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Proper scores
• A score for a probabilistic forecast is a summary measure that evaluates the
probability distribution. This condenses all the information into a single number
and can be potentially misleading.

• Let us assume that we predict the distribution pfc(x) while the verification is
distributed according to a distribution py (x). Not all scores indicate maximum
skill for pfc = py .

• A score (or scoring rule) is (strictly) proper if the score reaches its optimal value if
(and only if) the predicted distribution is equal to the distribution of the
verification.

• If a forecaster is judged by a score that is not proper, (s)he is encouraged to issue
forecasts which are not the best forecasts according to their true belief!

In such a situation, one says that the forecast is hedged or that the forecaster
plays the score.

• Examples of proper scores are: Brier Score, continuous (and discrete) ranked
probability score, quantile score, logarithmic score

• see Gneiting and Raftery (2007) for more details
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Example of a score that is not proper

• consider the linear score: LinS = |p − o|
• dichotomous event e: e occured (o = 1), e did not occur (o = 0)

• assume the event occurs with the true probability of 0.4

• If the prediction is 0.4, the expected linear score is

E(LinS) = 0.4|0.4− 1|+ (1− 0.4) |0.4− 0| = 0.48

• If the prediction is instead 0, the expected linear score is

E(LinS) = 0.4|0− 1|+ (1− 0.4)|0− 0| = 0.40

It is not hard to prove that the Brier score is strictly proper (e.g. Wilks 2011)
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Sebastian Lerch’s example with two proper scores
Simple idealised example

We compare Alice’s and Bob’s
forecasts for Y ∼ N (0, 1),

FAlice = N (0, 1)

FBob = N (4, 1)

Based on 10, 000 forecast
experiments,

Forecaster CRPS LogS

Alice 0.56 1.42
Bob 3.53 9.36
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A conditional sample for evaluating Alice and Bob
Simple toy example

Based on the 10 largest observations,

Forecaster CRPS LogS

Alice 2.70 6.29
Bob 0.46 1.21
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The forecaster’s dilemma

More generally, for non-constant weight functions w , any scoring rule

S∗(F , y) = w(y)S(F , y)

is improper even if S is a proper scoring rule (Gneiting and Ranjan, 2011). Here, y and
F denote the verifying observation and the predicted distribution, respectively.

Forecaster’s dilemma
Forecast evaluation only based on a subset of extreme observations corresponds to
improper verification methods and is bound to discredit skillful forecasters.

Acknowledgement: Forecaster’s dilemma and Alice and Bob’s forecast based on slides provided by

Sebastian Lerch (Heidelberg Institute for Theoretical Studies), see also Lerch et al. (2017)
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Scores for probabilistic/ensemble forecasts of continuous
scalar variables

some (but not all) useful measures

• RMSE and other scores used for single forecasts applied to ensemble mean

• rank histograms (reliability again)

• continuous ranked probability score (reliability and resolution)

• quantile score (reliability and resolution)

• logarithmic score (for Gaussian) (reliability and resolution)

• reliability of the ensemble spread (domain-integrated and local)
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Continuous ranked probability score
CRPS = Mean squared error of the cumulative distribution Pfc

cdf of observation Py (x) = P(y ≤ x) = H(x − y) = 1{y ≤ x}
cdf of forecast Pfc(x) = P(xfc ≤ x)

Here, H and 1 denote the Heaviside step function and the indicator function,
respectively.

CRPS =

∫ +∞

−∞
(Pfc(x)− Py (x))

2 dx =

∫ +∞

−∞
BSx dx

−2 −1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

x

P

(P_fc − P_obs)^2
P_fc
P_obs

−2 −1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

x

P

(P_fc − P_obs)^2
P_fc
P_obs

−2 −1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

x

P

(P_fc − P_obs)^2
P_fc
P_obs

equal to mean absolute error for a single forecast

M. Leutbecher Ensemble Verification II Training Course 2024 8



Continuous ranked probability score
CRPS = Mean squared error of the cumulative distribution Pfc

cdf of observation Py (x) = P(y ≤ x) = H(x − y) = 1{y ≤ x}
cdf of forecast Pfc(x) = P(xfc ≤ x)

Here, H and 1 denote the Heaviside step function and the indicator function,
respectively.

CRPS =

∫ +∞

−∞
(Pfc(x)− Py (x))

2 dx =

∫ +∞

−∞
BSx dx

−2 −1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

x

P

(P_fc − P_obs)^2
P_fc
P_obs

−2 −1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

x

P

(P_fc − P_obs)^2
P_fc
P_obs

−2 −1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

x

P

(P_fc − P_obs)^2
P_fc
P_obs

equal to mean absolute error for a single forecast
M. Leutbecher Ensemble Verification II Training Course 2024 8



How to compute the CRPS
Ensemble

The integral
∫
. . . dx can be evaluated exactly by using the intervals defined by the M

ensemble forecasts and the verification rather than some fixed interval ∆x :

CRPS =
M∑
j=0

cj

cj = αjp
2
j + βj(1− pj)

2

pj = j/M
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How to compute the CRPS
Gaussian distribution

• For a Gaussian distribution an analytical formula for the CRPS is available.

