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• The ECMWF FC  system

• The Initial Value Problem

• Ensembles: Error propagation and probabilistic forecasts

• Time scales and model components

• Calibration, skill assessment and reanalyses

• Measuring performance

• Examples of forecast products at different time ranges

• Wider context: Forecast strategies



Designing the current and future systems

• This presentation has focused on design of medium-extended range –seasonal forecasting 

systems.

• The demand for service expansion is increasing

– C3S: climate

– CAMS: atmospheric composition

– DestinE: extreme high resolution

– GLOFAS and impact modelling

• Design of systems is even more important

– Guiding principles: optimize quality, timeliness and maintenance

– Seamless approach: to have a unique IFS with different plug-ins and configurations

• The scientific and technological landscape is rapidly changing. 

– What will be the role of ML in future forecasting system? Will the seamless approach still be valid?
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Deliverables: Global NWP from days to years
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High resolution mean sea level 

pressure and ensemble spread

Forecast range: several days ahead

Weekly anomaly – 2m 

temperature over Europe

Forecast range weeks 3-4

Medium range prediction Subseasonal  range –monthly- 

prediction
Long range –seasonal- prediction

El Nino 3.4 SST anomaly plume – 

1 November 2017

Up to 6-12 months

https://www.ecmwf.int/en/forecasts



1. Weather forecast as an initial value problem

fc0

reality

T=T0

Forecast lead time

T=Tf

X(tf) =  M[X(t0)]  

Model

X(t0) from 

observations  + data 

assimilation
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1. The initial value problem.  Predictability drivers

• Wave propagation

• Advection of signals

• Persistence of signals : regimes, soil moisture, sea-ice 

• Slow dynamical time scales: stratosphere, ocean, sea-ice

How to best represent these drivers?

 Modelling

• Model resolution

• Physical parameterizations

• Earth system components – complexity-

• Feedbacks among components

• Multiple temporal scales

Initialization

• Observations

• Data Assimilation Methods  (4D-var especially good for wave propagation)



1. Initial Value Problem: Predictability limits

❑ Weather is intrinsically unpredictable in the deterministic sense: The atmosphere as a chaotic system
Uncertainty: In a chaotic system, small uncertainty in the initial conditions leads to forecast uncertainty



2. Ensemble Prediction:  A pragmatic approach for propagation of uncertainty

fc0

fcj

reality

PDF(t)

T=T0

Forecast lead time

PDF(0)

T=Tf



1. Initial Value Problem: Predictability limits

❑ Weather is intrinsically unpredictable in the deterministic sense: The atmosphere as a chaotic system
Uncertainty: In a chaotic system, small uncertainty in the initial conditions leads to forecast uncertainty

❑ Forecasting system deficiencies leads to forecast error

– The initial conditions are not accurate enough, e.g. due to poor coverage and/or observation errors, or errors in the assimilation.

– The model used to assimilate the data and to make the forecast describes only in an approximate way the true atmospheric phenomena 

(model error).

Distinguishing between forecast error and intrinsic predictability is a major challenge.



A few rules of the forecast game

• We should distinguish between 

•  Errors - which we should aim at correcting:    improving model and initialization

•  Uncertainty - we should aim at representing : improving the ensemble generation.

• model uncertainty  (currently stochastic physics: SPPT, SPP.)

• initial conditions uncertainty  (currently EDA + SV)

• Irreducible errors can also be accounted for in the forecasting system in order to provide reliable 

forecast products.  (online empirical error treatment, tuning of model/IC errors ,  a-posteriori calibration). 

=> TREATMENT OF MODEL ERROR
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3. Predictability limits and drivers: 
       Probabilistic forecasts and multiple forecast ranges

• Predictability of the fist kind: Fast time scales limit the predictability, since error grows 

rapidly
• Example: atmospheric convection;  medium range:  baroclinic instability.

• Medium range problem, probabilistic by nature. Accurate/optimal  representation of flow dependent 

uncertainty. 

• Predictability of the second kind or loaded dice paradigm:

• Slower time scales can act as a source of predictability: the atmospheric behaviour can be modulated 

by the state of slower neighbouring components, such as ocean, land, sea-ice, stratosphere

• Including these slow components in the forecasting system allows extending the predictability horizon

• Extended range: several weeks ahead

• Seasonal forecast: several months ahead

• By nature, these are PROBABILIST FORECASTS, but representation of the uncertainty in the 

atmospheric initial conditions is not so important in the ensemble generation. 



