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Introduction: Model Uncertainty

* Ensemble forecasts enable a quantification of the confidence in a forecast, e.g. 10% chance of rain

* An ensemble forecast is made from multiple forecasts or “members”, each member perturbed

with respect to the others

* The perturbations comprise

a) different initial conditions for each member, to sample the uncertainty in our description of the initial

state (Simon Lang’s lecture); and

b) a different forecast model for each member, to sample the uncertainty due to the model integrations or

the “model uncertainty”

e To date, much effort has been focused on model uncertainty due to the parametrization schemes
that describe sub-grid atmospheric physics --- representing this with stochastic perturbations gives

rise to “stochastic physics”
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Using stochastic physics to represent model uncertainty

* Why do we represent model uncertainty in an ensemble forecast?
* What are the sources of model uncertainty?
* How do we currently (CY48R1) represent model uncertainty in the IFS?

* How *will* we represent MU in CY49R1? And why the change?
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Ensemble reliability

* In areliable ensemble, ensemble spread is a predictor of ensemble error

/, \\\
x]- // .
/ \
1 X \
| 2™ |
\ 1
\ /
AN e(x) !
\\\ ’/

i.e. averaged over many ensemble forecasts,
e(x)~ o(x)
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For a thorough discussion of this relationship:

Martin Leutbecher’s lectures



Ensemble reliability

* In an over-dispersive ensemble,
e(x) K o(x)
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and ensemble spread does not provide a good estimate of error.

The relatively large spread implies large uncertainty and hence, likely large error:

an “under-confident forecast”
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Ensemble reliability

* In an under-dispersive ensemble,
e(x) > o(x)

~ Ensemble member

® Ensemble mean

\
o, o)
® Observation

The small spread implies low uncertainty and hence, small errors:

an “over-confident forecast”

What happens when the ensemble includes no representation of model uncertainty?
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Ensemble forecasts with only initial conditions perturbations

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

Windspeed (ms™), 250hPa, Z (dam), 500hPa,

Northern extra-tropics : : Northern extra-tropics
“ ) RMSE ensemble
A s mean

. i RMS ensemble
. " stdev
Windspeed (ms™), 250hPa, T (K), 850hPa, v

Tropics — : Tropics

uk CY47R3

o R A S A R R R TC0399L137, dt=1200s
b s lack of spread? vl _ . - 30 dates (Dec 201)

8 perturbed fcs



Sources of uncertainty: initial conditions

Later lead time

Initial time

forecast
model

Set of perturbed
initial conditions

Each ensemble member sees the
same forecast model Set of perturbed

forecasts

o H ”?
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Discretisation
Time-integration
* Transport

+ Stabilisation

 Land-surface
~ + Ocean
V' + Sea-ice

. LW/SW Radfatioft
« Convection

* Clouds & microphysics
» Composition
Boundary layer

Turbulent mixing -——-: ? o
Gravity wave drag ——— 4_‘
S ECMWF \




Model uncertainty: parametrized atmospheric physics processes

Ocean model

< ECMWF

Surface

Uncertainties arise due to:

* Inability to resolve sub-grid scales,
e.g.

— Surface drag (orography/waves)

— Convection rates (occurrence /
en/detrainment)

— Phase transitions

— Radiation transfer in cloudy skies
* Poorly constrained parameters, e.g.

— Vertical cloud-overlap (radiation)

— Composition

— Non-orographic drag



Model uncertainty: parametrized atmospheric physics processes

Ocean model

< ECMWF

Surface

“Let’s take the positives”
Parametrisation schemes:
* developed/operate together

* highly tuned for best
performance

Seek a description of uncertainty
that retains consistencies of the
representation of the physical
processes.
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Model uncertainty: parametrized atmospheric physics processes

e.g. profile of heating rates from
physics parametrisations:
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n

Ocean model SfC

Surface

dT / dt
SCECMWF




. . . . C
Model uncertainty: parametrized atmospheric physics processes

Proposal: represent uncertainties with
a perturbation proportional to the
profile of net physics tendencies

toa

Stochastically Perturbed
Parametrisation Tendencies
(SPPT)

