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Take Home Messages
1. Early in the forecasts, the two stochastic parameterizations have different effects:

Ø PSP scheme responds to boundary layer turbulence and produces strong perturbations and error growth in phase with the diurnal cycle of convection
Ø SPPMP produces perturbations in regions with existing precipitation that grow more slowly with lead time, independent of the time of day

2. Differences between the two stochastic schemes are short-lived, and within a day of simulation, the amplitude and structure of differences are similar. This is associated with 
saturation of error growth on small scales (up to about 50 km). 

3. No additive perturbation growth beyond the first hours is discernible using both schemes in parallel.
4. The locations and amplitudes of upscale error growth are determined by the synoptic-scale dynamics, independent of the details of the stochastic physics.

Experimental Design
Ø WRF @ 3 km grid spacing
Ø Model physics as in HRRR
Ø no Cu parameterization
Ø Stochastic Microphysics 
Ø PSP scheme
Ø Ensemble size N=7
Ø no IC and LBC uncertainty

Physically based Stochastic 
Perturbations PSP (Hirt et al. 2019) 

B. Spectra of Precipitation and Kinetic Energy
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A. Summer vs Winter Case
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Sampling uncertainty
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Conclusions

Sources of uncertainty

Spatial distribution of uncertainty
• Measure of uncertainty: width of the 95% confidence interval (e.g. for the mean of 

2m temperature) determined with bootstrapping (resampling method)

• Map of uncertainty: convection increases the uncertainty of most variables

• Synoptic forcing impacts the uncertainty pattern and the shape of the underlying 
distribution

• ICON-D2 model

• PSP scheme + 40 IBC 
(KENDA) + parameter 
perturbations

• 2-moment microphysics 
scheme

• 2 case studies: weak (10 June 
2021) and strong synoptic 
forcing (29 June 2021)

• Identify how well an ICON-D2 ensemble forecasting system represents the 
different sources of uncertainty and whether it has sufficient members to 
sample the uncertainty as it evolves

• Analyze how the synoptic weather regime impacts both issues

Confidence interval width for the mean of 2m temperature with respective histograms 
and hourly precipitation field (ensemble mean).
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• Universal power law convergence of sampling uncertainty 

• Convergence depends on statistic and distribution shape

• Extrapolating convergence allows estimate of how large an ensemble is needed

• Impact of initial and boundary condition uncertainty (IBC) and PSP
perturbations on ensemble spread and spatial dispersion of precipitation (dFSS)

• IBC impact from spin-up onward, temporarily smaller dispersion at the onset of 
convection (hypothesis: due to orography)

• PSP impact from onset of convection onward, then fast upscale growth (limited), 
decreases again in the evening. Stronger impact in weak forcing.

• Combination of IBC+PSP is additive, largest dispersion and spread

Spread

Mean

• The convection-influenced shape of the underlying distribution dictates the 
properties of uncertainty and its convergence

• Flow dependence of uncertainty well represented by distinguishing weak and 
strong synoptic forcing conditions

• Impact of PSP on ensemble spread and spatial dispersion of precipitation larger 
in weak forcing

• Combining PSP and IBC produces the largest spread and dispersion

• A small ensemble size impacts uncertainty convergence more than dFSS

Contact: M.Puh@physik.uni-muenchen.de
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random horizontal eddy field

subgrid standard deviation
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Physically based stochastic perturbation scheme (PSP)

20 members 10 members 5 members

Diffenrence in dFSS between the number of members written and 40 members 
for the experiment IBC+PSP.

RMDTE (m s-1) and hourly precipitation (>0.1mm, blue contours) at various lead times for WEAK Convection (left) and WINTER (right) case.
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Fig. 7. Same as Fig. 5., but for forecast initialized at 00 UTC on 02 Mar 2023. 444 
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1) Domain-averaged precipitation intensity and normalized spread 334 

 In this study, precipitation intensity is assessed using the domain-averaged precipitation of the 335 

ensemble mean. To minimize the effect of comparing absolute precipitation spreads across different 336 

events, we quantify the spread using the domain-average normalized standard deviation (Hohenegger et 337 

al. 2006; Keil et al. 2019): 338 
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 340 

where G((*, I) denotes the normalized precipitation spread at each grid point. K(*, I)LLLLLLLLL and K&(*, I) are 341 

the precipitation of the ensemble mean and each ensemble member, respectively. N (equal to 7 in this 342 

study) is the number of ensemble members. 343 

2) Root-mean difference total energy  344 

  This study calculates the total energy difference between the CNTL forecasts and a specific 345 

ensemble member, taking into account both thermodynamic and kinematic fields. For a horizontal grid 346 

point and an ensemble member, the energy difference is measured by the pressure-weighted root-mean 347 

difference total energy (RMDTE, Zhang et al. 2003): 348 
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where ∆X  ∆Y , and ∆C  are zonal wind, meridional wind, and temperature departure from the CNTL 350 

forecast, respectively. D is the pressure field at each vertical level from the surface (denoted as UH) up to 351 

the 300 hPa (denoted as U3). In this study, the constant @-+ and CD are set to 1004.9 J kg-1 K-1 and 270 K, 352 

respectively. Similar to normalized precipitation spread, this study compared energy differences across 353 

different cases using normalized difference total energy (N_RMDTE), which is defined as the standard 354 

RMDTE divided by the pressure-weighted ensemble mean kinetic energy (Nielsen and Schumacher 2016): 355 

Time height diagram of 
averaged RMDTE ratio 
(shaded, SPPMP against 
PSP) and domain average 
hourly precipitation rate 
(mm, white lines, 
corresponding to the right 
y-axis) for WEAK 
Convection (left) and 
WINTER (right) case.