Day               Week                Month               Season             Year              

Time scale
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Radiative forcing 
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S2S

3. Slow time scales as predictability drivers: 
       Need to introduce new model components 



Interannual Time scales: ENSO

ENSO: El Nino -Southern Oscillation

Largest mode of O-A interannual variability 

Best  known source of  predictability at seasonal time scales

It affects global patterns of atmospheric circulation, with changes in rainfall, temperature, 
hurricanes, extreme events

SOI: Southern Oscillation Index (SLP Darwin – Tahiti)
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Basis for Predictability at the subseasonal forecacast range (week 2 -4)

Madden Julian Oscillation: Coupled O-A tropical convection mode~ 30-60 days 



The ocean also affects fast processes:
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Scale interaction key to variability:
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• Physical basis for inclusion

• Ability to model 

• Ability to initialize 

• Affordability

4. System Design: Earth System Complexity in a forecasting system

Vegetation, land use

aerosols

C02 in reanalyses

Solar 

Atmosphere, 

ocean, waves, sea-

ice, soil moisture, 

snow,



5. System Design: balancing elements

Courtesy of Andy Brown 

Requirements

Resolution

Number of observations

Number of ensemble members

Model components

Forecast range and frequency

Reforecasts: calibration period, frequency and 

ensemble members

Constrains

Computer resources

Data handling platforms and algorithms

Code maintenance and development

Expertise
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Initialization Modelling Post processing
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6. System Design: End to End Forecasting System

From observations to societal information 
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6. System Design: Seamless Probabilistic Prediction

Slide 18

• Same model and initial conditions  for  different lead times. 

• Resolution dependent on forecast range

• Main advantage: simplicity and cost

• Each prediction is an ensemble of N members (N~50)

• Subseasonal N=100 since 2024

• Next seasonal system will also have N=100

System Lead Time Prod Frequency

Medium Range 15 days twice daily

Monthly 46 days twice weekly

Seasonal 7 months monthly

Annual 12 months quarterly 

Lead time
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Land

Atmosphere

Ocean / Sea Ice

Waves

S2S data base

TIGGE database

C3S database

daily

Twice monthly

ENSO outlooks          24 months  twice a year



© ECMWF November 4, 2024

Reforecast errors should be consistent with the errors of the real time forecast. 

Reforecast design needs to consider temporal  sampling and initialization

7. System Design: Calibration and Skill Assessment

Reforecasts as integral part of a forecasting system 



20                                          

7. Forecast Calibration

• The calibration needs and verification periods depend on the forecast lead time and products

• Medium range: 

• ECMWF products are not calibrated a posteriori (except for EFI-Extreme Forecast 

Index)

• Skill can be estimated from a number of cases over a couple of seasons.

• Subseasonal range:

• Forecast PDF needs a-posteriori calibration  (around 20 years)

• Strong conditional skill, several cases spanning different seasons and interannual 

variability

• Seasonal range:

• Forecast PDF needs a-posteriori calibration (30 years or more)

• Skill and error depends on season. The calibration data set should cover several 

ENSO episodes, QBO phases…

7.Reforecast requirements: Temporal Sampling  
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• Temporal span (L) and frequency (n):

i) L,n depend on the forecast range 

ii) L  requires existence of initialization and verifying dataset

• L, n  Need to sample enough independent cases and different regimes (e.g. seasonal 

cycle)

• Reforecast span L may be different for skill assessment (Ls) and reference climatology 

(Lc) 

• Reforecast Ensemble size (M) : different for calibration (Mc) and skill assessment (Ms) 

• Calibration: reforecast climatology size Nclim ~   real time forecast ens size Nfc  (Nclim=L x n x Mc)

• Skill assessment: : Ms sufficiently large to score probabilistic forecast. Balance between L,n,Mc 

7. Reforecast requirements: Sampling  

n

L= temporal span

M reforecast 

ensemble size

Examples

On Ls,Lc:

SEAS5:    Ls= 37 yrs,  Lc=24 yrs 

Sub-S       Ls=Lc=20 yrs

ecPoint :   Lc=1yr 

On n:

SEAS5   n=1 per month

Subseaonal Range  n=2 per week

Medium Range  n>> 1 (if Lc=1yr)

n: number of independent dates 

per year representative of the real 

time forecast situation 



8. Measuring skill and Estimating the limits of predictability.
 
Example 1: measuring skill and benchmarking  



8. Measuring skill and Estimating the limits of predictability 

Persistence

ensemble spread

RMS error of Nino3 SST anomalies

Climatology

How skilful is a forecast?

User perspective: The answer to the question depends on the application.