X =0+rX

n

Ocean model SfC

Surface

dT / dt
SCECMWF




Sources of uncertainty: accounting for model uncertainty

Later lead time

Initial time
Set of perturbed forecast
initial conditions model

Each ensemble member sees a
different realisation of the

S ECMWF forecast model (via SPPT) CY48R1

Set of perturbed
forecasts



Recall: Ensemble forecasts: with initial conditions perturbations (IP) only

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

Windspeed (ms™), 250hPa, Z (dam), 500hPa,
Northern extra-tropics : : Northern extra-tropics

(“spread”) LSO VOO VOSSOV .S AP SN IO L O R SO
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Forecast Day Forecast Day

Windspeed (ms™), 250hPa, T (K), 850hPa, v
Tropics — : Tropics
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TCo399L137, dt=1200s
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Forecast Day

8 perturbed fcs



t°a< SPPT

sfc
dT /dt

Ensemble forecasts: with grid-scale model uncertainty perturbations (SPPT)

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

Windspeed (ms-), 250hPa,
Northern extra-tropics

..
==l
N e o "

Forecast Day

Windspeed (ms-1), 250hPa,

Tropics

Z (dam), 500hPa,
Northern extra-tropics

T (K), 850hPa,

Tropics

IP only

— |IP + SPPT*
(*white noise
wrt time/horizontal)

Uncorrelated noise
yields little benefit

CY47R3
TCo399L137, dt=1200s

11 dates (Dec 2019/Jan 2020)
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t°a< SPPT Ensemble forecasts: with fixed model uncertainty perturbations (SPPT)

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

Windspeed (ms™), 250hPa, Z (dam), 500hPa,
Northern extra-tropics Northern extra-tropics

.......
Eo

| = IP only
sfe dT/dt
IP + SPPT*
| (*fixed perts wrt
‘I time/horizontal)

Fixed perturbations
Windspeed (ms™), 250hPa, T (K), 850hPa, yield increased errors
Tropics ; ; Tropics
n o ' CY47R3
Jo | TC03991137, dt=1200s
2 [ SR . - 1 11 dates (Dec 2019/Jan 2020)
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Stochastically Perturbed Parametrisation Tendencies (SPPT) scheme

* History (IFS): implemented, 1998 (Buizza et al., 1999); revised, 2009 (Palmer et al., 2009), 2019 (Lock et al., 2019):

* Simulates model uncertainty due to physics parameterisations by

. : . I toa
* taking the net tendencies from the physics parametrisations (excl. clear-sky

heating rates):
X =Xy, Xy, Xr, X, | r € [—1,+1]

= radiation (cloudy-skies) =
gravity wave drag
n € [0,1]

coming from < vertical mixing ~ schemes

convection

. cloud physics .

sfc
* and perturbing with multiplicative noise r € [—1, +1] as: dT /dt

X =0+ur)X

Shutts et al. (2011, ECMWF Newsletter);
Palmer et al., (2009, ECMWF Tech. Memo.);
Lock et al., (2019, QJRMS) 18

where u € [0,1] tapers the perturbations to zero near the surface.
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toa

SPPT perturbations: why exclude clear-sky heating rates?
* SPPT perturbs net physics tendencies (excluding clear-sky heating rates) with Clear-sky/ r €[-1+1]
multiplicative noise r € [—1, +1] as: stratospheric
X =A+ur)X

cooling

sfc

dT/dt

T tendencies from a model level in
mid-troposphere accumulated
during t+0-3h (K/3h):

Top: Ensemble stdev with SPPT
perturbations with (a) clear-sky
HRs (a) included & (b) excluded.

Bottom: From control forecast,
from (a) convection & (b) radiation
schemes

Figure 2 & Figure 1,from Lock et al.
(2019, QJRMS)
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SPPT random pattern

2D random pattern in spectral space:
First-order auto-regressive [AR(1)] process for evolving spectral coefficients # toa

F(t + At) = ¢7(t) + pn(t)

. € [—1,+1]

where ¢ = exp(—At/t) controls the correlation over timestep At; 7

~

and spatial correlations (Gaussian around the globe) for each wavenumber
define p for random numbers, n
u € [01]

Resulting pattern mapped into grid-point space r:

clipped such that r € [—1, +1] --- prevents perturbation changing the sign of the tendency

same pattern is appliedto T, Q, U,V (excluding clear-sky heating rates from radiation) sfc

dT / dt
applied at all model levels to preserve vertical structures**

**Except: tapered to zero at model bottom, to avoid:

* excessive spread in the boundary layer caused by applying perturbations to large wind
tendencies.

