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What the ML Roadmap has achieved so far

JupyterHub and loT data used 2 use cases of machine
machine learning in operations learning accelerators for
libraries available conventional modelling
Machine learning First machine 5 machine learning
network established learning training course applications integrated
and roadmap updated in operational workflow

One machine Machine learning team Copernicus Machine learning
learning conference established [TTs involve considered in
per year at ECMWF machine learning HPC procurement
Sufficient hardware 4 machine learning Comprehensive and
for machine learning benchmark datasets well-documented machine
established published learning workflow in place

Vision 2031
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It is difficult to distinguish
between machine learning
and domain sciences

Data handling fully capable
to serve machine learning
needs

Fully supported diagnostic
tools via trustworthy Al

Physical constraints can be
represented in deep learning

Use of machine learning
as easy and normal as
data re-gridding

Unsupervised learning
and causal discovery
used on a regular basis

Machine learning solutions
from end-users integrated
in workflow
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a very busy and FAST evolving landscape

Huawei — Microsoft — NVIE)IA — SFNO
PanguWeather ClimaXx 0.25° 6-hour
0.25° hourly product
product Forecasting
various lead- Extension of
“More times at various FourCastNet to
accurate resolutions, both Spherlcgl
tracks” than globally and harmonics,
the IFS. regionally improved stability
Nov 2022 Jan 2023 Spherical harmonics
Jun 2023
2018 ECMWF's ML Feb 2022 Dec 2022 Apr 2023
scientific publication Full medium-range NWP Extensive predictions 7-day+ scores improve

ECMWF's Keisler - GraphNN Deepmind — FengWu — Alibaba -

Peter Dueben 1°, competitive GraphCast China academia + SwinRDM

and Peter Bauer with GFS 0.25° 6-hour Shanghai Met 0.25° 6-hour

pUinS’_h a paper NVIDIA — . Bureau product

on usmgl]( ERAS FourCadinen Many variables 0.25° 6-hour product

el = 0ok Fourier+ , 0.25° and pressure Sharp spatial

resolution to levels with Improves on features

. 4 .
predict future O(107) faster & comparable skill GraphCast for
z500. more energy to IFS. longer leadtimes

efficient than IFS (still deterministic)




An overview of machine learning at ECMWF
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ECMWE unveils alpha version of new ML

ECMWF is today launching a newborn companion to the IFS (Integrated Forecasting System),
telligencefintegrated Forecasting System (one “I" covering both

learning to Earth system modelling.

Recent posts

ECMWF unveils alpha version of new ML
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Project

Led by MET Norway &

MeteoSwiss
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ML Project overview: different paths towards an ML ensemble
prediction system at ECMWF
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The hybrid model ML svstem
ensemble forecast y
. Enhanced and accelerated Data-driven model initialised A whole system reinventing the
mplementstlog of ECMWF ML with NWP analysis hence path from observations to
oadmap requiring conventional data predictions.
assimilation.

Delivering results Embracing novelty A scientific challenge



Exploiting Neural Networks (NN) to correct model error (hybrid modelling)
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: : : : : Geer (2023)
Using microwave radiances to improve the ocean and sea-ice

a OCEANS seaice b AMSR2 sea ice c OLCI [mW m=Zsr' nm™]
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12 UTC 4% Dec 2020 — A6SA (100 km by 60 km)

Iceberg approaching island of South Georgia. Copernicus sentinel data 2020



Anomaly correlation (%6)
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Data driven models
AIFS v0.2 — atmospheric skill
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Learning from observations

1 Predictions from analysis
e.g. current AIFS

Can we “augment” AIFS using
observation data?

& ECMWF

t+0 t+N

model space
internal representation u
observation space () @)

3 Learn the analysis
emulate 4D-Var

t+0 t+N
model space @)
internal representation O
observation space O

5 Predict future observations from
observations

make predictions in observation space,

use observations as truth
t+0 t+N

model space O @)
internal representation
observation space

McNally et al. (2024)

2 Predict observation targets from analysis input

e.g. fine tune AIFS to predict SYNOPS
t+0 t+N
model space O

internal representation

observation space (O

4 Predictions from observations

make predictions in model space,
use reanalysis as truth
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model space O
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observation space

6 Other combinations
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Learning from observations

1 Predictions from analysis

e.g. current AIFS

model space
internal representation

observation space

3 Learn the analysis
emulate 4D-Var

altogether

Can (re)analysis be bypassed

model space

internal representation

& ECMWF
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McNally et al. (2024)

2 Predict observation targets from analysis input

e.g. fine tune AIFS to predict SYNOPS
t+0 t+N
model space O

internal representation

observation space (O

4 Predictions from observations

make predictions in model space,
use reanalysis as truth
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Data Driven Machine Learning Forecast trained / initialised from observations

Using historical measurements (10yrs ++) the network learns correlations
between observations from different sources, at different locations and
(crucially) at different times.

Then from an input set of real-time observations the network can predict
an observation of any type at any required future location and time.
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DestinE

Impact sectors
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Interactivity

(@

Continuous (e.g yearly for climate) production / operationalization

Flexible on-demand production
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Data driven forecasts for uncertainty quantification

Train

/i \

Prepare Apply
data model

\ Capture /

feedback Initial Conditions Forecast time Forecast

Developing & running both global & local data-driven models
to create ensembles that complement DestinE simulations
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Limited area models

10m wind speed (my/s)

Stretched grid model (Met Norway,

Limited Area Model (Oskarsson et al., 2023)
Nipen et al. 2024)
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Al Earth System Model

EARTH SYSTEM APPROACH

ECMWEF

ATMOSPHERE |

Build full Earth System : e
model with land, ocean, —
sea-ice and hydrology Turbulence -
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the ML project f e | nruantad
especially ensemble 4 /\ /f ;
developments and ) / [y enense
learning from > NN
observations 7{1\

=) £

caspiil

Lo
i’ ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Forecast-in-a-box

Providing a packaged system with
data-retrieval, forecasting & postprocessing.

This system runs on local hardware or cloud
and is delivered in a matter of minutes

It is configurable for Earth-System components
and user-defined outputs.

< ECMWF

ai-models web mfn“é“e’ﬂfu';'mum Destination Earth ..., ©ECMWF @esa @ EUMETSAT
ah | Ey
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Date: Ny %
Time: 20 E‘,
Lead time: ‘%‘,‘ 5

9 S
TOKeN: [seessasese | [ Submit |

4, 0
s”-l.vam ELN

New job id: 3ad48ead-a7a4-41a5-9170-54b8a2a4fd56

Job status: queued
Job status: active
Job status: ready

Forecast is ready! &3
Click here to download

Wednesday 10 April 2024 12 UTC ecmf t+12 VT:Thursday 11 April 2024 00 UTC 2 m 2 metre temperature




An overview of machine learning at ECMWF
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