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Sea-ice basics
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What is sea ice?

• Sea water freezes at about -1.8C to form sea ice at the surface

• Covers ~12% of world ocean, up to ~5m thick

• Very dynamic, wide variety of ice types and features

• Moved and deformed by winds, currents and internal forces
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Fun and educating to read:

South! The Story of Shackleton's Last Expedition 1914-1917

by Sir Ernest Shackleton

Wreck of the Endurance,

discovered on 5 March 2022

The Endurance crushed by sea ice

in the Weddell Sea, Nov 1915



Sea ice occurrence and climate trends

5

1981-2010 average

September Arctic monthly sea ice extent anomalies 

February Antarctic monthly sea ice extent anomalies 

Source: NSIDC
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Sea ice in the Earth System

• Air-sea fluxes are radically changed in the presence of sea ice:

– Albedo: incoming solar radiation is mostly reflected by sea ice, but mostly absorbed by sea water

– Surface temperature and heat fluxes:

• winter – prevent heat transfer from warm ocean to cold atmosphere

• summer – prevent surface warming until all ice has melted

– Suppression of evaporation from sea water which impacts atmospheric moisture and clouds

– Suppression of wind-induced mixing and up-/downwelling of sea water

• Moving store of latent heat and freshwater

• A very simplified but useful picture:

1. Sea ice is preconditioned by slowly-evolving state of the upper ocean waters

2. Sea ice integrates fast atmospheric forcing in a non-trivial manner

Consistent modelling and prediction of these complex interactions requires

a physical sea-ice model
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Sea-ice modelling 101
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In today’s weather and climate models, sea ice modelled as a 2D non-Newtonian fluid

→ mostly okay for scales > 10km, but clearly inappropriate below that

Parametrisations of important small-scale processes exist, but often have not made their way 

into operational models, e.g.

• melt ponds

• state-dependent atmospheric and oceanic drag coefficient

• subgrid-scale thickness distribution

• anisotropic rheology

• floe-size distribution

Continuity equation for ice mass

Continuity equation for ice area

Momentum equation

Sh, Sc : thermodynamics

(a.k.a. sea-ice physics)
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Sea ice complexity



Sea-ice variability and predictability
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Why include sea ice in predictions?

• Critical environmental factor for mariners, local communities and wildlife

• Fast direct impact on local lower atmosphere

• Potential to impact atmospheric circulation in mid-latitudes

• Interacts with ocean circulation (heat fluxes, salinity, momentum transfer),

→ influences atmospheric predictions at longer lead times
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Immediate impact (hours) Delayed impact (days to seasons)

Surface cooling from albedo effect Advection

Suppression of atmosphere-ocean heat fluxes Timing of melt from ice thickness

Suppression of wind mixing in upper ocean Melting: fresh water export



Sea-ice time scales relevant for weather and climate prediction

Large-scale sea-ice changes take weeks or even years

→ potential source of atmospheric predictability
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Chevallier et al. 2019

persistence of sea ice properties



Mechanisms for sea-ice predictability

• Persistence

• Re-emergence of anomalies connected with seasonal cycle

• Medium- to extended-range: interaction with atmospheric modes of variability 

(e.g. NAO, blocking, MJO)

• Seasonal to decadal: interaction with slow modes of variability

(e.g. AMOC and deep water formation, ENSO)

See Guemas et al. (2014) for an overview
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Strong seasonality of sea ice processes and predictability

13Blanchard-Wrigglesworth et al (2011)

Transfer of persistence memory between 

sea-ice cover and

a) SST over summer

b) sea ice thickness over winter

→ months with similar sea-ice extent tend 

to have similar anomalies

arrows between months whose anomalies are well correlated

SST persistence

Ice thickness

persistence



Decadal predictability of sea-ice changes?
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Tietsche et al. (2013)

Idealized predictability experiments suggest inherent 

predictability for months or even years ahead.
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Initial-condition ensemble

of CMIP5 projections

with MPI-ESM
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Sea ice modelling in ECMWF forecasts

• OCEAN4 (until 2016/7, before 43R1):

– Medium and extended-range forecasts:

persisted from initial conditions for 10 days, then relaxation to climatology

– Seasonal forecasts: prescribed as a sample of previous 5 years

• OCEAN5 (current operations): fully prognostic sea ice

– Sea-ice model LIM2 (NEMO3.4) at ~20km resolution

– Clear forecast improvements in for sea-ice cover and surface air temperatures around the ice edge