V aa
N4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 20



SPPT random pattern

toa
e 2D random pattern, r: <

— Time-correlations: AR(1)

— Spatial-correlations: Gaussian shape around the globe

— Clipped such thatr € [—1, +1]

sfc
dT /dt

* Applied at all model levels to preserve vertical structures**

**Except: tapered to zero at model bottom

Example random pattern:

- Perturbed member, number 1
- Pattern att =24h
- Colours: blues =[-1,0), reds =(0,1]
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SPPT random pattern

toa
e 2D random pattern, r: <

— Time-correlations: AR(1)

— Spatial-correlations: Gaussian shape around the globe

— Clipped such thatr € [—1, +1]

sfc
dT /dt

* Applied at all model levels to preserve vertical structures**

**Except: tapered to zero at model bottom

Example random pattern:
- Perturbed member, number 1

- Patternatt=0..48h (dt =15 min)
- Colours: blues =[-1,0), reds =(0,1]
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SPPT random pattern

e 2D random pattern, r:

— Time-correlations: AR(1)

— Spatial-correlations: Gaussian shape around the globe

— Clipped such thatr € [—1, +1]

Applied at all model levels to preserve vertical structures**

**Except: tapered to zero at model bottom

Multi-scale pattern:

3 time/space scales sppt! Ghours,  500km, 0 =042

Shortest scales dominate sppt2 3days, 1000km, o=0.14

03—scqle = 0.4453 sppt3 30days, 2000km, o= 0.048
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Example random patterns:
SPPT random pattern: multi-scale

sppt2 3 days, 1 000 km, o =0.14
sppt3 30 days, 2 000 km, o = 0.048

Perturbed member, number 1
Patterns att=0.. 48h (dt = 15 min)
Colours: blues =[-1,0), reds = (0,1]

sppti
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SPPT random pattern

3 days,
30 days,

1 000 km,
2 000 km,

o=0.14
o = 0.048

sppt2
sppt3
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Ensemble forecasts: with multi-scale model uncertainty perturbations (SPPT)

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

Windspeed (ms-), 250hPa,

Northern extra-tropics

Z (dam), 500hPa,
Northern extra-tropics

Forecast Day

Windspeed (ms-1), 250hPa,

Tropics

=

RMSE ensembi; mean
(“error”) B OO S e I

]
|
.
L

T (K), 850hPa,
Tropics

RMS ensemble variance © ° ° 7 e’
(“spread”)

7 : : : : : : : : :
10 1 12 13 14 15

IP only

— |IP + SPPT3*
(*3 scales)

CY47R3
TCo399L137, dt=1200s
30 dates (Dec 2019)

8 perturbed fcs



Ensemble forecasts: with multi-scale model uncertainty perturbations (SPPT)

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

Windspeed (ms-), 250hPa, Z (dam), 500hPa,
4 Northern extra-tropics — Northern extra-tropics -

IP only

IP + SPPT3*
(*3 scales)

IP + SPPT1**
(**shortest
scale only)

Some additional
Windspeed (ms), 250hPa, T (K), 850hPa, spread from SPPT3
Tropics : — Tropics - - 31 gcale deemed

4444444
‘‘‘‘‘‘‘‘
Fe B

important for longer-
range forecasts

.| CY47R3

o TCo399L137, dt=1200s

11 dates (Dec 2019/Jan 2020)

'8 perturbed fcs



verified
against
analysis

verified
against
observations

sha

ded boxes for confidence boundaries: |

Ensemble forecasts: with multi-scale model uncertainty perturbations (SPPT)
Scorecard of probabilistic skill (“fCRPS”) & ensemble standard deviation (“Spread”)
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Scorecard (summary):

IP + SPPT3* versus IP only
(*3 scales)

Spread:
Purple = more spread / Green = less spread

fCRPS:
Blue = more skillful / Red less skillful

Framed cell indicates statistically significant
differences at the 95% confidence interval

CY47R3
TCo399L137, dt=1200s
30 dates (Dec 2019)

8 perturbed fcs



verified
against
analysis

verified
against
observations

Ensemble forecasts: with multi-scale model uncertainty perturbations (SPPT)

