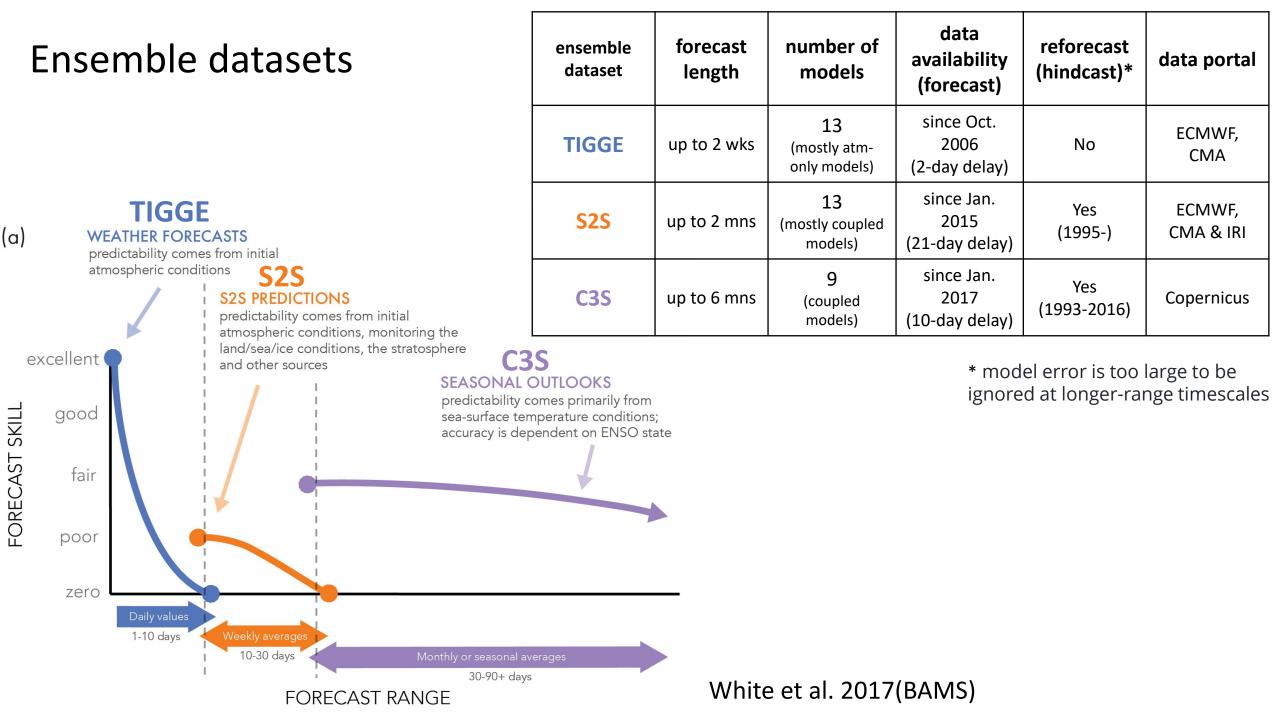

Workshop on Diagnostics for Global Weather Prediction@ECMWF, 9-12 September 2024

Outline of my talk

- Overview of three ensemble datasets
- TIGGE Museum (since 2010)
- > TIGGE article survey
- S2S Museum (since 2016?)
- C3S Museum (since 2021)

S2S: subseasonal to seasonal


C3S: Copernicus Climate Change Service

TIGGE: The Interactive Grand Global Ensemble

Summary

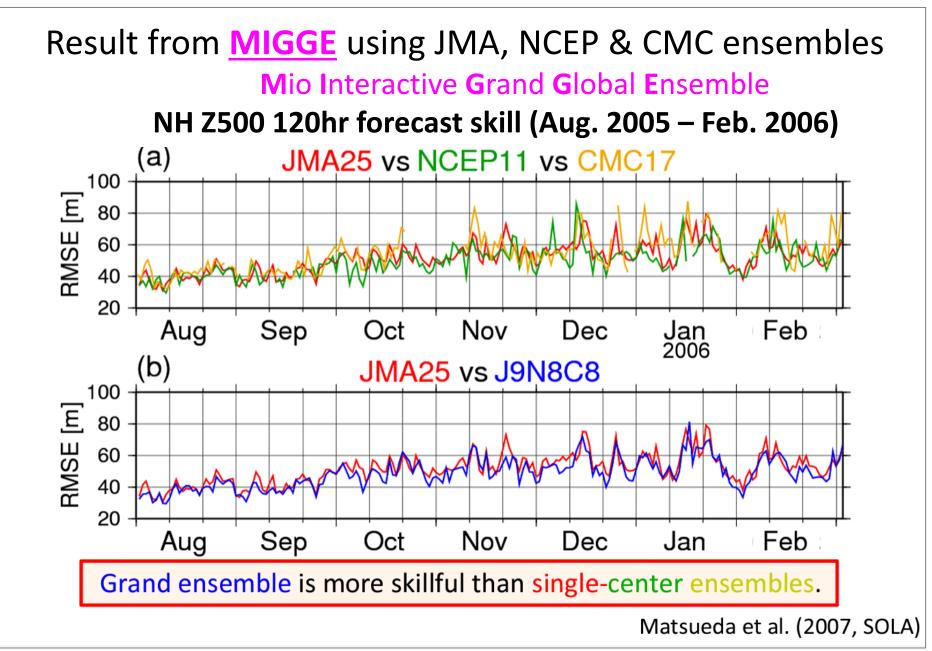
Routine work at the Museums:

- 1. retrieve ensemble forecast data (GRIB2 format) from data portals
- 2. compute additional variables (e.g., stream function), indices, statistics or scores
- 3. generate graphical forecast products with analysis (if available) and verification products

My predictability research using TIGGE, S2S and C3S ensemble data

- TIGGE project summary: Swinbank et al. (2016) * citations: 245 (google scholar)
- NH Blocking: Matsueda (2009)
- Madden-Julian Oscillation (MJO): Matsueda & Endo (2011)
- Arctic cyclone: Yamagami et al., (2018a,b, 2019)
- weather regimes: Matsueda & Kyouda (2016), Matsueda & Palmer (2018)
- early warning product for severe weather events: Matsueda & Nakazawa (2015), available in TIGGE Museum
- Russian heatwave in 2010: Matsueda (2011) * citations: 300 (google scholar)
- · Japanese heavy rainfall in 2018: Matsunobu & Matsueda (2019)
- summertime sea ice forecast: Nakanowatari et al. (2018, 2022)
- forecast verification in the Polar region: Jung & Matsueda (2016)
- forecast bust in the Polar region: Yamagami & Matsueda (2021)
- forecast bust of surface solar radiation: Uno et al. (2018)
- verification of grand ensemble: Matsueda & Tanaka (2008)
- teleconnection: Yamagami & Matsueda (2020)
- initial state-dependent predictability: Inatsu et al. (2023)
- cherry blossom: Yamaki et al. (2024)
- The TIGGE/S2S/C3S Museums (websites)

QR codes to Museums



TIGGE was established as a key component of the WWRP THORPEX program (2005-2014) to accelerate the improvements in the accuracy of 1-day to 2-week high-impact weather forecasts for the benefit of society, the economy, and the environment. The name **TIGGE** originally stood for "THORPEX Interactive **G**rand **G**lobal Ensemble".

Although the 10-year THORPEX program ended at the end of 2014, TIGGE has continued and the next 5-year phase of the archive (2024–2028) is currently underway. The name **TIGGE** was officially changed to "The International **G**rand **G**lobal Ensemble", but it is recommended to simply refer to "TIGGE". As of September 2024, TIGGE provides **medium-range ensemble forecasts from 13 NWP centres**: BoM, CMA, ECCC, CPTEC, DWD, ECMWF, IMD, JMA, KMA, Météo France, NCEP, NCMRWF, and UKMO.

Before TIGGE started... A pilot project between JMA and Univ. of Tsukuba

Daily RMSE for August 2005 - February 2006

TIGGE Models

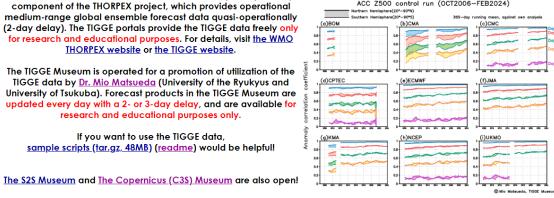
13 models Model's outputs are archived on their original grid or the coarser regular lat-lon grid.

	Status on 2021-04-27	Time range [Days/Hours]	Resolution (original)	Resolution (original) [km]	Resolution (archived) [°]	Ens. Size	High- res.? ***	Runs [UTC]	Daily data volume (all runs) [GB]
1	BoM (ammc)	d 0-10			0,45 x 0.3 (800 x 600)	17		0/6/12/18	23.5
2	CMA (babj)	d 0-15	0.5° x 0.5°	50	as original	30		0/12	83
3	CPTEC (sbsj)	d 0-15	0.9375° x 0.9375° (384 x 192, GG)	104	as original	15		0/12	7
4	DWD (edzw)	h 0-180	R3B06 L120 km	26.5	0.5 x 0.5 (720 x 361)	40	yes	0/12	78
5	ECCC (cwao)	d 0-16	Yin-Yang grid	39	0.25 x 0.25 (1440 x 721)	21	yes	0/12	153
6	ECMWF (ecmf)	d 0-15	O1280 L137	~9	O640 (ORGG)	51	yes	0/12	1100
7	IMD (vabb)	d 0-10	T1534 L64 (3072 x 1536 RGG)	12	0.12 x 0.12 (3000 x 1501)	21	cf	0/12	467
8	JMA (rjtd)	d 0-11	1.25° x 1.25° (288 x 145, TL479 L100)	139	as original	51		0/12	15
9	KMA (rksl)	d 0-12	cubed spherical grid	32	0.5 x 0.5 (720 x 360)	26	yes	0/12	60
10	Meteo-France (Ifpw)	h 0-48/0-90/0- 48/0-102	TL1198 c2.2 (stretched coefficient)	7.5-37**	0.5 x 0.5 (720 x 361)	35	cf	0/6/12/18	46 (7.8/ 14/ 7.8/ 16.6)
11	NCEP (kwbc)	d 0-16	C384 L64	25	0.5 x 0.5 (720 x 361)	31		0/6/12/18	102
12	NCMRWF (dems)	d 0-10	0.117° x 0.175° (ACG, N1024)	13	0.18 x 0.12 (2000 x 1501)	12	cf	0/12	398
13	UKMO (egrr)	h 0-174	0.187° x 0.28125° (1280 x 960, ACG, N640)	21	as original	18		0/6/12/18	225

