

Workshop on Diagnostics for Global Weather Prediction

Reading | 9–12 September 2024 #diagnosticsWS

Scale-dependent evaluation and fair comparison of ensemble systems

Workshop on Diagnostics for Global Weather Prediction

Mark Rodwell, Mariana Clare, Sarah-Jane Lock, Katrin Lonitz, Matthieu Chevallier

ECMWF

11 September 2024

Mark J Rodwell

Creating power spectra to show the spatiotemporal evolution of ensemble spread and error

ECMWF²

Operations: Z250 power spectra of medium-range ensemble: Dec 2023 – Feb 2024 (DJF24)

Log-log plot

- Wavenumbers (n) more tightly packed towards right
- Diagonal contours indicate contribution to total variance per unit linear distance on x-axis
- Contour value is proportional to the y-intercept

EDA

- Maximum variance contribution at scales ≈ 1000km
- Global average total variance = 2.9m²
- Spectral resolution n = 639 (\approx 60km), 50 members
- Curious wobbles at synoptic scales

ENS initial conditions

- A few hours forecast variance growth
- Singular vector (SV) perturbations at $n \le 42$
- Maximum Variance Contribution at ≈ 2000km

ENS days 1-10

- Spectral resolution n = 1279 (≈30km), 50 members Synoptic scales
- Dominate medium-range variance (role of SVs?)
- Over-dispersive (in stormtracks) at days 1,2
- Better reliability at days 5,10
- Maximum error not reached by day 10 Smaller scales
- Errors quickly converge to theoretical maximum
- Forecast variance saturates at higher level
- Assumptions in spectral error-spread relⁿ less valid?
- Disregard error and reliability for n > 639 as no EDA

Results based on OUTC runs only for compatibility with experimental system

New IFS cycle: Z250 power spectra of the medium-range ensemble: DJF24 0Z

In next cycle EDA has same resolution as ENS and looks much improved. ENS reliability and sharpness improves a little (due to new stoch. phys.?)

AIFS: Z250 power spectra of experimental Artificial Intelligence ensemble: DJF24 0/12 Z

AIFS ensemble spread and error are larger than IFS, but more reliable overall. Curious errors at small scales

VE VF+VA

VF

Sub-seasonal ranges: Z250 power spectra of operational ensemble: DJF24 0Z

ENS days 1-40

• Spectral resolution n = 319 (≈125km), 100 members

- Similar spatiotemporal behaviour to T1279 ENS
- Errors almost completely saturate at VMA by day 40
- T1279 ENS *error* comparison \Rightarrow Resolution matters

Note that the interhemispheric mode in Z250 displays additional temporal variance associated with the seasonal cycle. This was removed with a quadratic fit. (Just affects Z_1^0 , i.e. wavenumber $1 = 10^0$).

Corresponding table for T1279 ENS (truncated to T319)

DAY	SME	VF	VE	VF+VA
1	9	34	23	37
2	16	147	93	150
5	68	1403	1260	1406
10	327	7407	7362	7410
15	625	11733	11286	11735

Impact of new observations: Z250 % change in power spectra

Predictability study: power spectra of idealised ensemble with tiny initial condition uncertainty

Suggestion for a further 5 days predictability – How model-dependent is this?

Can:

- Examine spatiotemporal evolution of the ensemble forecast
- Quantify predictive skill as a function of scale
- Chart impact of a new model cycle
- Chart impact of new observations
- Compare ensembles run at different resolutions (inc. AI)

5 more days ...?

... We just need to make it reliable!

ENS spread arises from chaotic growth of EDA uncertainty, model uncertainty and singular vector perturbations

New IFS cycle: Z250 power spectra of the medium-range ensemble: DJF24 0Z

EDA

• The higher resolution EDA looks much better

• Reduced synoptic-scale wobbles

• Less drop-off in variance at scales 200 – 40 km)

ENS initial conditions

• Initialisation adds slightly more variance

ENS days 1-10

- Reduction in synoptic-scale over-dispersion (due to major change in stochastic physics: SPPT → SPP?)
- Global budgets: reduced bias, error variance and better match between VE and VF+VA

New-Current IFS cycle: Z250 power spectra of the medium-range ensemble: DJF24 0Z

The next operational cycle sees EDA with same resolution as ENS and smoother. Change in stochastic physics. Reliability and sharpness improved

Seamless Initialisation: Z250 power spectra of control experiment with no SVs: Sept 2022

ENS days 1—5

• Cycle 48r1

• Spectral resolution n = 399 (≈100km), 10 members

• No initialisation step, so VF0=VA

• Less of a jump in scales EDA \rightarrow Day 1

• ENS is now under-dispersive

Results based on 0/12 UTC forecasts verifying 10–30 September 2022

Additional data: Z250 power spectra of experiment with 30,000 new occultation observations

ENS days 1-5

 Introduction of 30,000 new Radio Occultation observations each analysis cycle (made available for evaluation as part of the IROWG ROMEX initiative)

• Extra observations reduce error and spread

IROWG=International Radio Occultation Working Group ROMEX=Radio Occultation Modeling Experiment

The extra observations help constrain the EDA and subsequent ENS

