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Why do we care about land processes?

• Energy-budget

– Albedo
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Surface  Albedo
Dark forest  9-12%

Grassland  15-20%

Bare soil   20-30%

Snow in forest  15-25%

Open snow  50-85%



Example of snow transitions
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Snow and albedo Snow and surface meteorology

Betts et al., (2014)
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Why do we care about land processes?

• Energy-budget

– Albedo

– Evaporative fraction

Q*
H LE

G

Surface    LE/Q*
Boreal forest    25%

Forest in temperate climate 65%

Dry vineyard    20%

Irrigated field in dry area  100%
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Why do we care about land processes?

• Energy-budget

– Albedo

– Evaporative fraction

• Water budget

– Runoff-fraction

P E

Infiltration

Direct runoff

Drainage
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Land processes in atmospheric models

• Energy-budget

– Albedo

– Evaporative fraction

• Water budget

– Runoff-fraction

– Soil water reservoir

Season

Shallow

rootzone

Deep

rootzone
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Land processes in atmospheric models

• Energy-budget

– Albedo

– Evaporative fraction

• Water budget

– Runoff-fraction

– Soil water reservoir

• Momentum budget

– Roughness elements
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Land processes in atmospheric models

• Energy-budget

– Albedo

– Evaporative fraction

• Water budget

– Runoff-fraction

– Soil water reservoir

• Momentum budget

– Roughness elements

• Carbon budget

– Not directly relevant for seasonal forecasting, but 

vegetation changes have feedbacks on other processes 

and are important for climate modelling

CO2

H2O
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What is needed to contribute to predictability?

• In the climate system all processes are connected

• A systematic influence of land surface on atmosphere requires:

– Variability

– Memory 

– Coupling to the atmosphere
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Dirmeyer et al, 2009

Soil moisture memory (days) 

Otherwise: Can just use downstream/application models,

e.g. crop modelling, hydrology flood forecasting, fire risk models etc

Santanelo et al. (2018)



Essery et al., 2016

Snow depth memory
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Sodankyla, Northern Finland
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Soil moisture predictability (observation-based estimates)
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Wn=soil moisture at time n

Pn=total precipitation between time n and n+lag

En=total evaporation between time n and n+lag

Qn=total runoff between time n and n+lag

Cs=water holding capacity

Orth and Seneviratne (2012)



Spatial variation in persistence but high uncertainty
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r(May,Sep)
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Measures to quantify land-atmosphere coupling

• From observations:

– relation between (soil) wetness and extreme temperatures
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Hirschi et al, 2011, Nat Geo

Predictability over wet 

conditions better than 

over dry conditions

SPI=Standardized Precipitation Index 

(measure of soil moisture deficit over 

preceeding 6 months)

HWDmax=maximum heatwave duration
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Measures to quantify land-atmosphere coupling

• From (pseudo)observations: 

– Correlation between evaporation and temperature

Seneviratne et al, 2010

Feb-Apr Energy limited

Soil water limited

Over mid-latitude oceans, 

evaporation depends on 

humidity: colder air is 

generally drier

Over moisture-limited  

land, drier conditions 

reduce evaporation 

and cause higher 

temperatures

If soils are wet, higher 

temperatures drive higher 

evaporation
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Measures to quantify land-atmosphere coupling

• From (pseudo)observations: 

– Correlation between evaporation and temperature

Seneviratne et al, 2010

May-Jul Energy limited

Soil water limited

16



October 29, 2014

Measures to quantify land-atmosphere coupling

• From (pseudo)observations: 

– Correlation between evaporation and temperature

Seneviratne et al, 2010

Aug-Oct Energy limited

Soil water limited
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Measures to quantify land-atmosphere coupling

• From (pseudo)observations: 

– Correlation between evaporation and temperature

Seneviratne et al, 2010

Nov-Jan Energy limited

Soil water limited

18



October 29, 2014

Measures to quantify land-atmosphere coupling

• From a model experiment (GLACE = Global Land Atmosphere Coupling Experiment)

• How?

– Simulate the hydrological cycle with (W) and without (S) interactive land-atmosphere coupling and 
compare.

• How to remove coupling?

– In second ensemble (S), replace soil moisture in all ensemble members by values from one of the 
integrations in the first (interactive) ensemble.

• How to measure the effect?

– Ensemble simulations

– Compare within-ensemble spread 

19
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Koster et al, 2002 
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Koster et al, 2002 
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All simulations in ensemble

respond to the specified land surface 

boundary condition in the same way

                     strong coupling

Simulations in ensemble

have no coherent response

to the specified land surface 

boundary condition

                     weak coupling

Comparison of precipitation between ensembles

Koster et al, 2002 

22

Diagnostics:

Ω(W)= fraction of variance “explained” 

(forced) by all boundary and initial conditions

Ω(R)-Ω(W)= fraction of variance “explained” 

by prescription of subsurface soil moisture 

variables
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Areas with strong feedback on precipitation
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Koster et al, 2004, Science

This is a famous figure, and 

looks very nice. But note that 

different models gave 

substantially different results. 

Model representation of land 

surface processes is improving, 

but still has some way to go.
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Ω(R)-Ω(W)
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Strong precipitation coupling needs combination of sensitivities

Arid
Humid

W→ET ET→P

wetdry

s
e
n
s
it
iv

it
y

climate transition 

zones
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Soil water drives 

Evapotranspiration

Evapotranspiration 

drives precipitation

Both
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Strong feedback on precipitation at transition between arid and temperate 
zones

Koster et al, 2004, Science

25

Precip coupling strength

Köppen classification



October 29, 2014

Some “real” land-surface predictability experiments

• Global Land Atmosphere Coupling Experiment – 2 

– Compare 2 ensembles of sub-seasonal forecasts (8 weeks ahead)

• Ensemble 1: all members use the same realistic initial conditions

• Ensemble 2: every member gets a randomly selected initial condition

– Measure R2 difference using real observations
Van den Hurk et al, 2012

Koster et al, 2010

Skill improves for more 

extreme conditions

Skill in US better than in 

Europe
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Another experiment, similar set-up, different results!