The TIGGE Museum – website of medium-range forecast products –

Skill comparison of TIGGE medium-range ensemble forecasts ACC Z500 control run (OCT2006-FEB2024)

ug 04th - Sep 04th


Google **"TIGGE Museum"** or use QR code below

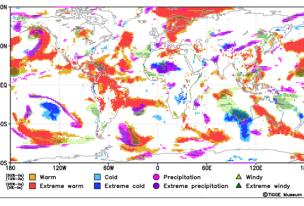
- opened in 2010
- products are updated everyday with a 3-day delay
- □ 10 models (DWD, IMD, and NCMRWF to be added)
- 16 forecast products from Oct. 2006 to the present (7.8TB):
 - ➤Z500 spaghetti & stamp maps

http://gpvjma.ccs.hpcc.jp/TIGGE/

- ➤tropical cyclone (only East Asia)
- ➤winter weather regimes
- ➤MJO (Madden-Julian Oscillation)
- ➤atmospheric blocking
- ➤teleconnection indices: EA, PNA, WP & EU
- ➢ probabilistic forecast of severe weather events: high/low
 - temperature, heavy rainfall, strong winds
- Forecast verifications & model biases: daily and seasonal
 - scores, MJO & blocking)

Welcome to the TIGGE Museum

Information about the operational medium-range Ensemble Prediction Systems (EPSs)


 Details of global EPSs available at the TIGGE data portals(<u>Latest</u>, <u>April</u> 2019, <u>December</u> 2015, <u>February</u> 2014)

The THORPEX Interactive Grand Global Ensemble (TIGGE) is a key

- Data availability at the ECMWF TIGGE data portal
- TIGGE real-time products Updated every day!
- Ensemble mean&spread and spaghetti diagram for Z500
- Ensemble forecasts for specific atmospheric phenomena
 - Tropical cyclone (July 2008-current, east Asia only)
 - Winter weather regimes (Euro-Atlantic, Pacific, and East-Asia only)
 - Madden-Julian Oscillation (MJO) forecasts [verifications]
 - Probabilistic 1D blocking forecasts over NH and SH
 - Probabilistic 2D blocking forecasts over NH and SH

Predicted severe weather events (grand ensemble) Initial: 2024.09.01.12UTC, Valid: 2024.09.04.12UTC

LastUpdate:09/03/2024 19:54:24

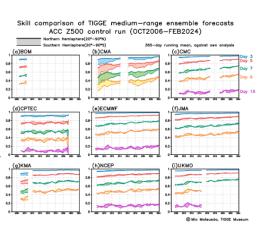
The TIGGE Museum – website of medium-range forecast products –

ua 04th - Sep 04t

Google **"TIGGE Museum"** or use QR code below

The Museum originally started on a small hard drive and was later opened to the public to encourage the use of TIGGE data. In the early stages, when I searched 'TIGGE Museum' on Google, it suggested "Did you mean: FIGGE art Museum?" I have been spending much time operating the Museum...

The THORPEX Interactive Grand Global Ensemble (TIGGE) is a key component of the THORPEX project, which provides operational medium-range global ensemble forecast data quasi-operationally (2-day delay). The TIGGE portals provide the TIGGE data freely only


Welcome to the TIGGE Museum

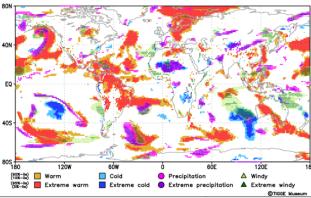
THORPEX website or the TIGGE website. The TIGGE Museum is operated for a promotion of utilization of the TIGGE data by <u>Dr. Mio Matsueda</u> (University of the Ryukyus and University of Tsukuba). Forecast products in the TIGGE Museum are updated every day with a 2- or 3-day delay, and are available for

for research and educational purposes. For details, visit the WMO

research and educational purposes only. If you want to use the TIGGE data, sample scripts (tar.gz, 48MB) (readme) would be helpful!

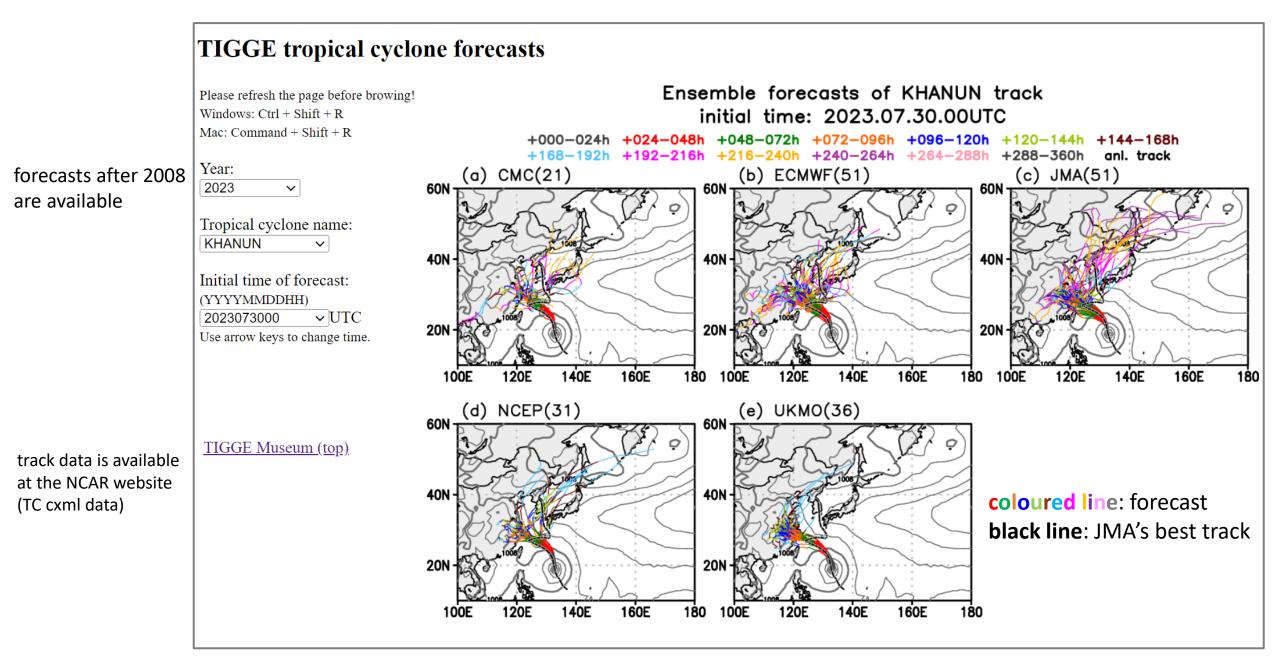
The S2S Museum and The Copernicus (C3S) Museum are also open!

LastUpdate:09/03/2024 19:54:24


Information about the operational medium-range Ensemble Prediction Systems (EPSs)

- Details of global EPSs available at the TIGGE data portals(<u>Latest</u>, <u>April</u> 2019, <u>December</u> 2015, <u>February</u> 2014)
- Data availability at the ECMWF TIGGE data portal

TIGGE real-time products Updated every day!


- Ensemble mean&spread and spaghetti diagram for Z500
- Ensemble forecasts for specific atmospheric phenomena
 - Tropical cyclone (July 2008-current, east Asia only)
 - Winter weather regimes (Euro-Atlantic, Pacific, and East-Asia only)
 - Madden-Julian Oscillation (MJO) forecasts verifications
 - Probabilistic 1D blocking forecasts over NH and SH
 - Probabilistic 2D blocking forecasts over NH and SH

Predicted severe weather events (grand ensemble) Initial: 2024.09.01.12UTC, Valid: 2024.09.04.12UTC

http://gpvjma.ccs.hpcc.jp/TIGGE/

The TIGGE Museum – tropical cyclone track forecasts (only East Asia) –

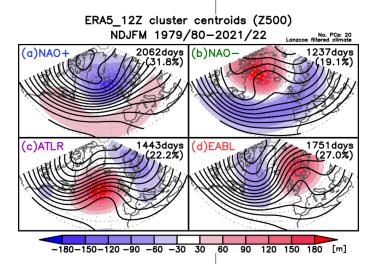
The TIGGE Museum – winter weather regime forecast –

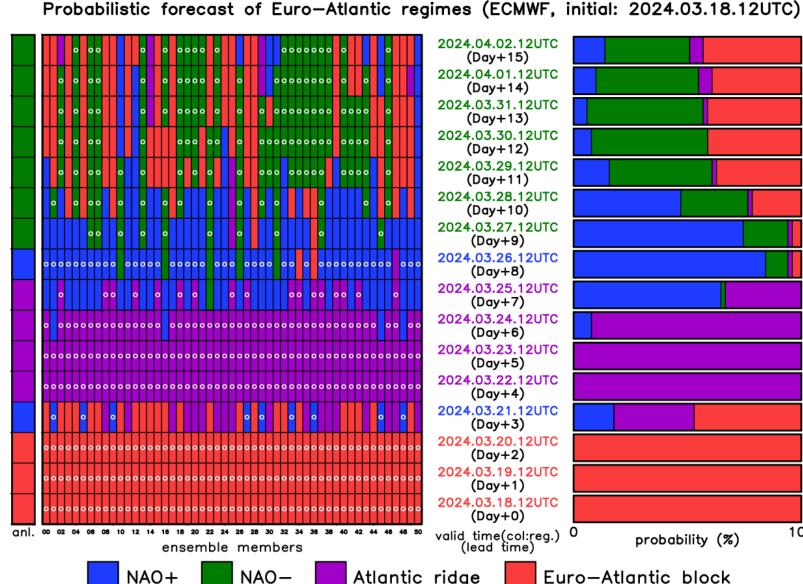
Please also see Matsueda & Palmer (2018) for verifications for regime forecasts

Europe, North Pacific, & East Asia regions

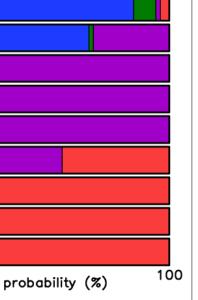
product only for CMC, ECMWF, JMA, NCEP & UKMO

all forecasts in extended winters of 2006-2024 are available

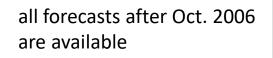



Winter regime forecast

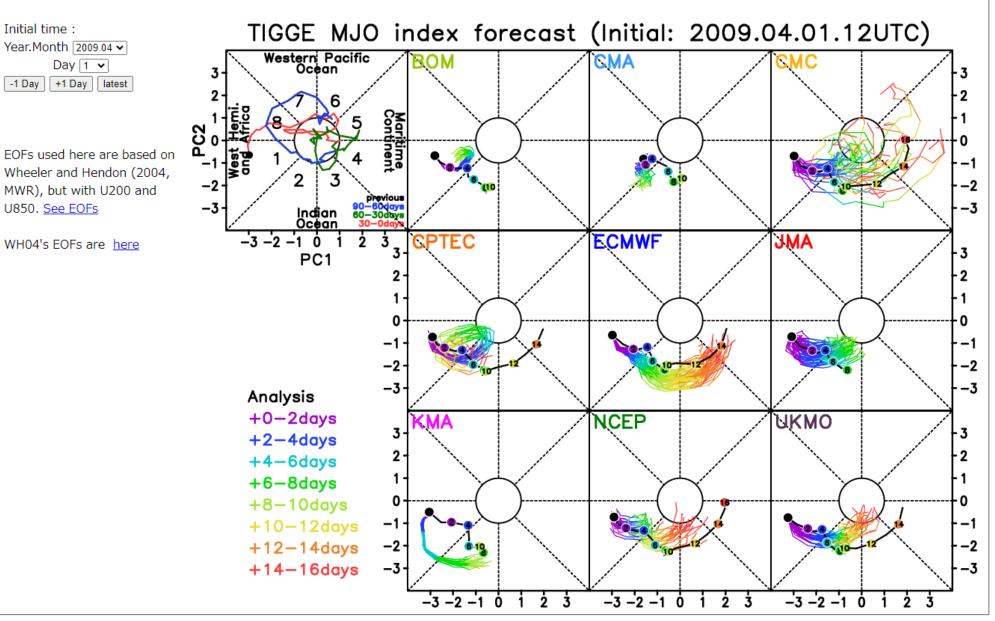
number of regimes: • 4 (Euro-Atlantic) ○ 5 (East Asia&Pacific)


centre: OCMC ECMWF OJMA **ONCEP** OUKMO

Initial date (only NDJFM): Year.Month 2024.03 V Day 18 🗸 -1 Day +1 Day latest



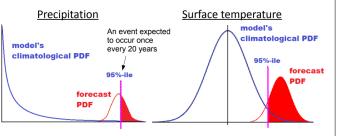
2024.04.02.12UTC 2024.04.01.12UTC 2024.03.31.12UTC 2024.03.30.12UTC 2024.03.29.12UTC 2024.03.28.12UTC 2024.03.27.12UTC


The TIGGE Museum – MJO index forecast –

TIGGE MJO forecasts

Verification of MJO forecast is also available for 2006-2013 on the TIGGE Museum

The best-performing centre varies with the phase of the MJO (Matsueda & Endo, 2010).



