Predictability and Ensemble Forecasting with Lorenz-96 systems

Martin Leutbecher

Training Course 2024

- Part 1: The L96 model, chaos, error growth, ensemble forecast experiments (with a perfect model)
- Part 2: How to experiment with L96 using scilab, proposed activities
- Part 3: An imperfect forecast model and the representation of model uncertainties
- Part 4: Proposed activities with an imperfect model

System and model equations

The system comprises slow variables x_k and fast variables y_j

$$
\frac{dx_k}{dt} = -x_{k-1}(x_{k-2} - x_{k+1}) - x_k + F - \frac{hc}{b} \sum_{j=J(k-1)+1}^{Jk} y_j
$$
(1)

$$
\frac{dy_j}{dt} = -cby_{j+1}(y_{j+2} - y_{j-1}) - cy_j + \frac{c}{b}F_y + \frac{hc}{b}x_{1+\lfloor \frac{j-1}{J} \rfloor}
$$
(2)

with $k = 1, ..., K$ and $j = 1, ..., JK$. Here, $K = 40, J = 8$.

System and model equations

The system comprises slow variables x_k and fast variables y_j

$$
\frac{dx_k}{dt} = -x_{k-1}(x_{k-2} - x_{k+1}) - x_k + F - \frac{hc}{b} \sum_{j=J(k-1)+1}^{Jk} y_j
$$
(1)

$$
\frac{dy_j}{dt} = -cby_{j+1}(y_{j+2} - y_{j-1}) - cy_j + \frac{c}{b}F_y + \frac{hc}{b}x_{1+\lfloor \frac{j-1}{J} \rfloor}
$$
(2)

with $k = 1, ..., K$ and $j = 1, ..., JK$. Here, $K = 40, J = 8$. The **forecast model** is given by

$$
\frac{dx_k}{dt} = -x_{k-1}(x_{k-2} - x_{k+1}) - x_k + F - g_U(x_k) + \eta_k(t).
$$
 (3)

System and model equations

The system comprises slow variables x_k and fast variables y_i

$$
\frac{dx_k}{dt} = -x_{k-1}(x_{k-2} - x_{k+1}) - x_k + F - \frac{hc}{b} \sum_{j=J(k-1)+1}^{Jk} y_j
$$
(1)

$$
\frac{dy_j}{dt} = -cby_{j+1}(y_{j+2} - y_{j-1}) - cy_j + \frac{c}{b}F_y + \frac{hc}{b}x_{1+\lfloor \frac{j-1}{J} \rfloor}
$$
(2)

with $k = 1, ..., K$ and $j = 1, ..., JK$. Here, $K = 40, J = 8$. The **forecast model** is given by

$$
\frac{dx_k}{dt} = -x_{k-1}(x_{k-2} - x_{k+1}) - x_k + F - g_U(x_k) + \eta_k(t).
$$
 (3)

- \bullet g_U represents a deterministic parameterization of the net effect of the fast variables on the slow variables, see slide 11.
- \bullet η_k is a stochastic forcing term which represents the uncertainty due to the forcing of the fast variables, see slide 12.

CCECMWF

Time series for system II

Four versions of System II

- There are four different version of System II available in the tutorial
- The coupling between slow and fast variables differs
- We refer to them by T1, T2, T5 and T10
- It may be sufficient for you to focus on one of them, say T5

System II: Truth integrations

System constants F and h and integration time step dt for the five different systems

The other variables are set to

- $b = 10$ amplitude ratio between slow variables and fast variables
- $c = 10$ time-scale ratio between slow and fast variables
- $F_v = F$ forcing amplitude

For all systems, the climatological mean of the slow variables is about 2.4 and their climatological standard deviation is about 3.5. **C ECMWF**

Deterministic parameterisation of unresolved scales

The unresolved scales (fast y-variables of system II) have a net effect on the resolved scales (slow x-variables). A term $g_U(x)$ is subtracted from the RHS of model I to account for the net effect of the unresolved scales.

Deterministic parameterisation g_{U} (blue curve) of the net effect of the fast y-variables in system T2 on the slow x-variables.

Black dots represent the actual forcing due to y-variables

Representation of model uncertainty

In order to represent the scatter of the slow-variable tendencies due to the fast variables, i.e. the deviation of the black dots from the blue curve, a stochastic forcing term η_k can be activated in the ensemble forecasts.

Representation of model uncertainty

In order to represent the scatter of the slow-variable tendencies due to the fast variables, i.e. the deviation of the black dots from the blue curve, a stochastic forcing term η_k can be activated in the ensemble forecasts.

 \bullet It is represented by independent AR(1)-processes for each slow variable

$$
\eta_k(t + \Delta t) = \phi \eta_k(t) + \sigma_e (1 - \phi^2)^{1/2} z_k(t), \tag{4}
$$

where the $z_k(t)$ are drawn from a Gaussian distribution $N(0, 1)$.

• the standard deviation σ_e and lag-1 autocorrelation ϕ over one integration time-step Δt can be set in menu 3 (EPS configuration: sigma e and phi);

• see Wilks (2005) for further details. M. Leutbecher [L96 practical](#page-0-0) Training Course 2024 8 / 8

CCECMWF