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The forecasting challenge

two key problems of NWP
a) errors in NWP system
b) error growth 

and both interact ... 

error in forecast due to IC error, model error & error growth
• error growth results in range of possible forecast scenarios (forecast uncertainty)
• ensemble prediction quantifies this uncertainty by accounting for model and IC 

uncertainty in the model design and predicting PDFs rather than deterministic values 
of a target variable.
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upscale error growth

• upscale error growth to regime 
scale occurs in 3 stages 
− 0-12h small-scales
− 12-48h meso-scales
− >2d regime-scale

(e.g. Zhang et al. 2007, Baumgart et al. 
2019, Selz 2019, Selz et al. 2022)

Figure 7 from Baumgart et al. 2019 https://doi.org/10.1175/MWR-D-18-0292.1

https://doi.org/10.1175/JAS4028.1
https://doi.org/10.1175/MWR-D-18-0292.1
https://doi.org/10.1175/MWR-D-18-0292.1
https://doi.org/10.1175/JAS-D-17-0373.1
https://doi.org/10.1175/JAS-D-21-0271.1
https://doi.org/10.1175/MWR-D-18-0292.1
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• forecast bust: Period with very low skill of 
NWP (e.g. Rodwell et al. 2013, Grams et al. 
2018, Parsons et al. 2019)

Flow-dependence – forecast busts

https://doi.org/10.1175/BAMS-D-12-00099.1
https://doi.org/10.1002/qj.3353
https://doi.org/10.1002/qj.3353
https://doi.org/10.3390/atmos10110681
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• forecast bust: Period with very low skill of 
NWP (e.g. Rodwell et al. 2013, Grams et al. 
2018, Parsons et al. 2019)

• worst forecast for Europe associated with 
MCSs over North America (Rodwell et al. 
2013) → 2nd stage of upscale error growth

Flow-dependence – forecast busts

https://doi.org/10.1175/BAMS-D-12-00099.1
https://doi.org/10.1002/qj.3353
https://doi.org/10.1002/qj.3353
https://doi.org/10.3390/atmos10110681
https://doi.org/10.1175/BAMS-D-12-00099.1
https://doi.org/10.1175/BAMS-D-12-00099.1
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• intrinsic predictability – characteristic of the atmosphere
− limited by upscale error growth
− flow-dependent
− limits the forecast skill horizon of a NWP system

• practical predictability – characteristic of a forecasting system

Forecast Skill and Predictability
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Potential to increase forecast skill horizon through …

1. Improvement of the NWP system (reducing IC and model error)

Forecast skill horizon
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Potential to increase forecast skill horizon through …

1. Improvement of the NWP system (reducing IC and model error)

2. Alternate forecast question (spatial-temporal aggregation & knowledge 
about sources of predictability)
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1. Predictability, forecast uncertainty, and upscale error growth

2. Weather regimes – a source of predictability? 

3. The role of latent heat release in WCB airstreams

4. Forecast opportunities in the light of intrinsic limits of predictability

5. Conclusions

Outline
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Weather regimes

Cyclonic regimes: 
• Atlantic trough
• Zonal Regime
• Scandinavian trough 

Blocked regimes: 
• Atlantic ridge
• European blocking
• Scandinavian blocking 
• Greenland blocking

GL (10.0%)

AR (9.3%)

ScBL (11.1%)

ZO (9.3%)

EuBL (9.6%) No regime (30.4%)

ScTr (10.1%)AT (9.5%)
cluster mean Z500 anomaly (ϕ‘(φ,λ) wr shading) and absolute values (black contours)

based on Grams et al. 2017, 
adapted to ERA5 
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Weather Regimes – intrinsic predictability

Hochman, A., G. Messori, J. F. Quinting, J. G. Pinto, and C. M. Grams, 2021: Do Atlantic-European Weather Regimes 
Physically Exist? Geophysical Research Letters, 48, e2021GL095574, doi:10.1029/2021GL095574.