The TIGGE Museum – probabilistic forecast of severe weather events –

Highlight the risks of heavy rain, strong winds, & high/low temperature in 12 areas

Forecast probability is based on each model's climatological percentiles: 1st, 5th, 10th, 90th, 95th, and 99th.

e.g. 95%-ile means that an event expected to occur once every 20 years

all forecasts (up to 15 days) after Oct. 2006 are available

The best-performing ensemble is case-dependent, especially for predicting severe weather events.

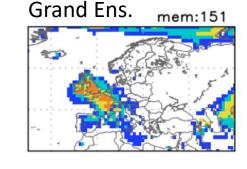
Ensemble-based occurrence probability of severe weather events

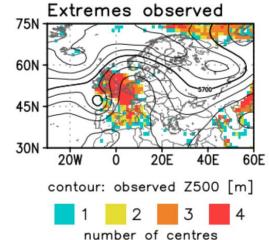
[<u>A short guide (pdf)</u>]

Extreme events: heavy precipitation
strong wind
warm
cold

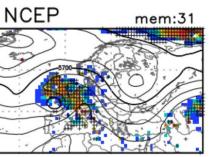
Climatological percentiles: 90th or 10th 95th or 5th 99th or 1st

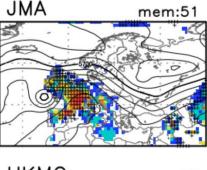
Areas Europe

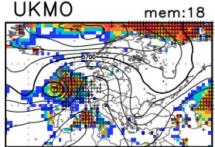


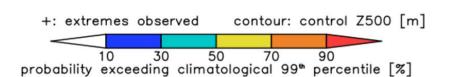

[Japan&Asia]

+0-1 days
+1-2 days
+2-3 days
+3-4 days
+4-5 days
+5-6 days
+6-7 days
+7-8 days
+8-9 days
+9-10 days
+10-11 days
+11-12 days
+12-13 days
+13-14 days


0+14-15 days


Occurrence probability of extreme high T2m Initial: 2022.07.12.12UTC, Valid: 2022.07.19.12UTC





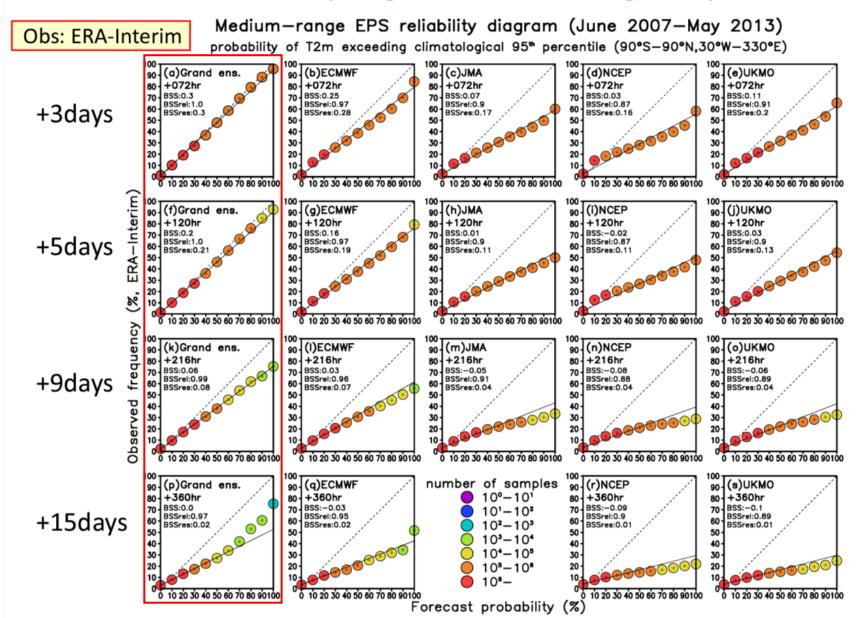


Fig. Occurrence probabilities (shading) of extreme high temperature for **the 2022 European heatwave (40.3degC@Coningsby)**, by the (top left) multi-centre grand ensemble, (top centre) ECMWF, (top right) JMA, (bottom centre) NCEP, (bottom right) UKMO, initialized at 1200UTC **12 July 2022**, valid at 1200UTC 19 July 2022, and (bottom left) observed extremes.

The TIGGE Museum – probabilistic forecast of severe weather events –

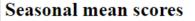
<u>Verification — reliability diagram for extreme high temperature —</u>

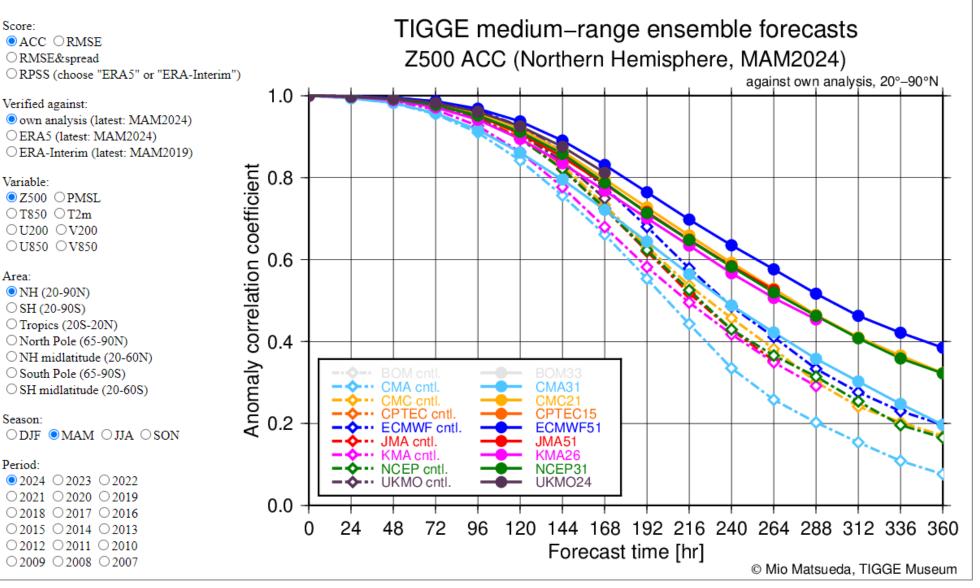
The grand ensemble can provide more reliable forecasts than single-centre ensembles. Similar results were obtained for extreme low temperature, rainfall, and strong winds.

The TIGGE Museum – seasonal mean skills –

Score:

Area:


ACC, RMSE, RPSS and RMSE-spread relation for each season


verified against own analysis and ERA5

8 variables (Z500, PMSL, T850, T2m, UV200, and UV850)

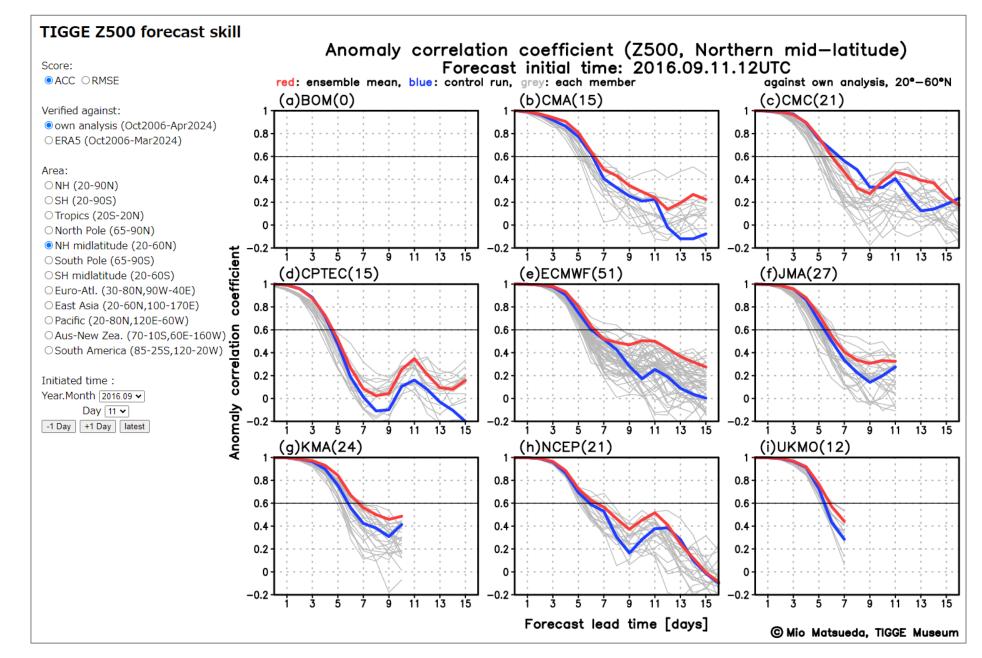
7 major regions

forecasts after DJF 2006/07

ECMWF shows the best, followed by **UKMO**, **CMC**, **NCEP**, & **JMA**.

