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Introduction

Ensemble development tends to use metrics for predictions of
scalars, like the Continuous Ranked Probability Score, CRPS. Do we
have a blind spot if we do not use measures that evaluate how well
the relationships between different variables are predicted?
Multivariate predictions can consist of a set of locations, different
lead times, different variables.
There are proper scores for multivariate predictions like the energy
score and the logarithmic score.
Here, recent work is summarised that focusses on a fair version of
the logarithmic score and the extension of rank histograms to
bivariate predictions.

Univariate and multivariate ensemble verification

an ensemble of scalars xj ∈ R

figures from scipy documentation, CC0 1.0

an ensemble of vectors xj ∈ Rp

The logarithmic score and ensemble size

Extend work of Siegert et al. (2019) to forecasts issued as multivariate
normal distributions

The log score for multivariate normal distributions
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with mean vector µ and a
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The fair logarithmic score for Rp
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for n > p + 2.

The adjustments yield an estimate of the score of the distribution
E LogSFn
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The derivation can be found in Leutbecher and Baran (2024). For
scalars (p = 1), LogSFn is identical to the result in Siegert et al. (2019).

Results for 100-member subseasonal IFS ensemble

Sep-Nov 2023, daily, 00 UTC, northern midlatitudes 35N–65N
Scores for ensemble sizes n = 12, 16, 24, . . . , 100

850 hPa temperature on 9-point stencil, p = 9
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Geopotential on 6 pressure levels, p = 6
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2D rank histograms

Rank histograms are versatile tools that help assess the reliability of
ensemble forecasts. While traditionally rank histograms are applied to
univariate forecasts, they can also be used in a multivariate space. The
proposed 2D ensemble rank histogram is a generalisation of the
ensemble rank histogram to bivariate ensemble forecasts.

Methodology

The 2D vector composed of the ranks of the observation in the
ensemble for the two components is used to determine the
frequencies in the 2D rank histogram.
In the univariate case, a flat rank histogram is interpreted as the
ensemble being reliable (observations and ensemble members are
statistically indistinguishable). For 2D rank histograms, the ideal
shape of a reliable ensemble is not known a-priori .
Ensemble members can be used as pseudo-observations to build a
reference 2D rank histogram for comparison. This reference is a
representation of the ensemble copula.
Let’s recall Sklar’s theorem (1959): a bivariate distribution F of the
random variables v1 and v2 can be decomposed as

F (v1, v2) = C
(
FV1(v1), FV2(v2)

)
where FV1 and FV2 denote the univariate marginal distributions and C
the copula function for the dependencies.

Results for the 50-member medium-range IFS ensemble

200 hPa horizontal wind components
Northern Hemisphere at Day 6
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a) 2D rank histogram, b) ensemble copula, c) 1D rank histogram of the
u-component, d) 1D rank histogram of the v-component. In panels (a) and (b), thin
lines show the mean frequency, thick and dashed lines show deviations to the mean
of ± half a standard deviation, respectively.

Whether the dependencies between variables in the ensemble
reflect the dependencies in the observations can be assessed by
comparing the 2D rank histogram with the ensemble copula: for a
reliable ensemble, (a) should look like (b) within sampling uncertainty.
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