→ EuBL least intrinsic predictability

Average temporal evolution of the de-
seasonalized dynamical systems 
metrics (d and θ) close to the weather 
regime maximum stage (time = 0 
days). The dynamical systems metrics 
are computed on 500-hPa geopotential 
height (Z500). A 95% bootstrap 
confidence interval is shown in shading. 

https://doi.org/10.1029/2021GL095574
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Weather regimes – practical predictability

year-round skill  for WR LC attribution

 skill in IFS extended-range reforecasts up to about 14 days
 skill horizon for EuBL (and no regime) is significantly shorter by 3-5 days than for other regimes
 skill horizon longest for ZO, GL (representing the NAO phases) driven by winter and likely due to high 

persistence and stratospheric influences → EuBL least forecast skill horizon

Year-round daily skill individual WR life cycles
NCEP ECMWF

Osman, M., et al. 2023, doi:10.1002/qj.4512
Büeler, D., et al. 2021, doi:10.1002/qj.4178

https://doi.org/10.1002/qj.4512
https://doi.org/10.1002/qj.4178
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Role of latent heat release

10
km

Pfahl, S. et al., 2015, Nature Geosci., doi:10.1038/ngeo2487 , Grams and Archambault, 2016, Mon. Wea. Rev., doi:10.1175/MWR-D-15-0419.1
Steinfeld and Pfahl, 2019, Clim. Dyn., doi:10.1007/s00382-019-04919-6 , Steinfeld et al., 2020, Weather Clim. Dynam., doi:10.5194/wcd-1-405-2020

http://dx.doi.org/10.1038/ngeo2487
https://dx.doi.org/10.1175/MWR-D-15-0419.1
https://dx.doi.org/10.1007/s00382-019-04919-6
https://dx.doi.org/10.5194/wcd-1-405-2020
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Diagnostics to quantify contributions to blocking

• e.g. Michel and Rivière 2011
• emphasises role of dry dynamics 

• e.g. Pfahl et al. 2015
• emphasises role of moist dynamics 

• Teubler and Riemer 2020 and 
Hauser et al. 2023 bring moist and 
dry dynamics in perspective

• contributions to amplitude by
• barotropic dynamics (UP)
• baroclinic interaction (LOW)
• divergent wind (DIV, indirect 

moist-diabatic contribution) 

https://doi.org/10.1175/2011JAS3635.1
https://doi.org/10.1038/ngeo2487
https://doi.org/10.5194/wcd-2020-52
https://doi.org/10.5194/wcd-4-399-2023
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• PV amplitude evolution for blocking onset over Greenland. 
→ strong positive tendencies due to divergent wind components associated with WCB

Quantifying the relevance for blocking –    
quasi-Lagrangian PV diagnostics

GL Onset study: Hauser et al. 2024, doi:10.5194/wcd-5-633-2024 
PV diagnostics: Hauser et al. 2023, doi: 10.5194/wcd-4-399-2023

https://doi.org/10.5194/wcd-5-633-2024
https://doi.org/10.5194/wcd-4-399-2023
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• PV amplitude evolution during Greenland blocking life cycle
«downstream moist-baroclinic development» (Teubler and Riemer 2020)

Quantifying the relevance for blocking –    
quasi-Lagrangian PV diagnostics

GL Onset study: Hauser et al. 2024, doi:10.5194/wcd-5-633-2024 
PV diagnostics: Hauser et al. 2023, doi: 10.5194/wcd-4-399-2023

https://doi.org/10.5194/wcd-2020-52
https://doi.org/10.5194/wcd-5-633-2024
https://doi.org/10.5194/wcd-4-399-2023
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WCB representation in models – ELIAS2.0

WCB 
inflow

WCB 
ascent

WCB 
outflow

 WCB identification requires trajectory calculation based on 
high spatio-temporal resolution

→ feasible with reanalysis data and for case studies
 lack of spatio-temporal resolution and huge data amount 

of S2S ensemble reforecasts requires different approach

Example: dots Lagrangian air parcels in ascent phase. contours: 
conditional probability from Eulerian metric (plot: J. Quinting & A. Oertel)

 Eulerian metric for signature of WCB stages based on 
Unet-type convolutional neural network

 →  Quinting and Grams (2022), doi:10.5194/gmd-15-715-2022

 Predictor selection and metric based on logistic regression 
→ Quinting and Grams (2021), doi:10.1175/JAS-D-20-0139.1

https://doi.org/10.5194/gmd-15-715-2022
https://doi.org/10.1175/JAS-D-20-0139.1
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WCBs in models – bias and skill