System Design perspective: better than a “cheaper” bench-mark

• Climatology 

• Persistence

• Other empirical model

• Other GCMS -> multi-model comparison

 

How hard should we try? 

e.g. have we reached the predictability limit?

• Climatology is  considered the lowest limit of predictability

• If model skill worse than climatology there is room for improvement

• Persistence can be indicative of potential predictability.

• Ensemble Spread: In a perfect model , ensemble spread is considered upper level of predictability

• But sometimes model is overdispersive: ensemble spread larger than  RMS error? 
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8. Estimating predictability limits 

Example 2: Seasonal predictions of SST, Initialized in May, verified in JJA

 

Model

Model - Persistence

Model better 

Model  worse 

A) SKILL (ACC)  Benchmarked against persistence B) RMSE:  Benchmarked against Climatology 

Model - CLIMATOLOGY

Reliability: RMSE Model - Ensemble Spread

\

Model better 

Model  worse 
\

Overdispersive 

Underdispersive 

C) Reliability: Benchmarked against Ensemble Spread



Example of unpredictable signal and model error
Precipitation anomaly 26 August – 27 October (mm/day)
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ERA5 Fc Week-1

Fc Week-2 Fc Week-3

Courtesy of Linus Magnuson

Weaker signal consistent with large uncertainty  loss of deterministic 

predictability
Wrong sign of signal, suggesting model error

8. Separating uncertainty from model error 



9. Different kinds of predictability. Example of a medium range forecast bust
  

The skill for predicting this specific storm at the medium range was unusually 

low, as indicated by the anomalous low value of the anomalous correlation 

skill – forecast bust.



9. Different kind of predictability.  

The subseasonal forecast was 

consistently predicting strong 

probability of zonal flow at week 3



A small detour:  Interpreting extended range forecasts in reduced space

Ferranti et al 2018

EOFs of North Atlantic Sector

The reduction can also be done in terms of 

regimes

9. Different kinds of predictability.
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Climatology of extreme

Projections on EOFs in forecast from 25 November

Extreme short forecasts (circles)

Cases from Severe Event Catalogue (crosses)

Courtesy of Linus Magnusson

9. Different kind of predictability.
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Projections on EOFs in forecast from 25 November 2019 ACC for 10 day forecasts

Courtesy of Linus Magnusson

The predictability of regimes  was high in this occasion, 

indicating higher than average risk of stormy weather.

However, the skill for prediction of the specific storm was 

unusually low, as indicated by the anomalous low value of 

the anomalous correlation skill – forecast bust.
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FORECAST STRATEGIES: THE WIDER CONTEXT
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1) Initialization

Data Assimilation

 

 

3) Calibration

Forecast 

Assimilation 

2) Propagating information,  uncertainty  and error  into the 

future: Forecast model

Treatment of system errors  (until recently)

✓       Stochastic parameterizations for sub-grid processes. 

X            Other missing processes and earth system components not represented

X            Model bias is not targeted  

• Model Bias accounted for:  

removed a posterirori. 

Stockdale et al 1997

• Model uncertainty considered 

(ensemble)

• Observation error neglected *

• Residuals can be  non 

stationary, non gaussian. 

           Limitation to forecast skill

           calibration is more difficult 

 

✓ Initial uncertainty considered.

✓ Model uncertainty starts 

being considered.

✓ Observation uncertainty 

considered

✓ Observation bias considered

X  Model bias was often  

ignored in atmosphere. 

Model:              x= ҧ𝑥 + ƴ𝑥 + ε𝑥 

Observations:   y= ത𝑦 + ƴ𝑦 + ε𝑦



Calibration is complex if errors are non stationary
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Stephenson et al 2005

Kharin et al 2012

Fukar et al 2014

𝑥 = ത𝑦 + 𝐊 𝑥 − ҧ𝑥 + 𝐅𝜀𝑥 + 𝐓 𝑡  +G(y0)

Bias correction  ( ഥ𝒙 ≠ ഥ𝒚 )

K: linear transformation of anomalies

F: Adjustment of ensemble spread

T: detrending

G: other flow dependent corrections

From Kharin eta la 2012

Error in  mean state errors degrades variability and  forecast skill, making 

forecast errors non stationary and calibration difficult. Too many parameters

Can model error be treated more explicitly during the forecast process?



Mean state error influencing model fidelity and skill

Correcting model biases leads to better representation of variability  (or model fidelity) : 

(several papers: D’Andrea and Vautard 2000, Balmaseda et al 2010, Scaife 2011, ….)