The TIGGE Museum – daily forecast skills for individual ensemble members –

TIGGE Z500 forecast skill variability ACC and RMSE only for **Z500** by Comparison of TIGGE medium-range ensemble forecasts (Z500) Score: ● ACC ○ RMSE +144hr forecast skill (Northern mid-latitude, 2016.09) individual ensemble members against own analysis, 20°-60°N Verified against: (a)BOM(0)(b)CMA(15) (c)CMC(21)• own analysis (OCT2006-APR2024) verified against own analysis ○ ERA5 (OCT2006-MAR2024) and ERA5 0.8 Area: ONH (20-90N) 0.6 OSH (20-90S) 12 major areas Tropics (20S-20N) forecast bust 0.4 ○ North Pole (65-90N) NH midlatitude (20-60N) 16-18 Sep. 0.2 -0.2 South Pole (65-90S) ○ SH midlatitude (20-60S) ○ Euro-Atl. (30-80N,90W-40E) 28SEP 14SEP 21SEP 14SEP 21SEP 07SEP 07SEP 28SEP ient ○ East Asia (20-60N,100-170E) 2016 (d)CPTEC(15)(e)ECMWF(51) (f)JMA(27) ○ Pacific (20-80N,120E-60W) Ē ○ Aus-New Zea. (70-10S.60E-160W) ○ South America (85-25S,120-20W) Ð õ Horizontal axis: correlation 2 horizontal axes: initial & valid time ○ initial time ● valid time Year: 0.4 all forecasts (up to 15 days) ○2024 ○2023 ○2022 ○2021 ○2020 ○2019 0.2· 0.2 after Oct. 2006 are available ○2018 ○2017 ●2016 Anomaly ○2015 ○2014 ○2013 14SEP 28SEP 14SEP 14SEP 21SEP 07SEP 21SEP 07SEP 21SEP 28SEP 07SEP 28SEP ○2012 ○2011 ○2010 ○2009 ○2008 ○2007 (g)KMA(24) (h)NCEP(21) (i)UKMO(12) 0 2006 Month: 0.8 ○Jan ○Feb ○Mar ○ Apr ○ May ○ Jun 0.6 ○ Jul ○ Aug ● Sep ○Oct ○Nov ○Dec 0.4 0.4 Forecast hour: 0.2 0.2 -0.2 ○+000hr ○+024hr ○+048hr ○+072hr ○+096hr ○+120hr ● +144hr ○ +168hr ○ +192hr 07SEP 14SEP 21SEP 28SEP 07SEP 14SEP 21SEP 28SEP 07SEP 14SEP 21SEP 28SEP ○+216hr ○+240hr ○+264hr Valid date ○+288hr ○+312hr ○+336hr © Mio Matsueda, TIGGE Museum O+360hr

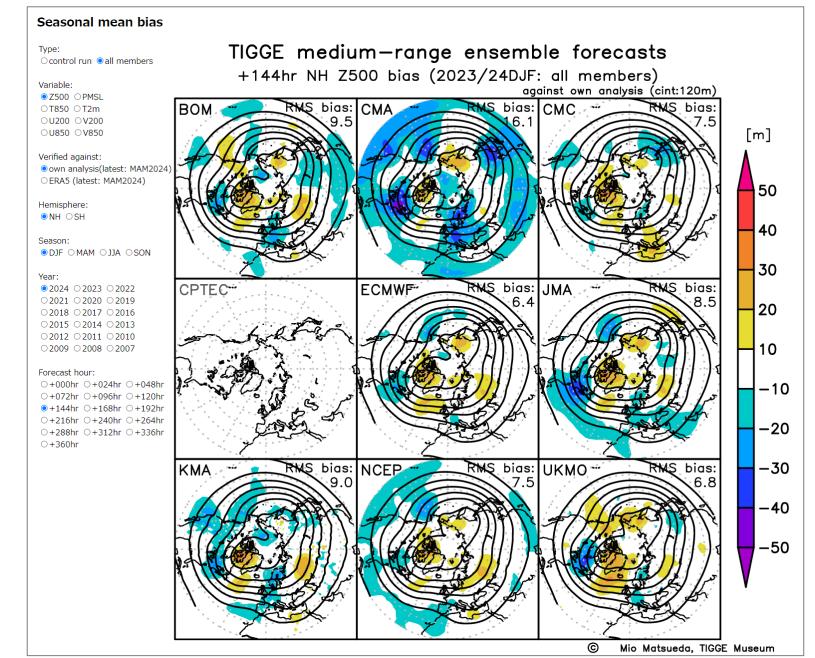

The TIGGE Museum – verification score for each forecast initial time –

ACC and RMSE **only for Z500** by individual ensemble members

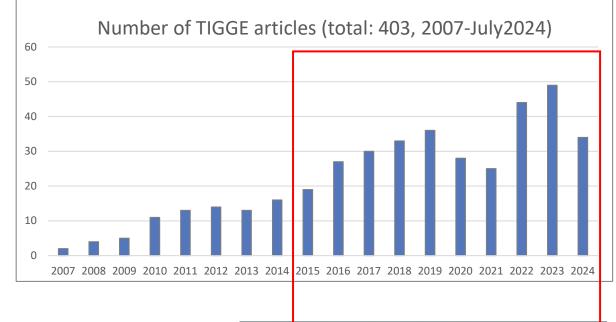
verified against own analysis and ERA5

12 major areas

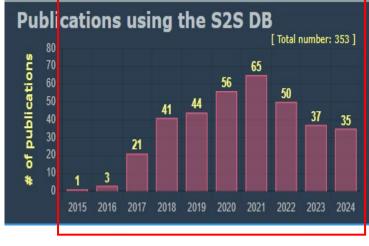
all forecasts (up to 15 days) after Oct. 2006 are available



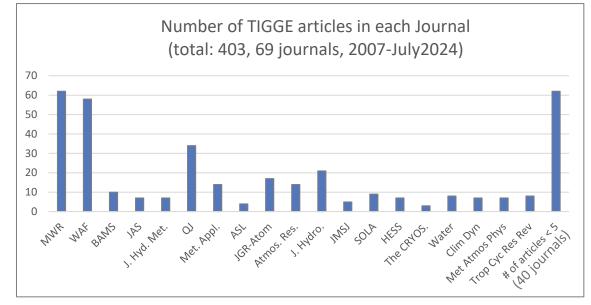
The TIGGE Museum – seasonal mean bias –


Seasonal mean bias of Z500, PMSL, T850, T2m, UV200, and UV850, for control forecast and ensemble mean forecast

verified against own analysis and ERA5


all forecasts (up to 15 days) for each season since winter 2006/07 are available

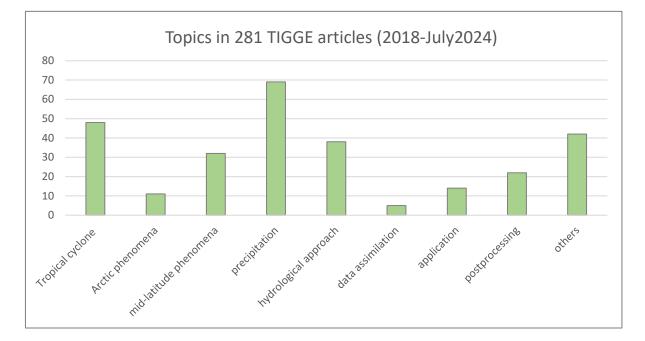
Survey of TIGGE articles (2007-July2024)



Survey of S2S articles (from S2S project website)

*PDEF: Predictability, Dynamics and Ensemble Forecasting

my responsibility as a PDEF* WG member survey done by Munehiko Yamaguchi (MRI) until 2017



- □ 403 TIGGE articles since 2007
- □ the number of articles in 2023 was the largest
- 2024 is expected to surpass 2023 in the number of articles
- □ No COVID-19 influence since 2022
- Deviation Published in 69 journals, frequently in MWR, WF, QJ, & J.

Hydro (AMS & RMetS Journals less popular recently)

- □ 353 S2S articles published since 2015
- □ S2S research was active during the COVID-19 pandemic

Survey of TIGGE articles (2007-July2024)

- The primary focus is on precipitation, followed by tropical cyclone, hydrological approach & mid-lat. phenomena.
- In recent years, hydrological and ML/DL-related approaches and post-processing researches become more active. This is why articles are published in a variety of Journals.
- Most frequently used ensemble is ECMWF, with 118 out of
 281 (42%) articles from 2018 to July 2024 using <u>ONLY</u> ECMWF.

my responsibility as a PDEF WG member survey done by Munehiko Yamaguchi (MRI) until 2017