WCB outflow skill (daily)WCB outflow skill (weekly)

 underestimation of WCB outflow downstream of stormtracks
 daily WCB outflow skill vanishes after 7 days
 slightly more skill in North Pacific than North Atlantic
 skill for weekly mean frequency into week 2

WCB outflow frequency bias (week 2)

Wandel et al. 2021 doi:10.1175/JAS-D-20-0385.1 & 
Wandel 2023 (PhD thesis)

https://doi.org/10.1175/JAS-D-20-0385.1
https://publikationen.bibliothek.kit.edu/1000151831
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WCB outflow frequency bias

8400-9600 gpm (every 200 gpm)0.5, 5, 10, 15 %

300 hPa geopotential height bias

source: Jan Wandel
• WCB outflow biases coincide with biases in geopotential height

WCB outflow bias and bias in 300 hPa
geopotential height in week 2 (DJF)
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WCB outflow at EuBL onset in ERA-I in pentad 4

23

 EuBL onset in ERA-I at lead time pentad 4 (15-19d): ERA-Interim, all members in IFS reforecast, 
verifying members (hits), members missing the onset (misses)

 model hits are similar to ERA-Interim and correctly represent Z500 at onset 

ERA-Interim (38 events) all (1078 members) hits (41) misses (1037)

WCB outflow ano.

Z500 anomaly

Wandel et al., 2024 JGR-A doi:10.1029/2023JD039791

 NWP models struggle predicting regimes beyond week 2; lowest skill for EuBL blocking
 WCBs frequencies underestimated in model. Skill lost in week 2 

 WCB activity prior to blocked regimes (in particular EuBL) challenges subseasonal prediction 

 correct WCB representation is a window of forecast opportunity even at lead times > 2 weeks!

https://doi.org/10.1029/2023JD039791
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WCB sensitivity to model configuration

• systematic underestimation of ascending airstreams without stochastic perturbations
• perturbation are confined to regions with active convection scheme
• airstream characteristics do not change (LHR, outflow height,…)
• affects ω-distribution, precipitation, ridge area Pickl et al. 2022, doi: 10.1002/qj.4257

Deinhard (born Pickl) and Grams, 2024, doi: 10.5194/wcd-5-927-2024

https://doi.org/10.1002/qj.4257
https://doi.org/10.5194/wcd-5-927-2024
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WCB role in error growth (DJF)

climatological WCB-outflow frequency

climatological RMSE

• co-occurrence of Z500 RMSE and 
WCB outflow

Pickl et al. 2023, doi: 10.1002/qj.4546

• WCB activity begins prior to maximum error 
growth

• WCB projects small IC error to upper-level RW

https://doi.org/10.1002/qj.4546
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arise from knowledge about flow-dependent predictability …

• WCB activity during onset of blocked regimes 
• MJO teleconnection and WCB activity (Quinting et al. 2023) 

• relationship of surface weather and regimes, for example
− serial cyclone clustering (Hauser et al. 2023)

− cold renewable energy droughts in Germany and UK (Mockert et al. 2023)

− intra-regime weather variability (Spaeth et al. 2024, Gerighausen et al. 2024)

• Stratospheric influence on regime predictability (Beerli and Grams, 2019, Domeisen et al. 2020, 
Spaeth et al. 2024)

• detecting predictability barriers barriers and knowing when they will be overcome 
(González-Alemán et al. 2022, Oertel et al. 2023, Dorrington et al. 2024)

Forecast opportunities in light of intrinsic limits of 
predictability 

https://doi.org/10.5194/wcd-5-65-2024
https://doi.org/10.1029/2022GL101900
https://doi.org/10.1002/met.2141
https://doi.org/10.1029/2024GL109733
http://arxiv.org/abs/2408.04302
https://doi.org/10.1002/qj.3653
https://doi.org/10.5194/wcd-1-373-2020
https://doi.org/10.1029/2024GL109733
https://doi.org/10.1029/2021GL095464
https://doi.org/10.1029/2022GL100958
https://doi.org/10.5194/nhess-24-2995-2024
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Regime-dependent changes in forecast uncertainty
(Spaeth et al. 2024, Gerighausen et al. 2024)

