A process-based evaluation of biases in extratropical stratosphere-troposphere coupling

Zachary Lawrence, Chaim I. Garfinkel, Amy Butler, Etienne Dunn-Sigouin, Irina Statnaia, Alexey Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Camara, Andrew Charlton-Perez, Daniela I.V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, Rachel W.-Y. Wu

Introduction

- Two-way coupling between the stratosphere and troposphere is recognized as an important source of subseasonal-to-seasonal (S2S) predictability and can provide forecast windows of opportunity.
- Model biases can, however, lead to a poor representation of such coupling processes; at lead times of one to two weeks, drifts in a model's circulation related to model biases, resolution, and parameterizations have the potential to feed back on the circulation and affect stratosphere-troposphere coupling.

Conclusions

Northern Hemisphere:

- Nearly all S2S forecast systems underestimate the strength of the observed upward coupling from the troposphere to the stratosphere and downward coupling within the stratosphere.
- While downward coupling from the lower stratosphere to the near surface is well represented in the multi-model ensemble mean, there is substantial inter-model spread. This is likely related to overly fast decay of simulated lower stratospheric temperature anomalies.

4. Summary of biases in coupling strength

Southern Hemisphere:

- The forecast systems overestimate the upward coupling of wave-1 from the troposphere to the lower stratosphere, and the stratospheric vortex is oversensitive to upward propagating wave flux.
- Forecast systems generally overestimate the strength of downward coupling from the lower stratosphere to the troposphere, even as they underestimate the radiative persistence in the lower stratosphere.
- In both hemispheres, models with higher lids and a better representation of tropospheric quasi-stationary waves generally perform better at simulating these coupling processes.

Take home message: We have introduced a set of diagnostics that can be used to evaluate strat-trop coupling in a model, and provide a baseline by applying these diagnostics to a few generations of S2S models.

2. Models used and their vertical resolutions

In the NH, coupling strength is systematically too weak for nearly all models for all metrics but downward propagation from 100hPa to 850hPa. This metric has the biggest spread across models, even as the multi-model mean is realistic. In the SH, many metrics indicate too strong coupling, even though the radiative persistence in the lower stratosphere is too weak.

5. Too-weak sensitivity of polar vortex to 100hPa heat flux

What explains intermodel spread in the regression coefficients?

 Models with worse tropospheric quasi-stationary wave-1 tend to have a particularly weak sensitivity.

3. Upward coupling: too-weak penetration of wv1

Regression coefficient of 100hPa polar cap height with 850hPa polar cap height, DJF

What explains intermodel spread in the regression coefficients?

Models with worse tropospheric quasi-stationary wave-1 tend to have particularly strong sensitivity.

7. Underestimated interannual variability in wave extremes

Regression coefficient of 500hPa heat flux with 100hPa heat flux , 45-75N, DJF

-2 0 2 4

-6

-4

6 8

coefficient

egression

± 1.5

Models systematically underestimate the upward propagation of wave-1

What explains intermodel spread in the regression coefficients?

- Models with worse tropospheric quasi-stationary wave-1 tend to have a weaker wave-1 upward coupling.
- Models with low tops tend to have a weaker wave-2 coupling. This is also apparent for the SH in SON (not shown).

 In the SH in SON, the year-to-year spread in the 95th percentile heat flux extremes in both the stratosphere and troposphere are underestimated beyond week 1 lead times (also true for the NH DJF stratosphere).

This suggests that the S2S forecast systems quickly lose information about drivers of year to year fluctuations in heat flux extremes.