TIGGE Article Survey Result available in an Excel file

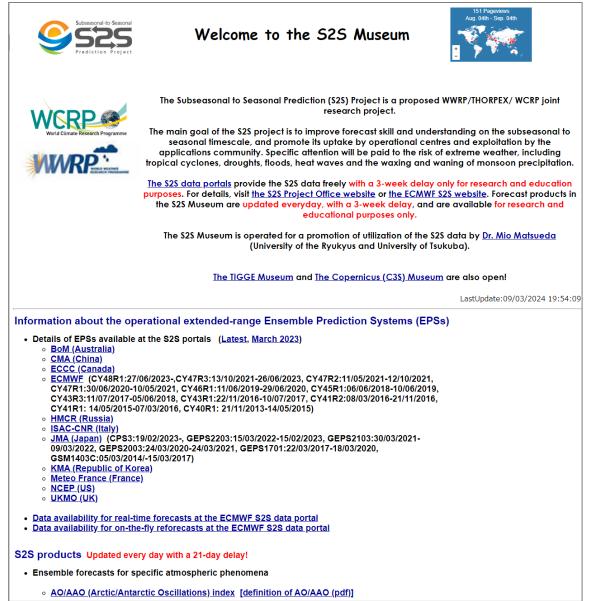
	Α	в	С	D	E	F	G	н	I. I.
1		No	Author(s)	Title	Journal	Year	Research topic	centres used	doi
2		1	Jingnan Wang, Xiaodong Wang, Jiping Guan, Lifeng Zhang, Tao Chang, and Wei Yu	ST-TransNet: A Spatiotemporal Transformer Network for Uncertainty Estimation from a Single Deterministic Precipitation Forecast	Monthly Weather Review	2024	precipitation	CMA	https://doi.org/10.1175/MWR-D-23-0097.1
3		2	David S. Richardson, Hannah L. Cloke, John A. Methven, and Florian Pappenberger	Jumpiness in Ensemble Forecasts of Atlantic Tropical Cyclone Tracks	Weather and Forecasting	2024	Tropical cyclone	ECWMF, NCEP, UKMO	https://doi.org/10.1175/WAF-D-23-0113.1
4		3	Frank P. Colby Jr., Mathew Barlow, and Andrew B. Penny	Steering Flow Sensitivity in Forecast Models for Hurricane Ian (2022)	Weather and Forecasting	2024	Tropical cyclone	ECMWF, NCEP	https://doi.org/10.1175/WAF-D-23-0169.1
5		4	Benjamin M. Kiel and Brian A. Colle	Comparison of Clustering Approaches in a Multimodel Ensemble for U.S. East Coast Cold Season Extratropical Cyclones	Weather and Forecasting	2024	extratropical cyclone	ECCC, ECMWF, NCEP	https://doi.org/10.1175/WAF-D-23-0017.1
6		5	H. A. Titley, H. L. Cloke, E. M. Stephens, F. Pappenberger, and E. Zsoter	Using Ensembles to Analyze Predictability Links in the Tropical Cyclone Flood Forecast Chain	Journal of Hydrometeorology	2024	Flood	ECMWF	https://doi.org/10.1175/JHM-D-23-0022.1
7		6	Pu Liu, Markus Dabernig, Aitor Atencia, Yong Wang, and Yuchu Zhao	Probabilistic Neural Networks for Ensemble Postprocessing	Monthly Weather Review	2024	Probabilistic Precipitation Forecast Postprocessing	ECMWF	https://doi.org/10.1175/MWR-D-23-0220.1
8		7	Jiaying Ke, Mu Mu, and Xianghui Fang	Influence of Physically Constrained Initial Perturbations on the Predictability of Mei-Yu Heavy Precipitation	Monthly Weather Review	2023	use initial perturbations	ECMWF	https://doi.org/10.1175/MWR-D-22-0302.1
9		8	Steven J. Woolnough, Gui-Ying Yang, Christopher E. Holloway, and Gabrial Wolf	Hybrid Dynamical-Statistical Forecasts of the Risk of Rainfall in Southeast Asia Dependent on Equatorial Waves	Monthly Weather Review	2023	precipitation	UKMO	https://doi.org/10.1175/MWR-D-22-0300.1
10		9	Yan Ji, Xiefei Zhi, Luying Ji, and Ting Peng	Conditional Ensemble Model Output Statistics for Postprocessing of Ensemble Precipitation Forecasting	Weather and Forecasting	2023	Precipitation Forecast Postprocessing	ECWMF, NCEP, UKMO	https://doi.org/10.1175/WAF-D-22-0190.1
11		10	Chenkar Cat, Jianqun Wang, Zhijia Li, Xinyi Shen, Jinhua Wen, Helong Wang, and Xinyan Zhou	Evaluating and Modeling the Reliability of Continuous No-Rain Forecast from TIGGE Based on the First-Passage Problem and Fuzzy Mathematics	Journal of Hydrometeorology	2023	precipitation	CMA, ECMWF, JMA, UKMO	https://doi.org/10.1175/JHM-D-22-0126.1
12		11	William S. Lamberson, Michael J. Bodner, James A. Nelson, and Sara A. Sienkiewicz	The Use of Ensemble Clustering on a Multimodel Ensemble for Medium-Range Forecasting at the Weather Prediction Center	Weather and Forecasting	2023	ensemble clustering	ECCC, ECMWF, NCEP	https://doi.org/10.1175/WAF-D-22-0154.1
13		12	Xiping Zhang, Juan Fang, and Zifeng Yu	The Forecast Skill of Tropical Cyclone Genesis in Two Global Ensembles	Weather and Forecasting	2023	cyclogenesis	ECMWF, UKMO	https://doi.org/10.1175/WAF-D-22-0145.1
14		13	Stvareddy Samkommu, Sabique Langodan, Hari Prasad Dasari, Peng Zhan, George Krokos, Vassar O. Abushasia, Khalad	Making the Case for High-Resolution Regional Ocean Reanalyses: An Example with the Red Sea	Bulletin of the American Meteorological Society	2023	Use as atmospheric forcing	ECMWF	https://doi.org/10.1175/BAMS-D-21-0287.1
15		14	Briana E. Stewart, Jason M. Cordeira, and F. Martin Ralph	Evaluating GFS and ECMWF Ensemble Forecasts of Integrated Water Vapor Transport along the U.S. West Coast	Weather and Forecasting	2022	Atmospheric river	ECMWF, NCEP	https://doi.org/10.1175/WAF-D-21-0114.1
16		15	Patrik Benáček, Aleš Farda, and Petr Štěpánek	Postprocessing of Ensemble Weather Forecast Using Decision Tree–Based Probabilistic Forecasting Methods	Weather and Forecasting	2022	Postprocessing Ensemble Weather Forecasts	ECMWF	https://doi.org/10.1175/WAF-D-22-0006.1
17		16	L. Iviagnusson, D. Ackerley, 1. Bouteloup, JH. Chen, J. Doyle, P. Earnshaw, Y. C. Kwon, M. Köhlar, S. T. K. Lang, Y. L. Lim	Skill of Medium-Range Forecast Models Using the Same Initial Conditions	Bulletin of the American Meteorological Society	2022	Use as verifying analyses	ECCC, ECMWF, JMA, KMA, NCEP, UKMO	https://doi.org/10.1175/BAMS-D-21-0234.1
18		17	Justin G. McLay and Elizabeth Satterfield	$\label{eq:constraint} Forecast Dropouts in the NAVGEM Model: Characterization with Respect to Other Models, \\ Large-Scale Indices, and Ensemble Forecasts$	Weather and Forecasting	2022	Forecast Dropouts	ECCC, NCEP	https://doi.org/10.1175/WAF-D-21-0208.1

Ongoing research project | 2013 - 2028 **A WWRP/THORPEX-WCRP joint research project**

Aims

- To improve forecast skill and understanding on the sub-seasonal to seasonal timescale with special emphasis on high-impact weather events, including tropical cyclones, droughts, floods, heat waves and monsoon precipitation
- To promote the initiative's uptake by operational centres and exploitation by the application community
- To capitalize on the expertise of the weather and research communities to address issues of importance to the Global Framework for Climate Services

Although the 1st (2013-2018) and the 2nd (2019-2023) phases of project finished, another 5-year period (2024-2028) of the S2S database regular updates is currently underway. As of September 2024, S2S provides **S2S ensemble forecasts from 13 NWP centres**: BoM, CMA, CPTEC, ECCC, ECMWF, HMCR, IAP-CAS, ISAC-CNR, JMA, KMA, Météo France, NCEP, and UKMO.


https://confluence.ecmwf.int/display/S2S/Models

S2S Models 13 models

Model's outputs are archived on the common 1.5/1.5 regular lat-lon grid.

			•					0	0			
	Model version	Implement. date in S2S	Time range	Resolution	Ens. Size *7	Frequency	Re-forecasts	Rfc period	Rfc frequency	Rfc size *7	Ocean resolution	Active Sea Ice
BoM (ammc)	POAMA P24	01/01/2015	d 0-62	T47 L17	32+1	2/week (Thu, Sun)	fixed	1981-2013 (model version date 01/01/2014)	6/month (always on the 1st, 6th, 11th, 16th, 21st and 26th)	32+1	2° x 0.5° L25	no
CMA (babj)	BCC-CPS-S2Sv2	11/11/2019	d 0-60	T266 L56	3+1	2/week (Mon, Thu)	on the fly	past 15 years	2/week (Mon, Thu)	3+1	0.25°	No
CNR-ISAC (isac)	GLOBO	05/09/2024	d 0-35	0.7x0.5 L70	40+1	weekly (Thu)	fixed	2001-2020 (model version date 16/10/2023)	every 5 days (the same days each Rfc year *1)	7+1	N/A	N/A
CNRM (Ifpw)	CNRM-CM 6.1	22/10/2020	d 0-47	T359 L91	25	weekly (Thu)	fixed	1993-2017 (model version date 01/07/2019)	every 7 days (starting from 31/12/1992 *2)	10	0.25° L75	yes
CPTEC (sbsj)	BAM-1.2	13/12/2023	d 0-35	TQ126 L42	11	2/week (Wed, Thu)	fixed	1999-2018 (model version date 04/01/2023)	every 7 days (starting from 06/01/1999)	11	N/A	N/A
ECCC (cwao)	GEPS 8	13/06/2024	d 0-39	Yin-Yang grid at 0.25° uniform resolution (~25 km) L85	20+1	2/week (Mon, Thu)	on the fly	2001-2020	2/week (Mon, Thu)	3+1	0.25° L50	yes
ECMWF (ecmf)	CY48R1	27/06/2023	d 0-46	Tco319L137 (about 32 km)	100+1	daily	on the fly	past 20 years	2/week (Mon/Thu)	10+1	1/4 degree	Yes
HMCR (rums)	RUMS	15/09/2022	d 0-46	0.9° x 0.72° L96	40+1	weekly (Thu)	on the fly	1991-2015	weekly (Thu)	10+1	N/A	N/A
IAP- CAS (anso)	CAS-FGOALS-f3	21/08/2024	d 0-65	C96 L32	49	daily	fixed	1999-2018 (model version date 01/01/2019)	daily	4	1° L60	yes
JMA (rjtd)	CPS3	19/02/2023	d 0-34	TI319L100	4+1	daily	fixed	1991-2020 (model version date 30/09/2022)	2/month (always on the 15th and the last day of month *3)	4+1	0.25° L60	yes
KMA (rksl)	GloSea6-GC3.2	01/06/2023	d 0-60	N216 L85 (0.83° x 0.56°, about 60 km in mid latitudes)	8	daily	on the fly	1993-2016	4/month (always on the 1st, 9th, 17th and 25th)	7		yes
NCEP (kwbc)	CFSv2	10/03/2015	d 0-44	T126 L64 (about 100 km)	15+1	daily	fixed	1999-2010 (model version date 01/03/2011)	daily	3+1	0.5° x 0.25° L40 varying resolution (*6)	yes
UKMO (egrr)	GloSea6	02/02/2021	d 0-60	N216 L85	4	daily	on the fly	1993-2016	4/month (always on the 1st, 9th, 17th and 25th)	7	0.25° L75	yes

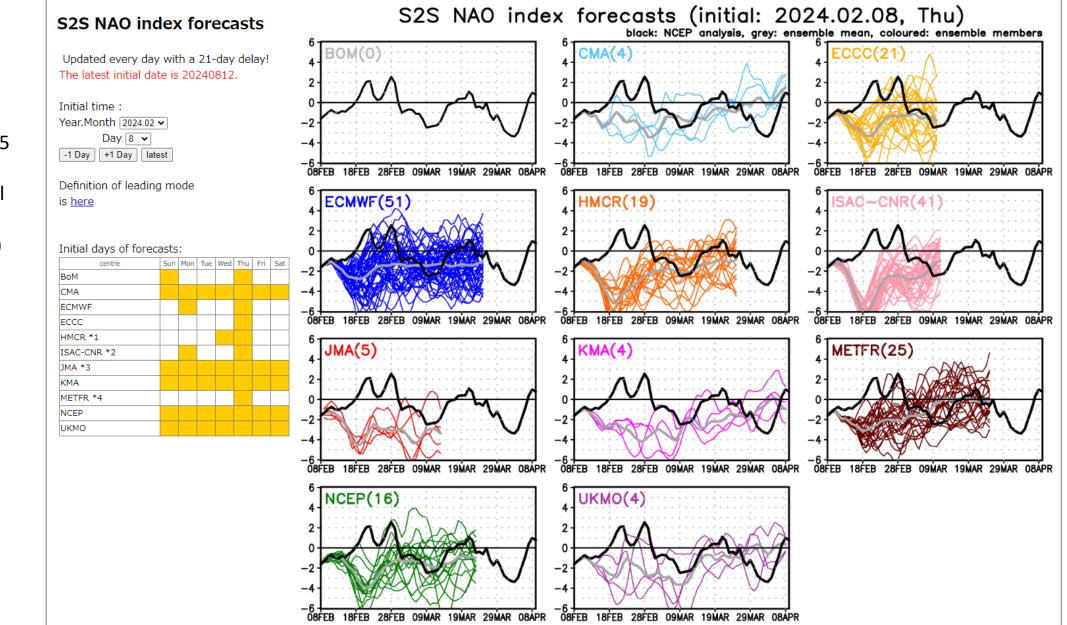
The S2S Museum – website of sub-seasonal forecast products –

http://gpvjma.ccs.hpcc.jp/S2S/

• opened in 2016?