• Assume that the predicted Gaussian has mean µ and variance σ2 and that the
verification is denoted by y .

CRPS =
σ√
π

[
−1 +

√
π
y − µ

σ
Φ

(
y − µ√

2σ

)
+
√
2 exp

(
−(y − µ)2

2σ2

)]

• Here, Φ denotes the error function Φ(x) =
2√
π

∫ x

0
exp(−t2)dt.

• This relationship is particularly useful for calibration purposes (Non-homogeneous
Gaussian regression).

• Leutbecher and Haiden (2021) approximate the joint distribution of forecast and
observations by a homogeneous Gaussian distribution. Then, the expected CRPS
can be expressed as a function of the variance of the error of the ensemble mean,
the spread-error ratio and the bias (mean error of the ensemble mean)
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Kernel representation of CRPS

CRPS
(
{xj}M , y

)
=

1

M

M∑
j=1

|xj − y | − 1

2M2

M∑
j=1

M∑
k=1

|xj − xk |

where xj (j = 1, . . . ,M) denote the ensemble members.

Using 1/ [2M(M − 1)] as normalisation factor for the second term yields the fair
CRPS. Under certain assumptions (exchangeability of members) the expected value of
the fair CRPS is independent of ensemble size. The fair CRPS estimates the CRPS
one would obtain from an ensemble with infinitely many members that are sampled
from the same distribution as the existing members.

The kernel representation can be generalized to higher dimensions using the Euclidean
norm of the vector differences of members and observation:

energy score =
1

M

∑
j

∥xj − y∥ − 1

2M2

∑
j

∑
k

∥xj − xk∥
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CRPS
Decomposition

• The CRPS can be decomposed into a reliability component and a resolution
component.

• The CRPS is additive: The CRPS for the union of two samples is the weighted
(arithmetic) average of the CRPS of the two samples with the weights
proportional to the respective sample sizes.

• The components of the CRPS are not additive. The components can be
computed from the sample averages of the αj and βj distances.

• This is similar to the decomposition of the Brier score. However, the reliability
(resolution) component of the CRPS is not the integral of the reliability
(resolution) component of the Brier scores.

• The reliability component of the CRPS is related to the rank histogram but not
identical.

• see Hersbach (2000) for details (but note that there are alternative
decompositions, e.g. Leutbecher and Haiden (2021))
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CRPS with threshold-weighting

Can be used for instance to focus on the tails of the climatological distribution, e.g.
strong wind, intense rainfall.

The threshold-weighted CRPS weights the integrand (= Brier score for threshold z)

twCRPS(F , y) =

∫ ∞

−∞
(F (z)− 1{y ≤ z})2w(z)dz

w(z) is a weight function. The score twCRPS is proper and avoids the problem with
looking only at a sample of extreme outcomes (Alice and Bob’s example).

Gneiting, T. and Ranjan, R. (2011)

(adapted from a slide by Sebastian Lerch)
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Ranked Probability Score (RPS)
• The RPS is a discrete analog to the integral over Brier scores CRPS =

∫
BSx dx

RPS =
L∑

k=1

BSxk =
L∑

k=1

(Pfc(k)− Py (k))
2

• The thresholds xk that separate the L categories can be chosen in various ways
• equidistant (RPS → CRPS as ∆x → 0)
• climatologically equally likely, e.g. tercile boundaries
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Quantile score

QS

median
10th percentile

90th percentile

y q

QSα(q, y) = 2 (I {y < q} − α) (q − y)

where q, y and α denote the quantile,
the observation and the probability
level, respectively. The indicator
function I returns 1 if its argument is
true and 0 otherwise. For the median
(α = 0.5), the quantile score becomes
symmetric with respect to q − y and is
equal to the mean absolute error.∫ 1

0
QSα dα = CRPS
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Logarithmic score
Ignorance score

• For a forecast consisting of a probability density pfc(x), define

LS = − log(pfc(y))

where y denotes the observation (or analysis).
• This score is proper and local.
• ensemble forecasts −→ probability density

• A simple yet useful exercise is to use the Gaussian density given by the ensemble
mean µ and the ensemble variance σ2. Then, the logarithmic score is given by

LS =
(µ− y)2

2σ2
+ 1

2 log(2πσ
2)

• The first term is a measure of the reliability and the second term is a measure of
the sharpness of the forecast.