Scorecard of probabilistic skill (“fCRPS”) & ensemble standard deviation (“Spread”)

shaded boxes for confidence boundaries: ® 55% () 5096/55% () 95%/99.7% || J significance triangles || () bars
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Summary: stochastic representation of model uncertainty in IFS
Model uncertainty (MU) due to unresolved and misrepresented processes

Without representing MU, ensemble forecasts are under-dispersive => over-confident

Stochastic representations of model uncertainty can improve ensemble reliability

SPPT: represents uncertainty due to sub-grid atmospheric physics parameterisations
» Medium-range: increased ensemble spread, greater probabilistic skill

» Seasonal: reduction in biases; better representation of MJO, ENSO, PNA regimes (Weisheimer et al., 2014,

Phil. Trans. R. Soc. A)

Difficult to characterise sources of model uncertainty due to their small scales

V aa
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Stochastic representations of model uncertainty: new scheme in IFS CY49R1
Process-level model uncertainty representation

momentum, energy

* Aim: to improve the physical consistency

* Preserve local conservation properties: moisture,

* Generate flux perturbations at the top of

atmosphere (TOA) and surface that are consistent
with tendency perturbations within the atmospheric
column
* Remove ad hoc tapering in boundary layer
* Include multi-variate aspects of uncertainties
Surface toa HF_toa toa “F_toa
Ocean model < <
—
L F_sfc F_sfc
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS sfc | B sfc B 31
dT / dt dT / dt




Stochastic representations of model uncertainty: new scheme in IFS CY49R1
Process-level model uncertainty representation

Stochastically Perturbed Parametrisations (SPP)

(Lang et al., 2021, QJRMS; Ollinaho et al., 2017, QJRMS)

* Embed stochasticity inside IFS parametrisations
* Perturb parameters/variables directly
* Specify spatial/temporal correlations

* Target uncertainties that matter (level of
uncertainty and impact)

% e Require that stochastic schemes converge to
Surface deterministic schemes in limit of vanishing variance

Ocean model

= cloud vert. decorrel. height (McICA)
—— fractional stdev. hor. distr. water content
1.0 == effective radius of cloud water /ice

Stochastically perturb parameters/variables in the physics parametrisations («fj):

& =¢;exp(¥)) E

where 0.2
III]'~N(#]" 0-12) 005




Stochastic representations 0
of model uncertainty: ESECNWE OHp @ soanineton

n ew s c h e m e i n I FS About Forecasts Computing Research Learning Publications Anniversary
CY49R1

Newsletter

Number 181 - Autumn 2024
Published in October 2024

Article in recent Autumn 2024
Newsletter (Number 181)

. . Improving the physical consistency
Outlines details of the SPP of ensemble forecasts by using SPP in the IFS

Im ple m entatlon a nd I m paCtS " 4 View all Newsletters Martin Leutbecher, Simon Lang, Sarah-Jane Lock, Christopher D. Roberts,

Aristofanis Tsiringakis

Editorial

= Pertu rbed pa ra mete rS Machine learning ensembles Ensemble forecasts need to account for uncertainties in both initial conditions and
the forecast model. Since 1998, the latter uncertainties have been represented in

- Ra n d O m patte rn S News ECMWF's Integrated Forecasting System (IFS) via the Stochastically Perturbed

Parametrization Tendency scheme (SPPT; Buizza et al., 1999). This scheme is also

- i i Extremely warm summer in southeast
FO recaSt S kl I I I m paCtS referred to as ‘stochastic physics'. It has been revised several times. SPPT has played

Europe

- Conse rvatlon prope rtleS an important role through increasing the ensemble spread and boosting the
State of wildfires 2023-24

probabilistic skill of ECMWF ensemble forecasts over the past 25 years (see Lock et al.,
2019, for details of the operational SPPT configuration). In IFS Cycle 49r1, which will be

Monitoring the 2024 Canada wildfires in

CAMS implemented in November 2024, SPPT will be replaced by the Stochastically Perturbed
Parametrizations (SPP) scheme in all ensemble applications. SPP has been developed

Introducing Anemoi: a new collaborative over several years (Ollinaho et al., 2017; Lang et al., 2021). It represents model

framework for ML weather forecasting uncertainties closer to the sources of errors. The remainder of the article explains the

