ECMWF forecast performance

UEF 2024
Thomas Haiden

Overview

- Upper-air forecast skill
- Weather parameters
- Extended-range forecast skill
- Seasonal forecast

Model upgrades - timeline

Cycle 47r3

Moist physics
upgrade
DA changes

ENS upper-air headline score: T850 CRPSS

Continuous ranked probability skill score $\mid 850 \mathrm{hPa}$ temperature
NHem Extratropics
$\mathrm{T}+12 \mathrm{~T}+24 \ldots \mathrm{~T}+360$ | oper_an od enfo 0001 00z,12z beginning

new high point reached

ENS upper-air headline score: T850 CRPSS

Continuous ranked probability skill score | 850hPa temperature
NHem Extratropics
T+12 T+24 ... T+360 | oper_an od enfo 0001 00z,12z beginning

ENS upper-air headline score: T850 -asen $^{\text {CRPSS }}$

ENS skill relative to dressed ERA5 - Day 5

850 hPa Wind
850 hPa Temperature
500 hPa Geopotential MSL pressure

Anomaly correlation of 500 hPa geopotential reaching 85\%

ML models vs classical (physical) NWP

Drop of skill with forecast range

Tropics: RMSE of 850 hPa vector wind

Fraction of large ENS 2m temperature errors

Fraction of large CRPS value $>5.0 \mid 2$ meter temperature
Extratropics
T+120 | oper_ob od enfo 0001

- 00z, $12 z$

Fraction of large ENS 2m temperature errors: regions

ENS 2m Temperature (TIGGE)

season:DJF (2024 solid, 2023 dot)
Continuous ranked probability skill score
2 meter temperature | Extratropics

Fraction of large ENS 10m wind speed errors

ENS precipitation forecast skill

ECMWF EPS 12UTC forecast skill
Continuous ranked probability skill score | total precipitation
Extratropics
— 12 mMA of CRPSS reaches 0.10
— 12mMA of CRPSS reaches 0.10

ENS precipitation model intercomparison (TIGGE)

season:DJF (2024 solid, 2023 dot)
Continuous ranked probability skill score
total precipitation | Extratropics

Verification of extremes: EFI ROC area

2 m temperature

10 m wind speed

24h precipitation

Ocean wave forecast - N. Extratropics

Scatter index | significant wave height | NHem Extratropics
$2023120100 z$ to $2024022900 z$ | waveapi lw wave prod 00z mean_fair

Significant wave height

Scatter index | ppld | NHem Extratropics
$2023120100 z$ to $2024022900 z$ | waveapi lw wave prod 00 zr

Peak period

Extended range: T2m anomalies (ROC area)

Summer

Winter

Week 2
Weeks 3+4

Extended range: S2S model intercomparison

- Common re-forecast verification period: 2003-2016
- Fair CRPSS: corrected for ensemble size
- ECMWF generally leading (surface and upper-air)

$$
\begin{aligned}
& \text { W1 }=\text { Days } 5-11 \\
& \text { W2 }=\text { Days } 12-18 \\
& \text { W3 }=\text { Days } 19-25 \\
& \text { W4 }=\text { Days } 26-32
\end{aligned}
$$

- Skill drops from 0.5 to 0.2 over first two weeks

Tropical Pacific SST forecast (up to 7 months ahead)

NINO3.4 SST anomaly plume
ECMWF forecast from 1 Nov 2023

ECMWF forecast

NINO3.4 SST anomaly plume
C3S multi-system forecast from 1 Nov 2023
ECMWF, Met Office, Méteo-France, CMCC, DWD, NCEP, JMA, ECCC
Monthly mean anomalies relative to ERA5 1981-2010 climatology

C3S multi-model forecast

Tropical Pacific SST forecast (up to 13 months ahead)

NINO3.4 SST anomaly plume
ECMWF forecast from 1 Feb 2023
Monthly mean anomalies relative to ERA5 1981-2010 climatology

Forecast from Feb 2023
NINO3.4 SST anomaly plume
ECMWF forecast from 1 Aug 2023

Monthly mean anomalies relative to ERA5 1981-2010 climatology

Forecast from Aug 2023

ERA5 DJF 2023/24 T2m anomaly (contour: 95\% significance)

ERA5 DJF 2023/24 T2m anomaly (contour: 99\% significance)

2σ significance

SEAS5 DJF 2023/24 T2m anomaly (contour: 99\% significance)

DJF 2024 precipitation anomalies (mm/day)

ERA5
ERA5 DJF 2023/24 precipitation anomaly (contour: 95\% significance)

SEAS5 (ensemble mean)
SEAS5 DJF 2023/24 precipitation anomaly (contour: 95% significance)

2σ significance

More verification results

Verification of ECMWF IFS in Charts Severe Event Catalogue

Active engagement with MS/CS and beyond WMO Lead Centre verification

Your feedback is welcome!