C. Saturation Ratios of DKE and DPR

Stochastic Microphysics SPPMP 
(Thompson et al. 2021)

Six 
Cases
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b. Formulation of the SPP in the Thompson aerosol-aware microphysics scheme (SPPMP) 192 

 The SPPMP scheme is designed to sample uncertainty in the formulation of the Thompson aerosol-193 

aware microphysical scheme (Thompson and Eidhammer 2014). It perturbs key internal parameters used 194 

in bulk microphysics representations, including the cloud droplet shape parameter, and the graupel/hail 195 

intercept parameters. Also, it perturbs vertical velocity which determines how many aerosols and mineral 196 

dust concentrations will be activated as cloud condensation and ice nuclei, respectively. Aiming to capture 197 

realistic and physically justifiable uncertainty for each parameter, the SPPMP settings closely adhere to 198 

the methodology outlined by Thompson et al. (2021) and insights gained from personal discussions with 199 

the physics developer. As shown in Fig.2a, the SPPMP uses a stochastic pattern generator with larger 200 

decorrelation time (2 hours) and length scales (200 km) compared to those used in the PSP scheme (Fig.2b). 201 

This stochastic pattern is coherent throughout each vertical column. While the random pattern used in 202 

SPPMP possesses larger spatial and temporal scales, the effective micro-physics perturbations may not 203 

inherit this property since microphysical processes are naturally more intermittent and exhibit smaller 204 

scales than the PBL processes. The stochastic pattern generator uses a standard deviation of 0.75 and a 205 

cutoff threshold of 2.5 standard deviations, which leads to different perturbation amplitudes for each 206 

parameter, as summarized in Table 2 (see also Thompson et al. 2021).  207 

Table. 2. Details of the four perturbed parameters in the SPPMP scheme. The listed perturbation 208 
magnitudes originated from stochastic random patterns with a standard deviation of 0.75. The 209 
spatial and temporal scales update random patterns using autoregressive processes. 210 

Parameters Magnitudes Spatial and temporal scales 

Cloud droplet shape parameter ±2.0 

150 km and 2 hours 
Graupel and hail intercept parameters ±0.75 

Vertical velocity for cloud condensation 
nuclei activation 

+0.375 

Activation of ice nuclei concentration +13.5 

c. Formulation of the WRF implementation of the PSP scheme (WRF-PSP) 211 

 This study implements the PSP scheme into the MYNN level 2.5 (Olson et al. 2019) 212 

parameterization scheme, which is part of the WRF model. The PSP scheme considers missing variability 213 

in resolved potential temperature (")  and water vapor (q) fields due to partially resolved subgrid 214 

turbulence. This is achieved by adding stochastic perturbations into PBL tendencies (RTHBLTEN and 215 
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subgrid standard deviation

random horizontal eddy field

Spectra of (top) background and difference hourly precipitation and (bottom) kinetic energy for different lead times and weather situations. Each 
line shows the average of four spectra (two 00 UTC and two 12 UTC runs). The difference fields are computed against unperturbed forecasts.

Ø WINTER: saturation amplitudes in the PR spectrum at 
larger scales

Ø SUMMER: PR spectrum peaks at wavelengths of 30-50km 
Ø ALL: BKE largest for synoptic wavelengths above 500 km
Ø PSP: faster precipitation and kinetic energy error growth

but SPPMP higher amplitudes at 6 h in WINTER
Ø PSP and SPPMP: difference spectra after 6h have peaks in 

similar wavenumber bands indicating that spatial length 
scale of the perturbations does not imprint itself onto the 
forecasts

Ø small spatial scales saturate faster and thus have less 
predictability than larger scales 

Ø wavelengths of 100 km or less are close to saturation after 
a lead time of 36 h 

Saturation ratios of difference kinetic energy against difference precipitation at different forecast lead times (h, colors) for various forcing 
conditions. Columns are saturation ratios at different wavelengths. Different markers denote results of PSP and SPPMP experiments.

Ø SUMMER: precipitation and kinetic energy errors saturate at 
scales < 50km within one day

Ø WINTER: lower saturation levels indicate higher predictability
Ø PSP higher saturation levels in DKE and DPR than SPPMP 

except in WINTER cases with a short lead time, but > 100km 
SPP faster again

How is an increase in energy error associated with the error in 
precipitation?
Ø saturation ratios grows at the same rate < 50km
Ø WINTER, STRONG: close to the diagonal, but slower progress 

on larger scales
Ø WEAK: higher PR saturation ratios than KE, esp. with PSP, 

pointing to more effective decorrelation of the PR field
Ø WEAK: predictability of  convection is less than a day on all 

scales, not reflected in rapid error growth in larger-scale flow 

Ø Different responses at early lead times (6 to 12 h)
Ø PSP scheme has a stronger impact in the WEAK 

case, while SPPMP dominates the WINTER case 
Ø Additive effect only at the beginning of the forecast 
Ø After 24h RMDTE ratio converges to 1 in both 

cases
Ø Forecasts become more indistinguishable, not just 

amplitude but also spatial distribution, showing the 
importance of the dynamical processes that amplify 
perturbations over time. 

500-hPa 
geopotential 
height valid at the 
initial time for each 
case (contours, 
m), along with the 
two-day 
accumulated 
precipitation 
(shaded, mm). 

SPPMP random pattern with 150km
spatial and 2h temporal scales

PSP random pattern with 15km spatial
and 10min temporal scales