- products are updated with a 3-week delay (to be reduced to a 3-day delay)
- □ 11 models and ERA5 (if available) (IAP-CAN and CPTEC to be added)
- □ 15 forecast products from Jan. 2015 to the present (832GB):

►AO/AAO/NAO index


- ≻teleconnection indices: EA, PNA, WA, WP and EU
- SLP & Z500 anomalies (stamp maps)
- SSW (Sudden Stratospheric Warming)
- Stream function&velocity potential
- ➤wave activity flux at 200 hPa
- ➤MJO (Madden-Julian Oscillation)
- SST (Sea Surface Temperature)
- ➤ sea-ice cover

➤verification of ensemble mean: SLP, Z500, Z50, U200, & T850

Google **"S2S Museum"** or use QR code below

The S2S Museum – verification of ensemble mean forecast –

all forecasts after 2015

analysis (NCEP control run at Day 0) is also included (if available)

The S2S Museum – weekly mean forecast of velocity potential at 200hPa –

weekly-mean velocity potential/stream function at200/850hPa Elem:

Level:

200 hPa

0850 hPa

Initial time :

Lead time:

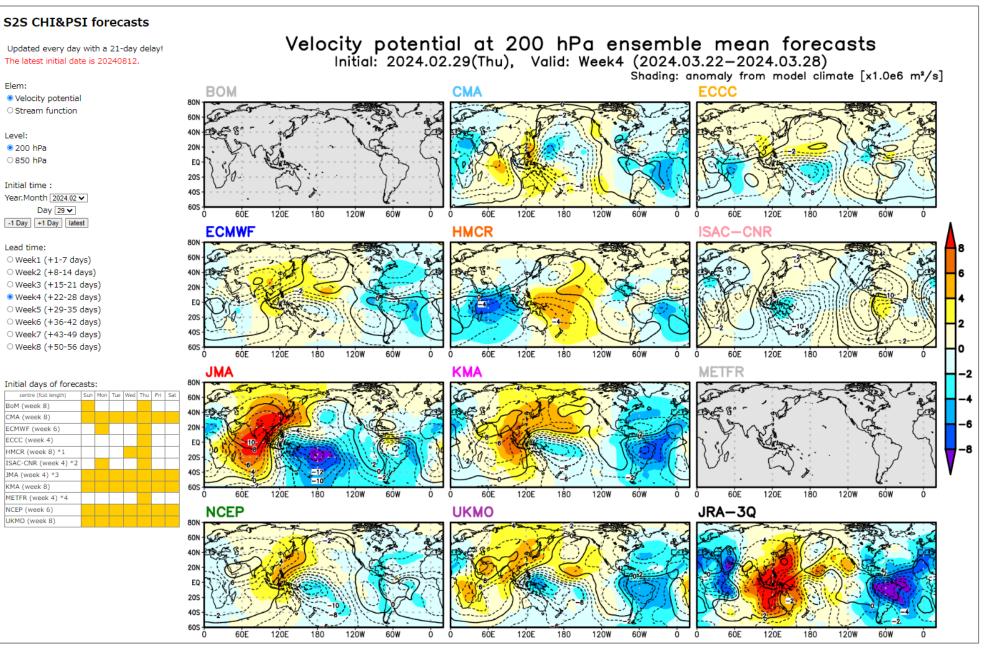
centre (fcst length)

BoM (week 8)

CMA (week 8)

ECMWF (week 6) ECCC (week 4) HMCR (week 8) *1

JMA (week 4) *3 KMA (week 8)


METFR (week 4) *4 NCEP (week 6)

UKMO (week 8)

all forecasts after 2015

week 1 to 8

JRA3Q also included (if available)

The S2S Museum – sea-ice cover and SST forecast –

S2S Sea-ice cover forecasts Arctic SST & SIC ensemble mean Updated every day with a 21-day delay! The latest initial date is 20240812. Initial: 2024.08.12(Mon), Valid: Week4(2024.09.03-2024.09.09) Area: ECMWF (SST predicted (SIC predicted) BOM CMA • The Arctic (inc. SST) SIC (SST predicted) (SIC prescribed SST predicte O The Arctic (ens. spread) ○ The Antarctic (inc. SST) >0.25 O The Antarctic (ens. spread) >0.50 Initial time : Year.Month 2024.08 V >0.70 Day 12 🗸 -1 Day +1 Day latest >0.90 Lead time: ○Week1 (+1-7 days) ○ Week2 (+8-14 days) ○ Week3 (+15-21 days) ECCC JMA KMA Week4 (+22-28 days) SST [°C] (SST prescrib (SIC prescrib (SST prescribed) (SIC prescribed) ○ Week5 (+29-35 days) ○ Week6 (+36-42 days) Week7 (+43-49 days) 13 Week8 (+50-56 days) 11 Satellite observation Initial days of forecasts: centre (fcst length) Sun Mon Tue Wed Thu Fri BoM (week 8) CMA (week 8) 3 ECMWF (week 6) **METFR** NCEP UKMO ECCC (week 4) 1.5 (SST predicted) (SIC predicted) (SST predicted) (SIC predicted) (SST predicted) (SIC predicted) HMCR (week 8) *1 ISAC-CNR (week 4) *2 0.5 JMA (week 4) *3 KMA (week 8) -0.5 METFR (week 4) *4 NCEP (week 6) -1.5 UKMO (week 8) *1 HMCR: Wed (-31 May 2017); Thu (08 Jun. 2017-) *2 ISAC-CNR: Mon (-16 Jan. 2017); Thu (19 Jan. 2017-) *3 JMA: Tue, Wed (-15 Mar. 2017); Wed (22 Mar. 2017-) *4 METFR: 1st of each month (-Feb 2016), Thu (Mar. 2017-) Go to the S2S Museum (top)

weekly-mean sea-ice cover for Arctic/Antarctic, with SST

all forecasts after 2015

week 1 to 8

The S2S Museum – verification of ensemble mean forecast –

Z500 ensemble mean forecasts Initial: 2024.06.27 (Thu), Valid: 2024.07.06-2024.07.12 (Day9-15) ECMWF СМА EU:48 PA:49 METFR RMSE ERA5 NCEP UKMC [m] NH: 20°-90°N, 0°-360°E EU: 20°-90°N, 0°-180°E PA: 20°-90°N, 90°E-90°W JP: 20°-60°N, 100°-170°E 150 (16) 120 90 60 亭 30 ACC and RMSE -30 -60 -90 -120 -150 NH:54. EU:59. PA:60. JP:34.

all Thursday forecasts after 2015 (10 centres)

5 variables:

SLP Z500 Z50 U200 T850

4 forecast ranges: week1 (day2-8) week2 (day9-15) week3&4 (day16-29) week1-4

ERA5 also included (if available)

ACC & RMSE are shown if ERA5 is available

*2 ISAC-CNR: Mon (-16 Jan. 2017); Thu (19 Jan. 2017-) *3 JMA: Tue,Wed (-15 Mar. 2017); Thu (19 Jan. 2017-) *4 METFR: 1st of each month (-Feb 2016), Thu (Mar. 2017-) *5 UKMO: PMSL is unavailable

S2S verification of ens. mean forecast

Updated manually! The latest initial date is 27 June, 2024.

Initial date of forecast (Thu. initial only): Year.Month.Day 2024.06.27 •

Variables: NH(20-90N) SLP Z500 Z50 U200 T850	
SH(20-90S) OSLP OZ500 OZ50 OU200 OT850	

Forecast range:

1st week (day2-8)
2nd week (day9-15)
3rd&4th weeks (day16-29)
28-day mean

Initial days of forecasts:

centre	country	Sun	Mon	Tue	Wed	Thu	Fri	Sat
BoM	Australia							
СМА	China							
ECMWF	Europe							
ECCC	Canada							
HMCR *1	Russia							
ISAC-CNR *2	Italy							
JMA *3	Japan							
КМА	Korea							
METFR *4	France							
NCEP	US							
UKMO*5	UK							
*1 HMCR: We	d (-31 May	/ 201	7);	Thu	(08 :	Jun.	2017	7-)
*2 ISAC-CNR:	Mon (-16	Jan.	201	7); 1	Гhu (19 J	an. 2	201

Ongoing research project

Mission

The Copernicus Climate Change Service (C3S) mission is to support adaptation and mitigation policies of the European Union by providing consistent and authoritative information about climate change. We offer free and open access to climate data and tools based on the best available science. We listen to our users and endeavour to help them meet their goals in dealing with the impacts of climate change.

C3S has been providing a multi-model seasonal forecasting system, replacing the EUROSIP project since October 2019. As of September 2024, **9 seasonal forecasts** from 8 NWP centres are available.

https://confluence.ecmwf.int/display/CKB/Description+of+the+C3S+seasonal+multi-system

C3S Seasonal Models

9 models

Model's outputs are archived on the common 1.0/1.0 regular lat-lon grid.

Status on 10 Jul 2024	Time range (forecasts and hindcasts)	Forecast initial conditions	Forecast ensemble size	Hindcast initial conditions	Hindcasts ensemble size	Hindcast period	Hindcast production schedule	Resolution of atmospheric model	Resolution of ocean model \Rightarrow
ECMWF (ecmf)	215 days	1st of month	51 members	1st of month	25	1981-2016	fixed	T _{CO} 319/L91 Dynamics:T _{CO} 319 cubic octahedral grid Physics: O320 Gaussian grid (36 km) 91 levels in vertical, to 0.01hPa (80km)	0.25° ORCA grid 75 levels in vertical
UKMO (egrr)	215 days	each day of month	2 members/day ⁽⁴⁾	1st, 9th, 17th, 25th of month	7 members/start time	1993-2016	on-the-fly ⁽¹⁾	N216/L85 0.83° x 0.56° (~ 60km in mid- latitudes) 85 levels in vertical, to 85km	0.25° ORCA grid 75 levels in vertical
Météo-France ⁽³⁾ (Ifpw)	7 calendar months	last and penultimate Thursday of previous month 1st of month	25 members each 1 member	last and penultimate Thursday of previous month 1st of month	12 members each 1 member	1993-2018	fixed	TL359/L137 (0.5°) 137 levels in vertical, to 0.01hPa	0.25° ORCA grid 75 levels in vertical
DWD (edzw)	6 calendar months	1st of month	50 members	1st of month	30 members	1993-2019	fixed	T127 (~100 km) 95 levels in vertical, to 0.01hPa	0.4° TP04 grid 40 levels in vertical
CMCC (cmcc)	6 calendar months	1st of month	50 members	1st of month	40 members	1993-2016	fixed	approx 0.5° lat-long 46 levels in vertical, to 0.2hPa	0.25° ORCA grid 50 levels in vertical
NCEP (kwbc)	215 days	each day of month members initialised every 6 hours (at 0h, 6h, 12h and 18h UTC)	4 members/day	every 5 days ⁽⁵⁾ members initialised every 6 hours (at 0h, 6h, 12h and 18h UTC)	4 members/start date	1993-2016	fixed	T128/L64 (~ 1°) 64 levels in vertical, to 0.02hPa	0.25° (equator) to 0.5° 40 levels in vertical
JMA (rjtd)	215 days	every day of month	5 members/day	2 start dates lagged by 15 days $^{\rm (6)}$	5 members/start date	1993-2016	fixed	TL319 (approx. 55km) 100 levels in vertical, to 0.01hPa	0.25° tripolar grid 60 levels in vertical
ECCC (cwao) ⁽³⁾ (7)(8) CanESM5.1p1bc (component of CanSIPSv3.0)	214 days	last day of previous month and 5th to last day of previous month	10 members each	last day of previous month and 5th to last day of previous month	10 members each	1980-2023	fixed	T63 (~2.8° lat-long) 49 levels in vertical, to 1hPa	1° ORCA grid 45 levels in vertical
ECCC (cwao) ⁽³⁾⁽⁷⁾⁽⁸⁾ GEM5.2-NEMO (component of CanSIPSv3.0)	214 days	last day of previous month and 5th to last day of previous month	10 members each	last day of previous month and 5th to last day of previous month	10 members each	1980-2023	fixed	~1.1° lat-long (~110 km) 85 levels in vertical, to 0.1hPa	1° ORCA grid 50 levels in vertical

The C3S Museum – website of seasonal forecast products –

<u>Copernicus</u> is the European Union's Earth observation programme, looking at our planet and its environment to benefit all European citizens. It offers information services that draw from satellite Earth Observation and in-situ (non-space) data.