https://doi.org/10.1029/2024GL109733
http://arxiv.org/abs/2408.04302
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Regime-dependent changes in forecast uncertainty
(Spaeth et al. 2024, Gerighausen et al. 2024)

browsable figure collection at https://zenodo.org/records/12923703

 weather regime indices during cold/warm 
UK Greenland blocking winter days

 T2m impact of GL depends on
 amplitude of GL blocking
 duration
 co-projection in another regime 

https://doi.org/10.1029/2024GL109733
http://arxiv.org/abs/2408.04302
https://zenodo.org/records/12923703
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Predictability barriers

Oertel et al., 2023, Geophy. Res. Let. doi:10.1029/2022GL100958

T2m anomaly and blocking 850hPa T forecast

https://doi.org/10.1029/2022GL100958
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Predictability barriers

Oertel et al., 2023, Geophy. Res. Let. doi:10.1029/2022GL100958

• WCB activity and downstream 
development reduced intrinsic 
predictability

• How to know a priori about 
when the forecast becomes 
more reliable?

https://doi.org/10.1029/2022GL100958
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Predictability barriers – identification using 
event-prone regime approach

Domino – a framework for 
automated precursor analysis

Dorrington et al., 2024, doi:10.1002/qj.4622
https://github.com/joshdorrington/domino

• ensemble precursor forecast indicates Emilia-
Romagna floods in May 2023 up to 8 days ahead

• predictability barrier around 8 May

Dorrington et al. 2024b doi: 10.5194/nhess-24-2995-2024

https://doi.org/10.1002/qj.4622
https://github.com/joshdorrington/domino
https://doi.org/10.5194/nhess-24-2995-2024
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Predictability barriers – identification using 
event-prone regime approach

• subsetting ensemble according to IVT precursor activity identifies reasons and is sharper
• cyclogenesis near Newfoundland during 8-12 May reduces intrinsic predictability

Dorrington et al. 2024b doi: 10.5194/nhess-24-2995-2024

https://doi.org/10.5194/nhess-24-2995-2024
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 “moist-baroclinic development” contributes substantially to 
forecast uncertainty on medium- to subseasonal time scales

 SPPT and SPP reduce systematic WCB biases

 still WCB activity contributes to flow-dependent situations of 
low intrinsic predictability 

 forecast storylines help to overcome predictability barriers

Conclusions

contact: christian.grams@meteoswiss.ch

What is ultimate predictability and what is holding NWP back?
The predictability of the atmosphere is intrinsically limited. However, this is flow-dependent and linked to a
chain of synoptic events. We have to think more in dynamical “forecast storylines”, know about the critical
event causing a “predictability barrier”, and benefit from knowing when the barrier will be overcome.

mailto:christian.grams@meteoswiss.ch
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• PV amplitude evolution for blocking onset over Greenland. 
→ strong positive tendencies due to divergent wind components associated with WCB

Quantifying the relevance for blocking –    
quasi-Lagrangian PV diagnostics

GL Onset study: Hauser et al. 2024, doi:10.5194/wcd-5-633-2024 
PV diagnostics: Hauser et al. 2023, doi: 10.5194/wcd-4-399-2023

https://doi.org/10.5194/wcd-5-633-2024
https://doi.org/10.5194/wcd-4-399-2023


© Reading, UK, 9 September 2024  Christian M. Grams 39

• tracking of upper-level PV anomalies 
associated with blocking

• contributions to amplitude evoluation by
− barotropic dynamics (UP)
− baroclinic interaction (LOW)
− divergent wind (DIV, indirect moist-

diabatic contribution) 

Quantifying the relevance for blocking –    
quasi-Lagrangian PV diagnostics

GL Onset study: Hauser et al. 2024, doi:10.5194/wcd-5-633-2024 
PV diagnostics: Hauser et al. 2023, doi: 10.5194/wcd-4-399-2023

https://doi.org/10.5194/wcd-5-633-2024
https://doi.org/10.5194/wcd-4-399-2023
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WCB outflow at EuBL onset

0 5 10 15 20 25 30 
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(day 10-14d)