Solar eclipses in IFS forecasts and motivation for this revision and how the new scheme works, and it sets out the

(re)analyses impacts expected from the revision of the model uncertainty representation.

g
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Stochastic representations =
S ECMWF

of model uncertainty:
new scheme in IFS
CY49R1

Home About

Newsletter

Number 181 - Autumn 2024
Published in October 2024

Article in recent Autumn 2024
Newsletter (Number 181)

Outlines details of the SPP
implementation and impacts:

- Perturbed parameters
- Random patterns

- Forecast skill impacts

- Conservation properties

Machine learning ensembles

Extremely warm summer in southeast
Europe

State of wildfires 2023-24

Monitoring the 2024 Canada wildfires in
CAMS

Introducing Anemoi: a new collaborative
framework for ML weather forecasting

Solar eclipses in IFS forecasts and
(re)analyses

Forecasts

of ensem

Martin Leutbeche
Aristofanis Tsiring:

ametrization

CFM

RKAP
TOFDC
HSDT
VDEXC_LEN
VDSST
COLDSKIN
Convection
ENTRORG
ENTSHALP
DETRPEN
RPRCON
CuDU/CUDV
CUDUS/CUDVS
RTAU
ENTSTPC1

RAMID
RCLDIFF
RLCRITSNOW
RAINEVAP
SNOWSUBLIM
QSATVERVEL
FALLSPEED

Surface fluxes, turbulent mixing and subgrid orography

Transfer coefficient for momentum

Surface flux uncertainties via von Karman constant

Turbulent orographic form drag

Standard deviation of subgrid orography

mixing length-scale stable boundary layer

Sea-surface temperature (SST) used in calculation of surface fluxes
Cold skin temperature parametrization used for surface fluxes

Entrainment rate

Shallow entrainment rate

Detrainment rate for penetrative convection

Conversion coefficient cloud to rain

Deep convective momentum transport

Shallow convective momentum transport

Adjustment timescale in Convective Available Potential Energy (CAPE) closure
Shallow convection test parcel entrainment

Cloud and large-scale precipitation

Relative humidity threshold stratiform condensation

Diffusion for evaporation of cloud at subgrid cloud edges

Cloud ice threshold for autoconversion to snow

Rain evaporation rate

Snow sublimation rate

Vertical velocity for adiabatic temperature change in saturation adjustment
Hydrometeor terminal fall speeds

Radiation
ZDECORR
ZSIGQCW
ZRADEFF
ZHS_VDAERO
DELTA_AERO

Cloud vertical decorrelation height

Fractional standard deviation of horizontal distribution of water content
Effective radius of cloud water and ice

Scale height of aerosol normal vertical distribution

Optical thickness of aerosol

TABLE 1 Overview of the active perturbation elements in SPP.

-c ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS
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Stochastic representations
of model uncertainty:

new scheme in IFS
CY49R1

Article in recent Autumn 2024
Newsletter (Number 181)

Outlines details of the SPP
implementation and impacts:

- Perturbed parameters

- Random patterns

- Forecast skill impacts

- Conservation properties

CSECMWF

Newsletter

Number 181 - Autumn 2024
Published in October 2024

4 View all Newsletters

Machine learning ensembles

Extremely warm summer in southed
Europe

State of wildfires 2023-24

Monitoring the 2024 Canada wildfir
CAMS

Introducing Anemoi: a new collabor:
framework for ML weather forecasti

Solar eclipses in IFS forecasts and
(re)analyses

o,
b COLDSKIN random field

FIGURE 2 Random fields used by SPP in member 1 on 1, 2 and 3 January 2024 (from top to bottom) at
00 UTC for the perturbation elements (a) HSDT and (b) COLDSKIN. The latter has larger spatial and
temporal decorrelation scales than the former. The contour interval is 0.5, with values = 0.5 in solid red
contours and values < -0.5 in blue dashed contours.
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Stochastic representations
of model uncertainty:

new scheme in IFS
CY49R1

Article in recent Autumn 2024
Newsletter (Number 181)

Outlines details of the SPP
implementation and impacts:

- Perturbed parameters

- Random patterns

- Forecast skill impacts
- Conservation properties

0.025
0.02
0.015
0.01
0.005
0
-0.005
-0.01
-0.015

Relative difference in fair CRPS

Relative difference in fair CRPS

-0.01

0.05
0.431
0.03-
0.02
0.01

- a Geopotential at 500 hPa

versus analyses

-
-

P

012345678 910111213141516
Forecast day
¢ Ten-metre wind speed

versus. SYNOP obs

01234567 8 910111213141516
Forecast day

Relative difference in fair CRPS

0.025
0.02
0.015
0.01
0.005

o_

-0.005
-0.01
-0.015

+ve values =>
higher skill
with SPP -

b Two-metre temperature
versus SYNOP obs

012345678 910111213141516
Forecast day
Set-up:
- TCo1279 (9km)
8 perturbed members
- Initialised from
operational ICs

- Starts: DJF 2021/22 &
JJA 2022 (282 dates)

FIGURE 4 Relative differences in fair CRPS (continuous ranked probability score) of an ensemble using
SPP and an ensemble using SPPT in the northern extratropics, for (a) geopotential at 500 hPa verified
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Stochastic representations = 1.4

_____

of model uncertainty: SSRGS 121 | Ly
new scheme in IFS N = 1 L LA R
CY49R1

Newsletter

Number 181 - Autumn 2024
Published in October 2024

Article in recent Autumn 2024
Newsletter (Number 181)

- SPPT ensemble spread
- SPP ensemble spread
¢ RMSE of SPPT ensemble mean

RMSE and spread (bivariate)
o
(0]

Outlines details of the SPP 0.2- ¢ RMSE of SPP ensemble mean
implementation and impacts: | _ | | | |
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Stochastic representations

of model uncertainty:
new scheme in IFS
CY49R1

Article in recent Autumn 2024
Newsletter (Number 181)

Outlines details of the SPP
implementation and impacts:

- Perturbed parameters

- Random patterns

- Forecast skill impacts

- Conservation properties
e.g. moisture budget:
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dt T dt Tdr T ar T dt

b Budget residual of control forecast
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¢ Budget residual of forecast with SPP
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Precip- FIGURE 3 Moisture budget terms accumulated during a forecast lead time of 45-
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STOCHDP:
Stochastically perturbed semi-Lagrangian (SL) departure point (DP) estimates

Diamantakis & Magnusson (2016): . w(3)

+ Explored convergence rate of the iterative DP estimate A D(5)

» Slowest convergence <> most complex flow (strong shear /
curvature)

« Example: Typhoon Neoguri:
+ HRES forecast: initialised: 2014-07-05, 00UTC

. o .
Fig. Te:t Qéh’ sounra Wlnqu eeas Figure 3: difference in DP estimate between e
(€} Wand:speedi(fyphoonacgion) consecutive iterations (scaled)

4)

(e) horizontal 5xg}‘ (f) vertical dx),




STOCHDP:
Stochastically perturbed semi-Lagrangian (SL) departure point (DP) estimates

Model uncertainty scheme, “STOCHDP”: . M«”

- use the DP estimate convergence rate to attribute MU: A D* D(5)

D*=D® +r(D® —p6D), i =1..4

where D* is the perturbed DP and r is a random number

» STOCHDP represents MU from SL advective winds

hfy8 (Sto:’?r%zg)é :;,(tnﬁﬁr;, 850hPa t + 96h hfy8 (Stochovzgzspgésger;, St_:geh, 850hPa
Early results, e.g.: O el se—— L —

« Typhoon Neoguri case : .’ A
« ENS: STOCHDP only ™ ;i Si ‘ f i
+ TCo639L91, dt=720s T 5@5 —
« 20+1 members aon . C8 s -
* Peak ENS stdev develops ‘ 0 A 23
and tracks with TC n mr’”'/ .. -
: o' ™
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Control forecast Ensemble stdev



Summary

* Including a representation of model uncertainty can improve the reliability of ensemble forecasts
* "Model uncertainty” describes inaccuracies due to the model integrations

* Using stochastic physics schemes enables representation of the model uncertainty arising from the

parametrization of unresolved atmospheric physics
* Current stochastic physics scheme used in the IFS: SPPT

* Upcoming (CY49R1): new scheme “"SPP” improves the physical consistency of the stochastic physics

perturbations

* Ongoing: refinements and extensions of SPP; exploring perturbations to represent model uncertainty in the

dynamics — STOCHDP

V aa
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