• Similar to GLACE-2, multi-model study (5 models), but

– comparing realistic versus climatological initial conditions

– coupled ocean model instead of prescribed SSTs

– Longer period (19 yrs instead of 10 yrs)

Ardilouze et al, 2017

RMS skill INIT – CLIM

Model bias in correlation 

between soil moisture 

and temperature gives 

poor results in US

(Models have dry bias, which results in 

a too-strong sensitivity of T2m to initial 

soil moisture).
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Role of soil-moisture-precipitation feedbacks in climate model biases

28

Negative precipitation bias

Soil drying due to 

underestimated precipitation

Evaporation stops,

Less land cooling

Dry atmosphere,

too little clouds

START HERE

Lin et al., 2017 

Nat Comm 



Remote responses to April soil-moisture anomalies (EOF1)

29EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

See also Koster et al., (2014)

Apr        May                     June          Jul 



Remote response to soil-moisture depletion on upper atmosphere
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Vertical diffusion

Longwave

Sortwave

Latent heat
Teng et al. (2011)



Snow cover as a predictor of the Arctic Oscillation

31Cohen and Jones (2011)



A mechanistic view of remote response to snowcover

32
Henderson et al., (2018), Nat Clim
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Towards time-varying land use and vegetation cover 

CONFESS project

• Multiple aspects, land is one part: see https://confess-h2020.eu/

•  Vegetation dataset of land use/land cover (Land use/Land cover) and Leaf Area index (LAI), 1993-2020

•  Experiments to explore impact of specified and interactive vegetation on seasonal prediction systems.

• Work on interactive vegetation and predictability is continuing in the CERISE project. 
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From Boussetta and

Balsamo, 2021

(CONFESS Deliverable D1.1)



34EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Impact of time varying land properties on seasonal reforecasts

Figure: June-to-August 2003 seasonal mean 2m temperature over Europe: (a) ERA5 anomaly and (b) difference between 
LAI+LULC and CONTROL experiments. Also plotted in (c) is the Leaf Area Index anomaly. 

Figure: Same as  above, but for 2010.

Slide from Retish Senan



CopERnIcus climate change Service Evolution - CERISE
35

From the next model cycle each ECMWF system will have its 
own land-surface analysis (initial conditions)

49R1

50R1

RT :  e-suite Analysis
RF  : ERA5 + Offline LDA

RT: e-suite  Analysis
RF: ERA5

RT: e-suite analysis +offline LDA
RF: ERA5+Offline LDA
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Summary

• For land-related predictability we need

– Variability

– Memory  (soil moisture, snow mass, vegetation, … )

– Coupling

• How to measure land-atmosphere coupling/predictability

– Diagnostic measures: correlation, regression, composite analysis, etc.  

– Prognostic measures: intervening in GCM experiments (GLACE, Teng et al., etc.).  

• Land surface signal is small in some regions but large in certain “hotspots”

– Evaporation limited vs Energy Limited soils

– Transition zones between semi-arid and humid climates.

• Errors in land-atmosphere feedbacks can lead to large biases that degrade prediction skill on 

subseasonal-to-centennial timescales. 

• Land-surface properties need special treatment (e.g. new LDAS at ECMWF) 

36
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Additional slides
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How important is the land-surface?

39
Richter et al. (2024)
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Trend contributes to T2m predictability

40

Before detrending

After detrending

Note: initialized land surface (solid line) 

gives additional signal in T2m, especially 

in early summer. Note these plots show 

predictability not skill – extra skill would 

require the additional land surface signal 

to be correct.

PREDICTABILITY TRAINING COURSE 

2022: LAND-ATMOSPHERE VARIABILITY
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Impact on T2m forecast skill of improved land surface initial conditions

41PREDICTABILITY TRAINING COURSE 

2022: LAND-ATMOSPHERE VARIABILITY

JJA DJF

Difference in CRPSS skill from 36 years of re-forecasts with 51 

member ensembles, comparing Cy46r1 (ERA5 ICs) and Cy45r1 

(SEAS5 ICs). Sensitivity experiments (lower resolution, smaller 

ensemble size) confirm that the main driver of improvement is 

change in ICs, not the model.
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How about trends in predictability?

• Can we see climate trends in predictability?

– Model experiment: compare ensemble seasonal forecasts 1900-1929 to 1980-2009

• Can we see trend in land surface contribution to this predictability?

– Model experiment: same forecasts but with random initial land conditions

• Metric: ratio between signal and total variance

42PREDICTABILITY TRAINING COURSE 

2022: LAND-ATMOSPHERE VARIABILITY
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An anecdote demonstrating impact of soil moisture

• Mid ’90’s: introduction of prognostic soil moisture scheme

• Soil moisture data assimilation needed to control drift

(Root cause of drift was model bias, but once unphysical constraint was removed, model bias led 

to errors that grew over time)

43

Model normally

too cold

Suddenly extreme

warm dry drift

Positive radiation bias

Soil drying due to 

overestimated evaporation

Evaporation stops,

Less land cooling

Dry atmosphere,

too little clouds

START HERE

PREDICTABILITY TRAINING COURSE 

2022: LAND-ATMOSPHERE VARIABILITY

bias

stddev
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