• This is a score in itself (Gneiting and Raftery, 2007, refer to this Dawid-Sebastiani
two-moment score) and Siegert et al. (2019) have developed a fair version of this
score.
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Daily EPS stdev (shaded) and ens. mean (cont.)
500 hPa geopotential (m2 s−2) at 72 h lead; init. time 6 December 2010

H

L

L

70°N
70°N

70°N

60°N

60°N

60°N

60°N

60°N

50°N

50°N

50°N

50°N

50°N

50°N

50°N

40°N

40°N

40°N

40°N

40°N

40°N

30°N

30°N

30°N

30°N

30°N

60°E40°E20°E20°W40°W60°W

20°E20°W

  0  75 150 225 300 375 450 525 600 675 750 825
EM

M. Leutbecher Ensemble Verification II Training Course 2024 17



Daily EPS stdev (shaded) and ens. mean (cont.)
500 hPa geopotential (m2 s−2) at 72 h lead; init. time 8 December 2010
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Spread-reliability
methodology

consider (local) pairs of ensemble variance and squared error of the ensemble mean
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Spread-reliability
methodology

consider (local) pairs of ensemble variance and squared error of the ensemble mean —
stratified by the ensemble variance
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Spread-reliability
methodology

consider (local) pairs of ensemble variance and squared error of the ensemble mean —
stratified by the ensemble variance
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Spread-reliability: An example
500 hPa height — 20◦–90◦N
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• 40 cases

• T639, 50 member

• Jan 2010 config. (“as 36r1”)

• Nov 2010 config. (“as 36r4”):
revised initial perturbations and
revised tendency pertns.
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Uncertainty of the verifying observations
or, more generally, the verifying data

• In real applications the true state xt of the atmosphere is not know exactly. The
observation y has an error

y = xt + ϵ

• Assume an ensemble is perfectly reliable, i.e. ensemble members xe ∼ ρe and the
true state xt ∼ ρt are realisations of the same distribution ρe = ρt .

• Then, the observation y is a realisation of the distribution given by the
convolution of the true distribution and the error distribution

ρy = ρt ∗ ρϵ

ρy (x) =

∫ +∞

−∞
ρt(z)ρϵ(x − z) dz

• Thus, a verification with respect to y will indicate a lack of reliability.
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Verification in the presence of observation uncertainties

ρϵ ρt = ρe , ρy = ρE
• A solution: postprocess ensemble members prior to verification

• Verify ensemble members to which noise has been added:
xE = xe + ϵ with ϵ ∼ ρϵ

• Then, we have ρE = ρy

see Saetra et al. (2004) and see e.g. Ben Bouallègue (2020) Tech. Memo 865,
www.ecmwf.int/node/19544
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The climatological distribution
temperature at 850 hPa

15 March (based on ERA-Interim 1989–2008)
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The climatological distribution
temperature at 850 hPa

15 June (based on ERA-Interim 1989–2008)
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Ficticious skill due to a poor climatological distribution

• If one uses the same climatological distribution for a domain with different
climatological characteristics (mean, stdev, . . . ), the skill with respect to that
distribution is not real skill. It reflects the poor quality of the climatological
distribution.

• Same applies if seasonal variations of the climatological distribution are not
represented.

• This criticism applies for instance if the climatological distribution is derived from
the verification sample itself by aggregating different start times and different
locations.

• It can also be misleading to compare skill scores from different prediction centres
when the skill scores have been computed against own analyses.

• If the same climatological distribution (say ERA-Interim) is used as reference, this
climatological distribution has the lowest skill when verified against the analysis
that deviates most from the analyses used for computing the climatological
distribution.
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Comparing model versions/ numerical experiments
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• ⇒ not easy to get enough cases to
distinguish score distributions of two
numerical experiments
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95% confidence intervals
Paired sample of cases: t test applied to score differences
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(start dates)

• For each forecast lead
time, consider sample of
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• Temporal auto-correlation taken into account using AR(1) model when estimating
variance of mean difference

• see also Diebold and Mariano (1995) and Geer (2016)
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More verification topics

• sensitivity to ensemble size M and estimation of verification statistics in the limit
M → ∞: fair scores, see e.g. Ferro et al. (2008); Leutbecher (2019); Siegert et al.
(2019) and the Lorenz 1996 practical

• skill on different spatial scales, see Jung and Leutbecher (2008)

• multivariate aspects (e.g. energy score, slide 11)
• forecast user perspective, decision making and verification

• yes/no decisions and the cost-loss model, see Richardson (2000)
• weather roulette, see Hagedorn and Smith (2009)
• elementary scores are building blocks for many proper scores; with different

weighting functions, one obtains many different scores such as the CRPS or the
diagonal score, see Ben Bouallègue et al. (2018)
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