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Introduction How can we learn about model physics, and what the humerical models do?

MU-MIP is an intercomparison project for model uncertainty in which we intercompare the physics .. Lead time evolution for three physics packages, upper and lower quartiles 200 Time rate of change of MLCIN for two physics packages, upper and lower quartiles

parameterization suites used in numerical weather and climate modelling. Each physics suite consists — FaPmean g — RAPmean

of a package of parameterizations, e.q. for turbulence, convection, radiation, surface exchange with > — IFs mean > — [Fomean

land/ocean and cloud processes. These are thought to be the dominant contribution to model =) 100

uncertainty across all GCMs and numerical weather prediction models. . e — _

We run the simulations with parameterization suites by utilizing the single-column version of s % |

operational models (SCM) over the Indian Ocean domain about ten million times. To ensure fixed : oo ® -0

and representative dynamical constraints, we assume a ground truth derived from DYAMOND . “100,

simulations and insert its dynamics as initial and boundary conditions in the SCMs. One month of o] 1o

2016 is covered based on the storm-resolving ICON (AX = 2.5 km) and driven by three-hourly o | | | | | .

archived dynamics. 0 ' 2 leadtimethrs) i i ’ : 2 eadtiet : i
Left: mixed-layer CAPE as function of lead time for the ITCZ band; right: mixed-layer CIN as a function of lead time for the

After re-gridding to 0.2 degrees, we currently carry out an ocean-only intercomparison over a entire domain, with enclosed net physics and dynamics tendencies of IFS across the diurnal cycle.

subdomain of 44.000 tiles. Two physics suites utilizing parameterizations from the Common Community Below: time evolution of 3 and 6 hour change of mixed-layer CAPE (left) and CIN (right) over the full domain.
Physics Package have been compared: RAP and GFS (proto. version 17).

. . . . MLCAPE deviation from initials MLCIN deviation from initials
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PDF of Mixed-layer (ML) values of vV2CAPE and +/2CIN from three parameterization suites on a log-axis at 6 hour lead (Conditional) PDFs of mixed-layer CIN change (left) and CAPE change (center) at 6 (3) hours lead time across various
time (enclosed: 3 hours). The lines indicate PDFs across variation across the diurnal cycle. suites; left and center: full PDF; right: conditioned PDF for mixed-layer CAPE over precipitating parts of the grid (at least
Grey: ground truth (ICON 2.5km-derived conditions prescribed as initials) 1.7 mm per 6h). GFS has much more of such precipitating cells than RAP.

Right, black: same ground truth MLCIN following slightly different IFS levels define the ML (further investigation needed)

_ o _ Convective adjustment from a model’s non-native regime is linked to precipitation intensity, which
We intercompare conditional PDFs of tendencies and the model state to learn |could link to non-stationarity in parameterized precipitation rates manifested by parameterized deep-

about multi-model uncertainty, eventually at benefit of stochastic convection in ERA5 (Buschow, 2024, QJRMS).

. . __ Precipitation rate vs. ML CAPE change across three parameterisation suites for two regions Area mean physics tendency g vs. ML CAPE change across three parameterisation suites for two regions
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Spatial distribution of monthly quantiles of mixed-layer CAPE for three parameterization
suites (median) and high CAPE (difference map, lower right) Refined understanding of model assumptions across parameterization suites, variation

in spin-up behaviour, and their relation with physical drivers could be of large benefit for

Spatial distribution of +6h 50t ile MLsonpaCAPE, IFS-physi ial distributi th i . , di - - - -
" patial distribution of + quantile MLsopp physics Spatlal3.dg|§tr|but|o-n q h 95 qU| MLOP EAPE difference between RAP and GFS our Interpretatlon Of MU'MIP data as We" as Improvement Of SUltes. Although
" . ' R S 1250 . . . . e o
01 01] = I parameterization suites should converge towards reality, this is not apparent.
. , < 950
-4.11 -4.11 : o7
- PR 1650
8.1 8.1 » . Multivariate perspective: ML CAPE, precipitation & a few tendencies during spin-up
%-12.1' IFS-SCM precipitation . I §_12'1 - g: :F "m | lro.3 . Iro‘3 - . IO'B | l: l:: — I:
S 16.11 k Sty Y 5161 o o v ] 7 ™
= 5.0 [ = = O ] I ] ] I ] ]
5 R £ T - —250 § | [ °° ] ] e o o0 ] s
-20.11 2100 675 & -20.1 | Lon | Lo1 | L on | Lo | o | -0
g—ls-o 50 & L _550 4 I_o,z , ioz . ioz | i_o.z . ioz | '—0.2
-24.11 s B -24.1- I B O R e L RN - S | .
50 oo 2 ~850 -
28.11 -28.11
150 | IFS-SCM weighted EOFS during adjustment, top: “dry” region; bottom: “wet” GFS for reference
-32.11 3580 560 o6l0 660 710 760 8Lo 860 910 030 -32.11
Longitude (“E) 32.1 u lo,s u 03 o Iro,g 1 u lo,3 H N l ] 0.3
53.9 57.9 61.9 659 699 739 779 819 859 899 93.9 539 57.9 61.9 659 699 739 779 819 859 899 93.9 ~1450 ‘ 2 I i S 0z ' !“
Longitude (“E) Longitude (°E) ] | . | . .
References: . ] . !
Christensen, H., 2020 Constraining stochastic parametrisation schemes using high-res simulations, QJRMS, https://doi.org/10.1002/qj.3717 o | L] ] |
Buschow, S., 2024 Tropical convection in ERA5 has partly shifted from parameterized to resolved, QJRMS, https://doi.org/10.1002/9j.4604 I ] I , I . I . '
The provisional analysis here is based on data provided by E. Groot and X. Sun with great support from K. Newman and H. Christensen. Further data to follow. -O O mi -,O, 190 Poin —O' 180 — i, F ,“‘ N | t I, F T imulars
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