Lead Times (in days) 
Onset at day 11

IWR
Onset in 
pentad 4
(day 15-19d)

 EuBL onset in ERA-Interim at given lead time 
window

 focus on leadtime pentads rather than weeks, as 
WCB skill is lost after 10 days 

 WCB outflow frequencies based on ELIAS2.0 for 
ERA and model at these lead times        
(not necessarily an EuBL onset in model)

Z500

WCB outflow freq. anomaly

example ERA-Interim anomalies 
for ERA-I onset lead time 10-14d (pentad 3)

Wandel et al., 2024 JGR-A doi:10.1029/2023JD039791

https://doi.org/10.1029/2023JD039791
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WCB outflow at EuBL onset in ERA-I in pentad 4

§§
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 EuBL onset in ERA-Interim at given lead time 
window

 focus on leadtime pentads rather than weeks, as 
WCB skill is lost after 10 days 

 WCB outflow frequencies based on ELIAS2.0 for 
ERA and model at these lead times (not 
necessarily an EuBL onset in model)
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Weather regime life cycles

 Weather regime Index Iwr following 
Michel and Rivière (2011), JAS, 
doi:10.1175/2011JAS3635.1

 Objective definition of onset, maximum, 
decay for individual weather regime LCs

Pwr(t)=ϕ‘(φ,λ,t) · ϕ‘(φ,λ) wr

dominant WR LC

on dc
mx

http://dx.doi.org/10.1175/2011JAS3635.1
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Weather regimes 2021
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Weather regime characteristics

frequencyduration

Cyclonic regimes: 
• Atlantic trough
• Zonal Regime
• Scandinavian trough 

Blocked regimes: 
• Atlantic ridge
• European blocking
• Scandinavian blocking 
• Greenland blocking

interannual variability
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Quinting and Grams (2021), JAS, doi:10.1175/JAS-D-20-0139.1 

An Eulerian WCB Metric (ELIAS2.0)

 Predictors based on standard input fields at 
pressure levels: T, qv, Z, u, v

Quinting and Grams (2022), doi:10.5194/gmd-15-715-2022
https://git.scc.kit.edu/nk2448/wcbmetric_v2 

 trained on global ERA-Interim at 1.0° grid 
spacing

UNet-type convolutional neural networkPredictor selection

https://doi.org/10.1175/JAS-D-20-0139.1
https://doi.org/10.5194/gmd-15-715-2022
https://git.scc.kit.edu/nk2448/wcbmetric_v2
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WCB frequency biases (DJF)

46

WCB outflow Week 2

contours 1, 5, 10, 15% WCB frequency 

WCB 
inflow

WCB 
ascent

WCB 
outflow

ECMWF S2S ensemble reforecasts 
DJF 1997-2017 (~920 initial times)
→ Detection of WCB inflow, ascent, 

outflow mask in each member

Wandel, J., J. F. Quinting, and C. M. Grams, 2021: Toward a Systematic Evaluation of Warm Conveyor Belts in Numerical Weather Prediction and Climate 
Models. Part II: Verification of Operational Reforecasts. Journal of the Atmospheric Sciences, 78, 3965–3982, doi:10.1175/JAS-D-20-0385.1.

https://doi.org/10.1175/JAS-D-20-0385.1


47

A potential modulation of the MJO teleconnection by 
WCB activity (led by Julian Quinting)

• systematically enhanced WCB activity
• in WPAC after phase 2/3 along with zonally-oriented flow
• in EPAC after phase 6/7 along with blocked flow

Z300 [gpm]WCB inflow [%]                        WCB outflow [%] 

0-4 d after active MJO 
(pentad 1)

Quinting et al., in review for WCD 
doi:10.5194/egusphere-2023-783.

https://doi.org/10.5194/egusphere-2023-783
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A potential modulation of the MJO teleconnection by 
WCB activity (led by Julian Quinting)

Z500 anomaly [gpm] pentad 3 (10-14d) after active MJO

 canonical NAO+ (ZO) regime respone after Ph2/3 and NAO- (GL) after 6/7

Phase 2/3 Phase 6/7

Quinting et al., in review for WCD 
doi:10.5194/egusphere-2023-783.

https://doi.org/10.5194/egusphere-2023-783
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A potential modulation of the MJO teleconnection by 
WCB activity

 stratification according to low (lower 33%) and 
high (upper 33%) of WCB activity in WNPAC

WCB inflow (%) pentad 1 (0-4d)

Quinting et al., in review for WCD 
doi:10.5194/egusphere-2023-783.

https://doi.org/10.5194/egusphere-2023-783
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MJO teleconnection after Ph 2 and 7 with high/low 
WCB activity. 

