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ConvCastNet: convolutional weather forecasting neural network
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• Training data ERA5 reanalysis:

• Train: 1970 – 2014

• Validation: 2015 – 2019

• Test: 2020 - 2022

• Model resolution: 3º 

• Variables

• Z, u, v, ω, T, q at 13 pressure levels

• T2m, u10, v10, land and ice surface 

temperature, SST, mslp, tp

• Sea ice, snow depth, soil moisture, 

top-of-atmosphere solar radiation, 

…

• Training: 4 autoregressive steps

• Time step: 12 hr 

MODEL ARCHITECTURE

Input 
fields
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GLOBAL SKILL

ACC > 0.6 for 8.5 days 

Large-scale forecast skill close to
state-of-the-art ML models



SPATIAL DISTRIBUTION OF ERRORS

Absolute error:
absolute difference between 
forecast and ERA5 „truth“

Normailzed error:
absolute error divided by natural 
variability

Lead time: 2 days



Large absolute errors:

• Mid-to-high latitudes
• Polar stratosphere

Correspond to large natural variability

Large normalized errors:

• Tropics
• Polar and tropical stratosphere

Better describes error relative to expected 
natural weather variability

GEOPOTENTIAL



Large absolute errors:

• Region of strong mid-latitude westerly jet
• Stratosphere

Large normalized errors:

• Tropical atmosphere
• Tibetan Plateau

ZONAL WIND

Absolute error Normalized error



Large absolute errors:

• Above oceans
• Lower tropospere

Large normalised errors:

• Congo and Amazon basin
• Maritime continent
• Tropical oceans
• Stratosphere

SPECIFIC HUMIDITY

Absolute error Normalized error
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• How does the forecast skill improve if we continuously replace forecasted fields with ERA5 „truth“ in:

1. Tropics?

2. Stratosphere?

• We perform the analysis by replacing forecasted fields in the tropics/stratosphere with ERA5 „truth“:

• We measure skill gain with the following metric:

MODEL ERROR DIAGNOSTICS

1 −
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑀𝑀 𝑥𝑥 )

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑀𝑀 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 )

autoregressive input field ERA5 „truth“ term Model forecast term
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• This method easily diagnoses problematic regions in ML models

 Very few issues regarding the boundary between ERA5 „truth“ and the model forecast

• We identify the stratosphere to be the key region needing better representation to improve model skill

• We could investigate other regions e.g. mountains or oceans  as well

ERA5 ERA5 ERA5
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FORECAST ERROR SENSITIVITY TO INPUT FIELDS

• Calculate the sensitivity of the forecast errors to the input fields:

=> derivative of forecast error with respect to input fields:  𝜕𝜕𝜕𝜕
𝜕𝜕(𝐼𝐼𝐼𝐼)

• ML models are auto-differentiable → error backpropagation

• Can it be used to improve weather forecasts?



HURRICANE IAN: forecast initialisation – September 23, 2022



• Contours: 10 m horizontal wind speed forecast
• Colour: 10 m normalised wind forecast error
• Black box: domain for error calculation

Aim of case study: estimate the sensitivity of Hurricane 
Ian‘s forecast error to the initial conditions.



Sensitivity to subtropical 
jet stream

No sensitivity to Southern 
Hemisphere initial 

conditions

Sensitivity to upstream 
Rossby waves and 

tropical waves

SENSITIVITY TO ZONAL WINDS
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SENSITIVITY TO SURFACE TEMPERATURES
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• In order to improve the 

forecast of hurricane Ian‘s 

tropical-to-extratropical 

transition we should improve 

initial condition at sensitive 

regions – especially at the 

Caribian and the Bay of 

Mexico.

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕 (𝑡𝑡 = 𝜕)Plot:



• Determine regions where more measurements are needed to decrease forecast uncertainty at 

later times

• Error calculation: use ensemble model spread as a proxy for model error

• Pros :

• Sensitivity is calculated using a fully nonlinear model (instead of an adjoint model – which 

is valid for a limited amount of time)

• Cons :

• We assume the perfect model

POSSIBLE USE IN WEATHER PREDICTION
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1. Regional overwriting of model forecast with the „truth“ is a simple yet efficient way 

for ML model error diagnostics 

2. Error backpropagation could be a useful tool for:

• Physical consistency evaluation

• Improving initial conditions

CONCLUSION

The full analysis will be published soon.
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ACC at different lead times and pressure levels

3 distinct predictability regimes:
• Stratosphere
• Free troposphere
• „Planetary boundary layer“



Z: lead day 2

Z: lead day 10

LEAD TIME DIFFERENCE

Lead day 10 normalised error difference:
• Mid-to-high latitude errors become prevailing 
• Stratospheric errors become more prominent



Plot:
• Verticaly and zonally averaged 

relative temperature error 
comparison

1 −
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑀𝑀 𝑥𝑥 )

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑀𝑀 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 )

relative error increase

relative error decrease

relative error increase

relative error decrease



• Statistically significant improvements spread with time:
• Starting from mid-latitude 850 hPa ERA5 boundary
• Surrounding tropical mid-troposphere
• Reaching stratosphere after lead day 4 

• Big improvements in mid-latitudes



autoregressive input field ERA5 „truth“ term Model forecast term

Vertical weights equation:

Latitude weihts equation:

MODEL FORCING METHODOLOGY



Sum over 
predetermined 

domain
Standardized 

ERA5 fields
Standardized 

input fields

Sign functionError derivative 
with respect to 
standardized 
input fields

Diferentiation of 
the model with 

respect to 
standardized 
input fields

FORECAST ERROR 



Z500 initial condition perturbation

ADJUSTMENT EXPERIMENTS

Goal:
• Compare model response with dynamics 

expectations
• ML models not so sensitive to instability 

=> easy to initialize forecast



day 0

day 1

day 6

Propagation features:
• Propagates downstream
• Faster than Rossby wave 

phase speed
• Confined to Northern 

Hemisphere for first 6 
forecast days
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