# **Evaluating multivariate ensemble forecasts**

Martin Leutbecher<sup>e</sup>, Sándor Baran<sup>d</sup> and Zied Ben Bouallègue<sup>e</sup> (e) ECMWF, Reading, United Kingdom (d) University of Debrecen, Hungary

### Introduction

- Ensemble development tends to use metrics for predictions of scalars, like the Continuous Ranked Probability Score, CRPS. Do we have a blind spot if we do not use measures that evaluate how well the relationships between different variables are predicted?
- Multivariate predictions can consist of a set of locations, different lead times, different variables.
- There are proper scores for multivariate predictions like the energy score and the logarithmic score.
- Here, recent work is summarised that focusses on a fair version of the logarithmic score and the extension of rank histograms to

# Univariate and multivariate ensemble verification



figures from scipy documentation, CC0 1.0





#### bivariate predictions.

## The logarithmic score and ensemble size

Extend work of Siegert et al. (2019) to forecasts issued as **multivariate normal distributions** 

# The log score for multivariate normal distributions

Consider  $x_1, x_2, \ldots, x_n \in \mathbb{R}^p \sim \mathcal{N}_p(\mu, \Sigma)$  with mean vector  $\mu$  and a (regular) covariance matrix  $\Sigma$ , representing an *n*-member forecast ensemble, and let y denote an observation.

The ensemble mean and the ensemble covariance matrix are

$$\boldsymbol{m} := rac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i$$
 and  $\boldsymbol{S} := rac{1}{n-1} \sum_{i=1}^{n} (\boldsymbol{x}_i - \boldsymbol{m}) (\boldsymbol{x}_i - \boldsymbol{m})^{ op}.$ 

The scores for the distribution and the ensemble are

$$\operatorname{LogS}(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \boldsymbol{y}) = \frac{p}{2} \log(2\pi) + \frac{1}{2} \log\left(|\boldsymbol{\Sigma}|\right) + \frac{1}{2} (\boldsymbol{y} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{\mu}) \quad \text{and}$$
$$\operatorname{LogS}(\boldsymbol{m}, \boldsymbol{S}; \boldsymbol{y}) = \frac{p}{2} \log(2\pi) + \frac{1}{2} \log\left(|\boldsymbol{S}|\right) + \frac{1}{2} (\boldsymbol{y} - \boldsymbol{m})^{\top} \boldsymbol{S}^{-1} (\boldsymbol{y} - \boldsymbol{m}).$$

#### The fair logarithmic score for $\mathbb{R}^p$

#### **Results for 100-member subseasonal IFS ensemble**

- Sep-Nov 2023, daily, 00 UTC, northern midlatitudes 35N–65N
- Scores for ensemble sizes n = 12, 16, 24, ..., 100

850 hPa temperature on 9-point stencil, p = 9



# Geopotential on 6 pressure levels, p = 6



$$\operatorname{LogS}_{n}^{F}(\boldsymbol{m}, \boldsymbol{S}; \boldsymbol{y}) = \frac{p}{2} \log(2\pi) + \frac{1}{2} \log\left(|\boldsymbol{S}|\right) + \frac{n-p-2}{2(n-1)} (\boldsymbol{y} - \boldsymbol{m})^{\top} \boldsymbol{S}^{-1} (\boldsymbol{y} - \boldsymbol{m}) \\ - \frac{1}{2} \left[ \psi_{p} \left( \frac{n-1}{2} \right) - p \log\left( \frac{n-1}{2} \right) + \frac{p}{n} \right] \quad \text{for } n > p+2.$$

The adjustments yield an estimate of the score of the distribution

 $\mathsf{E} \operatorname{LogS}_n^F(\boldsymbol{m}, \mathbf{S}; \boldsymbol{y}) = \operatorname{LogS}(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \boldsymbol{y})$ 

The derivation can be found in Leutbecher and Baran (2024). For scalars (p = 1),  $LogS_n^F$  is identical to the result in Siegert et al. (2019).

#### **2D rank histograms**

Rank histograms are versatile tools that help assess the reliability of ensemble forecasts. While traditionally rank histograms are applied to univariate forecasts, they can also be used in a multivariate space. The proposed 2D ensemble rank histogram is a generalisation of the ensemble rank histogram to **bivariate ensemble forecasts**.

#### Methodology

The 2D vector composed of the ranks of the observation in the ensemble for the two components is used to determine the frequencies in the 2D rank histogram.

## **Results for the 50-member medium-range IFS ensemble**

## 200 hPa horizontal wind components

Northern Hemisphere at Day 6



In the univariate case, a flat rank histogram is interpreted as the ensemble being reliable (observations and ensemble members are statistically indistinguishable). For 2D rank histograms, the ideal shape of a reliable ensemble is not known *a-priori*.
Ensemble members can be used as pseudo-observations to build a reference 2D rank histogram for comparison. This reference is a representation of the ensemble copula.
Let's recall Sklar's theorem (1959): a bivariate distribution *F* of the random variables v<sub>1</sub> and v<sub>2</sub> can be decomposed as F(v<sub>1</sub>, v<sub>2</sub>) = C(F<sub>V1</sub>(v<sub>1</sub>), F<sub>V2</sub>(v<sub>2</sub>))

where  $F_{V_1}$  and  $F_{V_2}$  denote the univariate marginal distributions and C the **copula function** for the dependencies.

a) 2D rank histogram, b) ensemble copula, c) 1D rank histogram of the u-component, d) 1D rank histogram of the v-component. In panels (a) and (b), thin lines show the mean frequency, thick and dashed lines show deviations to the mean of  $\pm$  half a standard deviation, respectively.

Whether the **dependencies between variables** in the ensemble reflect the dependencies in the observations can be assessed by comparing the 2D rank histogram with the ensemble copula: for a reliable ensemble, **(a) should look like (b)** within sampling uncertainty.

# References

Leutbecher M, Baran S. 2024. Ensemble size dependence of the logarithmic score for forecasts issued as multivariate normal distributions. doi:10.48550/arXiv.2405.13400.

Siegert S, Ferro CAT, Stephenson DB, Leutbecher M. 2019. The ensemble-adjusted ignorance score for forecasts issued as normal distributions. *Quarterly Journal of the Royal Meteorological Society* **145**(S1): **129–139**, doi:10.1002/qj.3447.