The European Commission manages the Programme. It is implemented in partnership with the Member States, the European Space Agency (ESA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Centre for Medium-Range Weather Forecasts (ECMWF), EU Agencies and Mercator Ocean.

On 13 November 2018, <u>the Copernicus Climate Change Service (C35)</u>, implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European Union, released the latest enhancement of its <u>seasonal forecast component</u>. These seasonal forecasts include <u>data</u> and <u>graphical products</u> for several variables, including air and sea-surface temperature, atmospheric circulation and precipitation, covering a period of six months.

The Copernicus Museum, independent of the Copernicus project, is operated for a promotion of utilization of the Copernicus data by <u>Dr. Mio</u> <u>Matsueda</u> (University of the Ryukyus and University of Tsukuba). Forecast products in the Copernicus Museum are updated every month with a 2-week delay, and are available for research and educational purposes only.

The TIGGE Museum and The S2S Museum are also open!

LastUpdate:09/03/2024 19:52:21

Information about the operational extended-range Ensemble Prediction Systems (EPSs)

- Summary of the latest forecast system and data (table, detail)
 - CMCC (Italy): CMCC-CM2-v20191201 (1 Oct, 2020-), CMCC-CM2-v20160423 (1 Apr, 2018-)
 - ECCC (Canada): CanCM4i-v20190731 (31 Jul, 2019-), GEM-NEMO-v20190731 (31 Jul, 2019-)
 - ECMWF: <u>SEAS5 (1 Nov, 2017-)</u>
 - DWD (Germany): <u>GCFS2.1-v20200320 (Now, 2020-)</u>, <u>GCFS2.0-v20171123 (Apr, 2018-)</u>
 - JMA (Japan): cps3-v20220201 (Feb, 2022-), cps2-v20150526 (Jun, 2015-Jan. 2022)
 - Meteo France (France): <u>System7-v20190301 (Oct, 2019-)</u>, <u>System6-v20170501 (Mary, 2017-)</u>, <u>System5 (Jul, 2016-)</u>
 - NCEP (US): <u>CFSv2-v20110310 (15 Mar, 2011</u>)
 - UKMO (UK): <u>HadGEM3-GC3.2-v20200929 (2 Feb. 2021-)</u>, <u>HadGEM3-GC2.0-v20190503 (2 Apr. 2019-)</u>, <u>HadGEM3-GC2.0-v20150825 (3 Feb. 2015-)</u>
- Data availability

Graphical products Updated every month with a 2-week delay!

- Ensemble mean of SLP, Z500 U200, Z30, T2m, T850, Stream Function/Velocity Potential at 200&850hPa Rainfall and SST
- T850 and rainfall anomaly forecasts in Japan New!
- <u>Teleconnection indices (EA, PNA, WA, WP, and EU)</u> [definition: <u>Wallace and Gutzler(1981)]</u>

http://gpvjma.ccs.hpcc.jp/Copernicus/

- opened in June 2021
- □ products are updated on 10th of each month, with a 9-day delay
- 9 models and ERA5 (if available)
- □ 3 forecast products from Jan. 2017 to the present (18GB):

➢verification of ensemble mean: SLP, Z500 U200, Z30, T2m, T850,

stream function/velocity potential at 200&850hPa, rainfall and SST

- ≻teleconnection indices: EA, PNA, WA, WP and EU
- ➤T850 and rainfall for Japanese reginal areas

Google **"C3S Museum"** or use QR code below

The C3S Museum – verification of ensemble mean forecast –

Copernicus seasonal forecasts

all forecasts after 2017 (9 models)

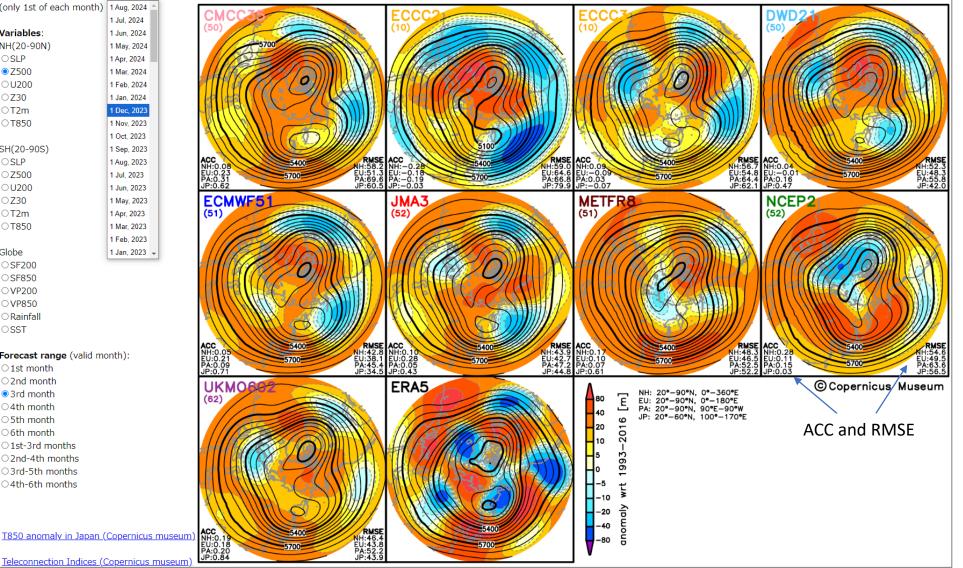
12 variables:

SLP	SF200
Z500	SF850
U200	VP200
Z30	VP850
T2m	rainfall
T850	SST

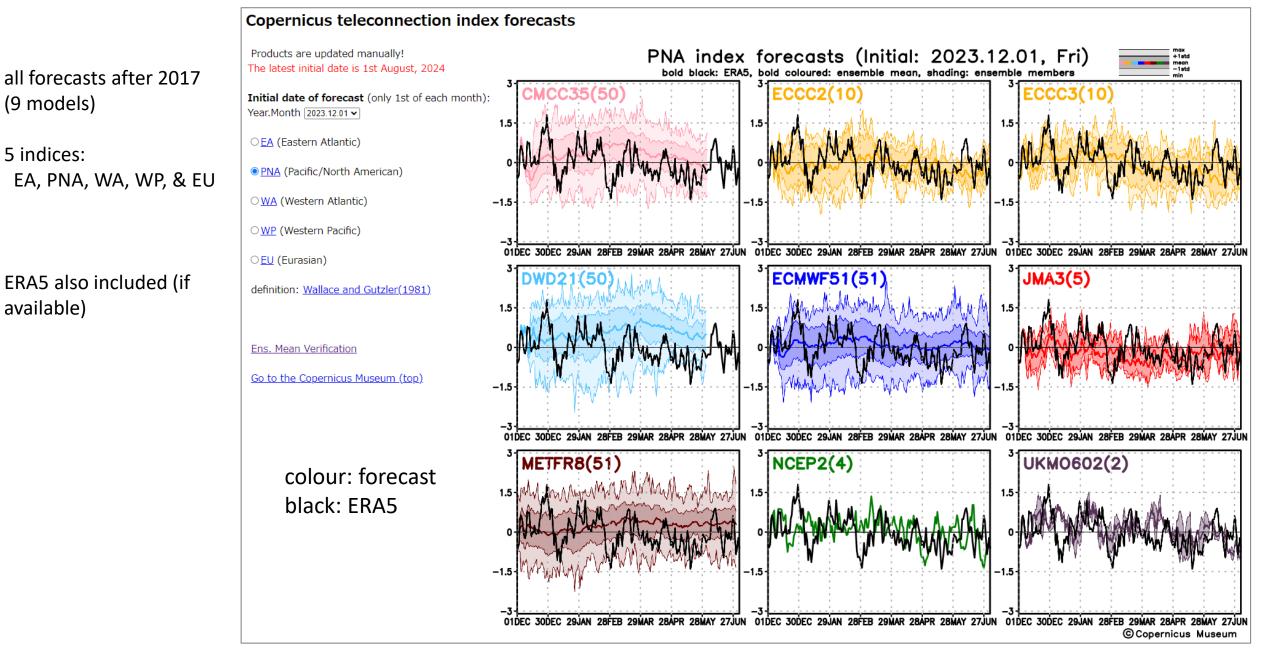
forecast ranges: 1 month or 3 months mean

ERA5 also included (if available)

ACC & RMSE are shown if ERA5 is available

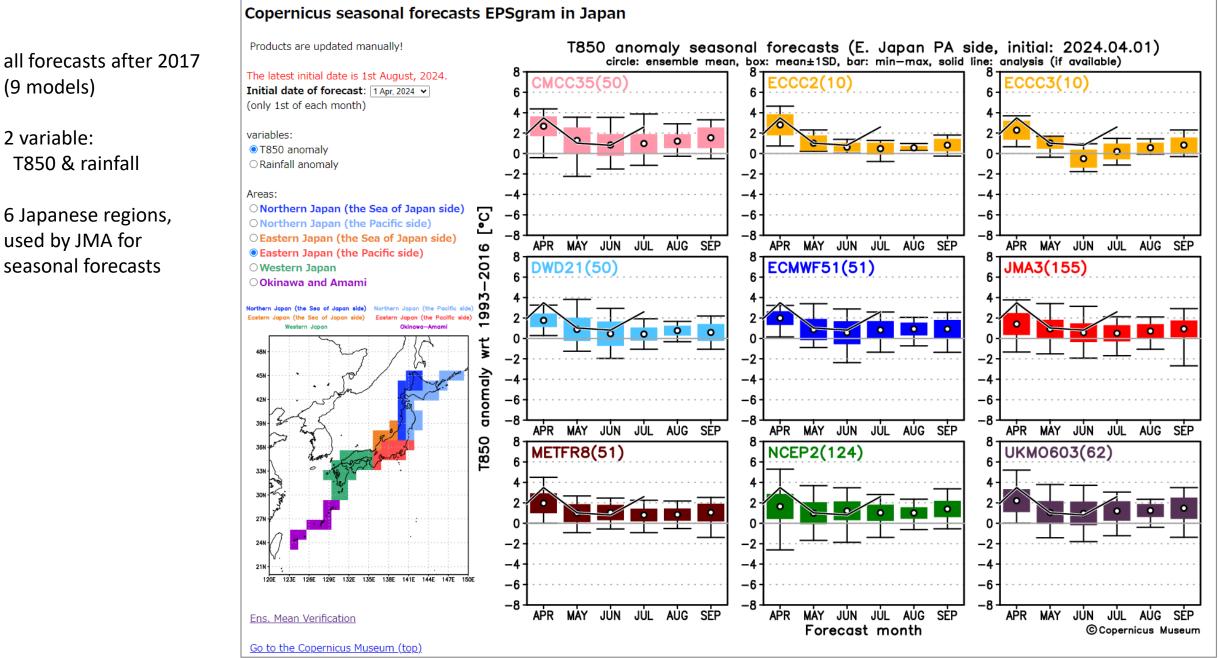

Products are updated manually!