 Ph 2:
 low WCB activity → NAO+?
 high WCB activity → BL?

low high

Z500‘ pentad 2 (5-9d)

mid  Ph 7:
 low & high WCB activity 

→ indifferent picture
 intermediate WCB activity 

→ NAO- response

Quinting et al., in review for WCD 
doi:10.5194/egusphere-2023-783.

https://doi.org/10.5194/egusphere-2023-783
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Regime occurrence after low / high WCB activity

phase 2

phase 3

phase 6

phase 7

 NAO+ response after ph 2
 weak AR/NAO- response after 

ph 6/7

 BL response after ph 2
 indifferent response after ph 6/7

low WCB activity

phase 2

phase 3

phase 6

phase 7

high WCB activity

NAO+ AR BL NAO-

Quinting et al., in review for WCD 
doi:10.5194/egusphere-2023-783.

https://doi.org/10.5194/egusphere-2023-783
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Potential to increase forecast skill horizon through …

1. Improvement of the NWP system (reducing IC and model error)

2. Alternate forecast question (spatial-temporal aggregation & knowledge 
about sources of predictability)

Forecast skill horizon

time

limit of intrinsic 
predictability

t0

forecast 
initialisation

tskill,perfect

forecast skill 
horizon

tskill,model

current model

perfect model

model improvement 


	Diagnostics for investigating the representation of synoptic-scale processes in models and their benefit for medium- to extended-range prediction.
	The forecasting challenge
	The forecasting challenge
	The forecasting challenge
	The forecasting challenge
	upscale error growth
	Flow-dependence – forecast busts
	Flow-dependence – forecast busts
	Forecast Skill and Predictability
	Forecast skill horizon
	Forecast skill horizon
	Outline
	Weather regimes
	Weather Regimes – intrinsic predictability
	Weather regimes – practical predictability
	Role of latent heat release
	Diagnostics to quantify contributions to blocking
	Quantifying the relevance for blocking – 	   quasi-Lagrangian PV diagnostics
	Quantifying the relevance for blocking – 	   quasi-Lagrangian PV diagnostics
	WCB representation in models – ELIAS2.0
	WCBs in models – bias and skill
	WCB outflow bias and bias in 300 hPa geopotential height in week 2 (DJF)
	WCB outflow at EuBL onset in ERA-I in pentad 4
	WCB sensitivity to model configuration
	WCB role in error growth (DJF)
	Forecast opportunities in light of intrinsic limits of predictability 
	Regime-dependent changes in forecast uncertainty�(Spaeth et al. 2024, Gerighausen et al. 2024)�
	Regime-dependent changes in forecast uncertainty�(Spaeth et al. 2024, Gerighausen et al. 2024)�
	Predictability barriers
	Predictability barriers
	Predictability barriers – identification using event-prone regime approach
	Predictability barriers – identification using event-prone regime approach
	Conclusions
	References
	References
	References
	Slide Number 37
	Quantifying the relevance for blocking – 	   quasi-Lagrangian PV diagnostics
	Quantifying the relevance for blocking – 	   quasi-Lagrangian PV diagnostics
	WCB outflow at EuBL onset
	WCB outflow at EuBL onset in ERA-I in pentad 4
	Weather regime life cycles
	Weather regimes 2021
	Weather regime characteristics
	An Eulerian WCB Metric (ELIAS2.0)
	WCB frequency biases (DJF)
	A potential modulation of the MJO teleconnection by WCB activity (led by Julian Quinting)
	A potential modulation of the MJO teleconnection by WCB activity (led by Julian Quinting)
	A potential modulation of the MJO teleconnection by WCB activity
	MJO teleconnection after Ph 2 and 7 with high/low WCB activity. 
	Regime occurrence after low / high WCB activity
	Forecast skill horizon