Correcting bias in tropical SST improves  seasonal forecast skill  of ENSO, tropical 

cyclones…

Magnusson et al 2012, Vecchi et al 2014: 

Correcting biases in atmosphere improves seasonal atmospheric predictability: 

Kharin and Scinocca 2012 

Correcting North Atlantic SST bias improves subseasonal skill over North Atlantic and 

Europe 

Roberts et al 2021, Vitart and Balmaseda 2018
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Non linear interactions: North Atlantic SST mean errors impact subseasonal 
forecast skill
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From Vitart and Balmaseda 2018

SST corrected over 

dark area

Correcting bias on SST over North Atlantic impacts the skill over Europe by improving  MJO/ 

NAO –ve teleconnections

NAO- Teleconnections
SST bias corrected (BC) in NATL



Recent efforts on treatment of model error

• At ECMWF

– Assimilation Phase

• Treatment of model biases usually considered in ECMWF ocean reanalysis (Balmaseda et al 2007)

• the stratospheric  model error started being treated around 2020, using Weak Constrain 4D-Var (Laloyaux et al 2020).

– Forecast Phase: none yet, although there are ongoing efforts for empirical representation of model error

• In other operational centers:

– Met Office (Piccolo et al 2020) and NRL (Crawford et al 2020) use past assimilation increments to represent 

model error, both random and systematic components
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NRL system

Percent reduction in day-10 forecast bias 

• Total

• Bias only

• Random component only

From Crawford et al 2020
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1) Initialization

Data Assimilation

 

 

3) Calibration

Forecast 

Assimilation 

2) Propagating information,  uncertainty  and error  into the 

future: Forecast model

Treatment of system errors

✓       Stochastic parameterizations for sub-grid processes. 

• Model Bias accounted for:  

removed a posterirori. 

Stockdale et al 1997

• Model uncertainty considered 

(ensemble)

• Observation error neglected *

• Residuals can be  non 

stationary, non gaussian. 

           Limitation to forecast skill

           calibration is more difficult 

 

✓ Initial uncertainty considered.

✓ Model uncertainty starts 

being considered.

✓ Observation uncertainty 

considered

✓ Observation bias considered Model:              x= ҧ𝑥 + ƴ𝑥 + ε𝑥 

Observations:   y= ത𝑦 + ƴ𝑦 + ε𝑦(before 2020) X  Model bias often  ignored in 

atmosphere. 

(after 2020) ✓ Model error considered 

during assimilation

Before 2024After 2024 X         Other missing processes and earth system components not represented

X         Model bias is not targeted  

X         Model bias explicitly modelled (e.g. ML)  



Data Driven Models: A revolution in weather prediction

fc0

reality

T=T0

Forecast lead time

T=Tf

Numerical 

Model

X(t0) from 

observations  + data 

assimilation

Data Driven Model
From Lam et al 2023

• Substantial skill gains 

in the medium range.

• Much cheaper

• Need reanalyses (most 

competitive models are 

based in ERA5), which 

have been produced 

using traditional 

numerical models

• Challenges ahead for 

ML: higher resolution, 

more user-relevant 

variables,  and longer 

lead time

• Can we use ML for 

data assimilation?



40



41

AIFS

FourCastNet

GraphCast

Pangu-Weather

IFS



Summary

• Weather and climate prediction as initial value problem of probabilistic nature. Ensemble prediction

• Predictability drivers and limiters. Importance to distinguish error from uncertainty

• Slow time scales extend the forecast horizon: Criteria to include slow earth system components in a 

forecasting system: physical basis, ability to model and to initialize. The initialization distinguish a 

prediction from a climate scenario projection

• Different sort of predictability: A specific event may be difficult to predict in the deterministic sense in the 

short range, but its probability of occurrence may be well predicted at the extended range.

• Reforecast needed for calibration, skill assessment, detection of extremes. They are an integral part of 

forecasting system

• Importance to balance different elements: complexity, ensemble members, forecast length, resolution, 

reforecasts.

• Some examples of forecast products in reduced space

• A brief outlook of alternative forecasting strategies. Future: Coupling Dynamical with ML models?

• Data driven models: a revolution for NWP



Question for break out groups

How will the forecasting systems look like in 10 years time?

How will you design them?
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Possible questions to consider:

• What will be the role of ML and traditional GCMs?

• Will we need a seamless approach?

• Will we need reforecasts? If so, what will be the reforecast period?

• What will be expected enhancements in terms of skill, products, forecast horizon?



Thanks for your attention!

Any questions?
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