Global km-scale model simulations almost look like satellite images – but not quite. We need to understand their imperfections to better represent clouds. A statistical evaluation of cloud structures can help.

Lilli Freischem, Philipp Weiss, Hannah Christensen & Philip Stier University of Oxford <u>lilli.freischem@physics.ox.ac.uk</u>

Which one is the satellite image?

Multifractal analysis for evaluating the representation of clouds in global km-scale models

Why do we need new metrics for

Multifractal evaluation of clouds in nextGEMS models

clouds in km-scale models?

Traditional, aggregated metrics ignore the fine details contained in km-scale simulations.

Observed² and simulated³ clouds show fractal behaviour.

What can we learn by comparing cloud fractals in models and observations?

Approach

Extract snapshots of outgoing longwave radiation from simulations and observations.

Compute multifractal parameters of deep convective clouds for evaluation.

Multifractal scaling parameters

We compute structure functions $S_a(r)$

Structure functions $S_q(r)$ show that simulated clouds exhibit multifractal scaling between 50 and 1000km.

GOES-16 fitting range <20km *S*_q(5.5km) 10³ 10² Sq(r) / 10^{1} 10^{0} ICON Տ_զ(9.5km) 10² 10^{1} Sq(r) 10^{0} 10² 10^{3} 10r (km)

Larger fractal parameters correspond to more organised cloud fields.

06/09/2020 14:00

27/09/2020 14:00

Fractal analysis and averaged metrics disagree on which regions are modelled better.

Average OLR bias in ICON (Sep 2020) 200 3.9 W/m^2 $0.8 \, W/m^2$ 14.5 W/m² -20 -40 ⁰⁰¹ -40

Anvils are too organised in the IFS (high ζ_{∞}) and not organised enough in ICON (low ζ_{∞}).

match GOES-16 observations⁵.

which describe average variability of outgoing longwave radiation (OLR) ϕ : $S_q(r) = \langle |\phi(x+r) - \phi(x)|^q \rangle \propto r^{\zeta_q}$

The two-parameter fit² to the scaling exponents $\zeta_q = aq/(1 + aq/\zeta_{\infty})$ captures smoothness a and multifractality ζ_{∞} .

Regional studies can give insights into the origin of the identified biases

ICON's bias towards lower scaling parameters originates from clouds simulated over the ocean.

The IFS does not represent the diurnal cycle of convection correctly, both over land and over ocean.

References

- [1] Freischem, L. J. et al. (2024). Multifractal Analysis for Evaluating the Representation of Clouds in Global Kilometre-Scale Models. *Manuscript submitted for publication*. (preprint: 10.22541/au.171813202.26984086/v1)
- [2] Pierrehumbert, R. T. (1996). Anomalous scaling of high cloud variability in the tropical pacific. Geophysical Research Letters, 23, 1095-1098.
- [3] Christensen, H. M. & Driver, O. G. A. (2021). The Fractal Nature of Clouds in Global Storm-Resolving Models. *Geophysical Research Letters*, 48(23).

[4] Koldunov, N. et al. (2023). nextGEMS: output of the model development cycle 3 simulations for ICON and IFS. World Data Center for Climate (WDCC) at DKRZ. [5] GOES-R Calibration Working Group & GOES-R Series Program (2017). NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b Radiances. Preprint