The latest initial date is 1st August, 2024. Initial date of forecast: 1 Dec, 2023 V (only 1st of each month) 1 Aug, 2024 1 Jul 2024 Va N


	1 Jul, 2024	
Variables:	1 Jun, 2024	
NH(20-90N)	1 May, 2024	
OSLP	1 Apr, 2024	
●Z500	1 Mar, 2024	
OU200	1 Feb, 2024	
OZ30	1 Jan, 2024	
OT2m	1 Dec, 2023	
ОТ850	1 Nov, 2023	
	1 Oct, 2023	
SH(20-90S)	1 Sep, 2023	
OSLP	1 Aug, 2023	
OZ500	1 Jul, 2023	
OU200	1 Jun, 2023	
OZ30	1 May, 2023	
OT2m	1 Apr, 2023	
OT850	1 Mar, 2023	
	1 Feb, 2023	
Globe	1 Jan, 2023	Ŧ
OSF200		
OSF850		
OVP200		
OVP850		
○Rainfall		
○SST		
Forecast range (valid mo	onth):	
\bigcirc 1st month		
○2nd month		

	1 001, 2025	
SH(20-90S)	1 Sep, 2023	
OSLP	1 Aug, 2023	
OZ500	1 Jul, 2023	
OU200	1 Jun, 2023	
OZ30	1 May, 2023	
OT2m	1 Apr, 2023	
OT850	1 Mar, 2023	
	1 Feb, 2023	
Globe	1 Jan, 2023	Ŧ
OSF200		
○ SF850		
○VP200		
○VP850		
○Rainfall		
OSST		
Forecast range (valid mo	onth):	
○1st month		
○ 2nd month		
It and the second se		
⊖4th month		
⊖5th month		
⊖6th month		
○1st-3rd months		
○2nd-4th months		
○3rd-5th months		
○4th-6th months		

Seasonal forecasts (Z500 ensemble mean) Initial: 2023.12.01, Valid: 2024.02.01-2024.02.28 (Mon3)


The C3S Museum – teleconnection indices forecast –

The C3S Museum – T850 forecast for Japanese regional areas –

colour: forecast

black: ERA5

Summary

- □ The Museums remain a valuable diagnostic tool for weather forecasting and are helpful in finding interesting past forecast cases (please remember to focus on these cases).
- On average, ECMWF shows the best performance, resulting in 42% of TIGGE papers using ONLY ECMWF forecast. But the best-performing centre varies depending on the case, especially in extreme weather events. Other centres should also be focused on.
- Ensemble Museums, ECMWF S2S website, & Copernicus website primarily display archived graphical products. An interactive website that generates and displays graphical products upon user request could also be useful in encouraging the use of ensembles from other centres.

QR codes to Museums

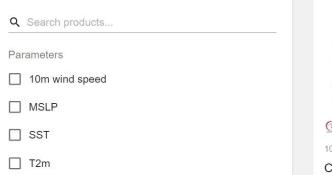
QR codes to TIGGE article survey results (xlsx file)

Graphical forecast products C3S website

Implemented by ECMWF as part of The Copernicus Programme

About us

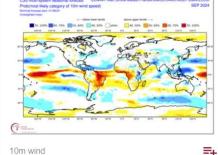
Data

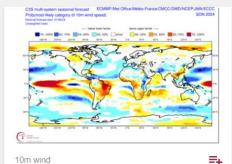

Q

What we do

Copernicus EU logo

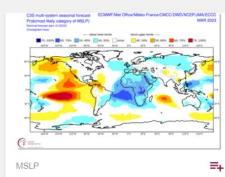
Climate **Change Service**

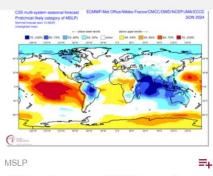

Home / C3S seasonal charts


- geopotential height 500hPa
- precipitation
- zonal wind 10hPa
- sea ice concentration
- Plot type
- 1-month maps
- 3-month maps
- Time series

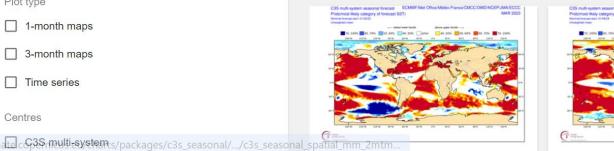
Centres

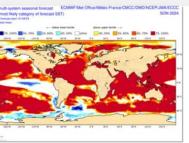
C3S multi-system 10m wind speed 1month

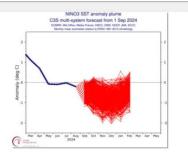

Multi-system combination spatial plots [Ensemble mean anomalies] The charts display the averages of the standardized ensemble mean anomalies. For each component model, ensemble mean anomalies are ...

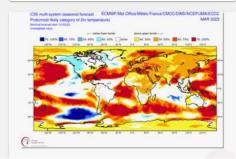

month

Multi-system combination spatial plots [Ensemble mean anomalies] The charts display the averages of the standardized ensemble mean anomalies. For each component model, ensemble mean anomalies are...

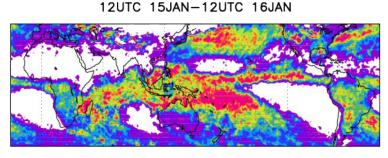

C3S multi-system MSLP 1-month


Multi-system combination spatial plots [Ensemble mean anomalies] The charts display the averages of the standardized ensemble mean anomalies. For each component model, ensemble mean anomalies are...




C3S multi-system MSLP 3-month

Multi-system combination spatial plots [Ensemble mean anomalies] The charts display the averages of the standardized ensemble mean anomalies. For each component model, ensemble mean anomalies are...

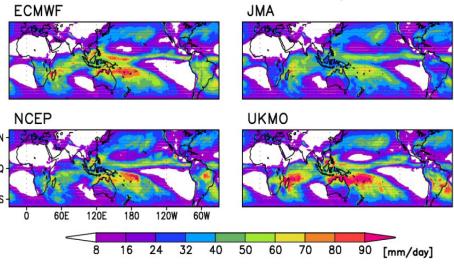


The TIGGE Museum – probabilistic forecast of severe weather events –

How climatological PDFs are estimated from the TIGGE data

A climatological PDF (probability density function) from observed data differs from that from forecast data (e.g. 10mm/hr in a model is not equal to 10mm/hr in observation). We have to prepare a climatological PDF in "a model world" for forecasts. However, a climatological PDF is strongly sensitive to model or the model version (e.g. 10mm/hr in a ECMWF model is not equal to 10mm/hr in a JMA model). Also, operational models are frequently upgraded!

The best way to estimate climatological PDFs for each model is to run many forecasts for past cases, using the current versions of each model (often referred to as hindcasts or reforecasts). But reforecast data is not available from all the NWP centres. Instead, we have to estimate climatological PDFs from the TIGGE forecast data.

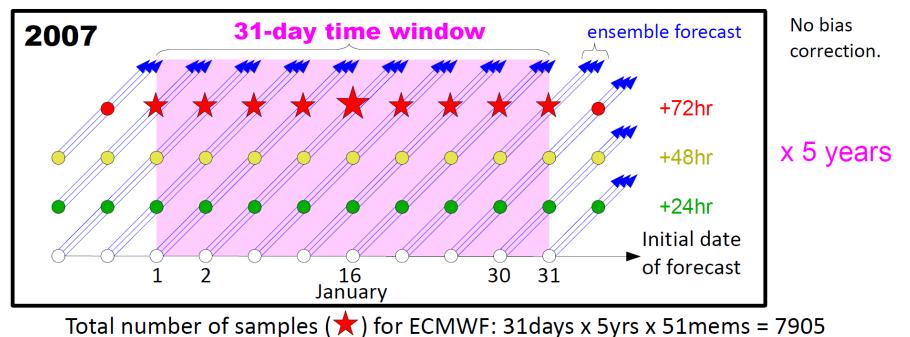


GSMaP Precipitation 99th percentile

8 16 24 32 40 50 60 70 80 90 [mm/day]

Figure: Climatological 99th percentiles of precipitation for GSMaP (left panel) and NWP models (four right panels).

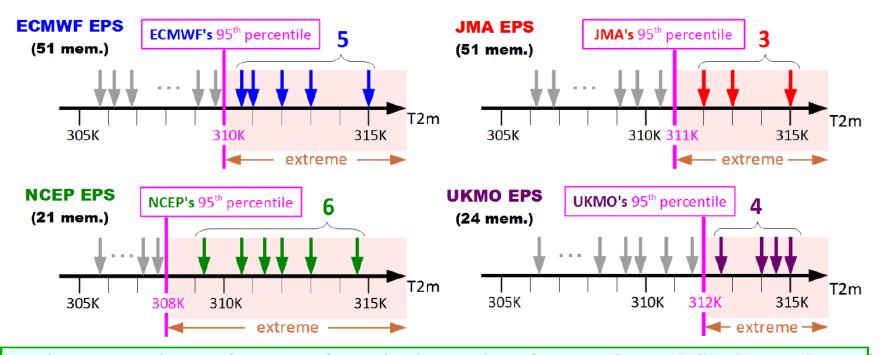
Precipitation 99th percentile in each model Valid: 12UTC 09JAN +6-7days



The TIGGE Museum – probabilistic forecast of severe weather events –

How climatological PDFs are estimated from the TIGGE data

A climatological PDF used here is:


- calculated for each EPS using TIGGE data (all members in each EPS) during October 2006 to January 2011
- defined at each grid point for each calender day in each forecast lead time with the 31-day time window.
- *Example*: A climatological pdf for 72-hr ECMWF ensemble forecast verified on 16th January is made from all the 72-hr ECMWF forecasts (members) verified on 1st 31st January in 2007 to 2011.

The TIGGE Museum – probabilistic forecast of severe weather events – Occurrence probability of an extreme event (grand ensemble)

Climatological percentiles derived from NWP models differ from each other. Each model's climatological percentile value is used for a definition of extreme event.

Example: forecast probability of surface temperature at Oxford

18 (=**5**+**3**+**6**+**4**) members predict a higher value than each model's climatological 95%-iles (310, 311, 308, and 312K). Then, occurrence probability of extreme high temperature is defined as <u>12.2%</u> (=**18**/(**51**+**51**+**21**+**24**)).