• OCEAN6 (2025): sea-ice model SI3 (NEMO4)

– Major model improvements, such as subgrid-scale sea ice thickness distribution and prognostic salinity

– Improved assimilation of sea ice concentration leading to better initial conditions

– Large improvements in winter-time performance
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Extended-range forecast skill for Arctic sea ice from the S2S database
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Zampieri et al., GRL 2018

Sub-seasonal skill up to 6 weeks

in currently operational

sub-seasonal forecasts

benchmark:

simple statistical forecastECMWF current

ECMWF

(before 43R1)



Seasonal forecast skill
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Dirksen et al. (2019)

C3S multi-model skill (CRPSS) for September sea-ice area w.r.t. trend-adjusted climatology

Initialized from         1 Apr                           1 May                              1 Jun                            1 Jul                             1 Aug

Currently operational seasonal forecasts have substantial skill for sea-ice cover

several months ahead.



Current challenges in sea-ice predictions

• Initialization: currently relies mostly on observations of sea-ice concentration,

but memory resides in sea-ice thickness and upper-ocean stratification

• Missing physics: subgrid-scale variability of sea ice poorly represented, 

hence heavy reliance on well-tuned parameterisations

• Model biases: dominate especially at seasonal lead times, careful 

postprocessing needed to extract maximum information from forecast
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Atmospheric impact
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Near-surface atmospheric impact in weather predictions
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Day et al. (2022)



Summer Arctic surface air temperature and sea ice: seasonal forecasts

Good skill in seasonal forecasts 

of seasonal sea-ice minimum in 

OCEAN5/SEAS5, much 

improved than statistical forecast 

in OCEAN4/SEAS4

Associated with skill in seasonal 

forecasts of average surface 

temperatures north of 70N

Jul forecasts of ASO area-mean t2m north of 70N

ACCD = 0.34

ACCD = 0.67

vertical bars:

inter-quartile range

of ensemble

Jul forecasts of ASO ice extent

ACCD* = 0.54

ACCD = 0.66
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Observations

OCEAN4

OCEAN5

1996

2007

Observations

OCEAN4

OCEAN5

* ACCD: anomaly correlation of detrended time series



Spring sea-ice thickness impacts autumn surface temperatures

Balan-Sarojini et al. (2021)

SIT difference in initial conditions

(Mar-Jun)

SIC difference after six months

(Sep-Dec)

t2m difference after six months

(Sep-Dec)

Numerical experiments with ORAS5/SEAS5:

winter-time only CS2SMOS initialization reduces seasonal ice thickness by up to 1m

• ice concentration reduced throughout melt season and into next autumn/winter

• Higher near-surface temperatures, with some impact on mid-latitudes (= improved forecast climate)



Winter impact of sea ice on winter surface air temperature
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Koenigk et al. (2019)

Correlation of DJF SAT with reanalysis in atmosphere-only simulations (1982-2014):

observed SST and sea ice observed sea ice but constant SST

Sea-ice impact on surface air temperature over parts of Europe, North Atlantic and North Pacific



Mean atmospheric circulation response to Arctic sea-ice loss
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Smith et al. (2022)

Models suggest a weakening of mid-latitude westerlies in response to reduced sea-ice cover

But: response is weak, and difficult to verify in observational record

Multi-model response in zonal-mean 

temperature and zonal wind to sea 

ice changes for a 2C warmer climate 

(CMIP6 PAMIP experiments)



Caveat I: atmospheric impact
is time-scale dependent

25

After week 1 week 5 week 20

Deser et al. (2007)

Sea-ice forcing

+
-

• Numerical experiments forcing the 

atmosphere with the dominant mode 

of sea-ice variability & climate change 

in the NH

• Fast response: local and baroclinic

• Equilibrium response: hemispheric 

and barotropic

→ Remote sea-ice impact depends on 

time scales considered

geopotential height 

response (ci=10m)
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Caveat II: atmospheric impact is non-linear
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Petoukhov et al. (2010):

Numerical experiments forcing atmosphere 

with reduced sea ice in Barents Sea

Can cause cold or warm Eurasian winters, 

depending on the size of the reduction

→ Remote sea-ice impact non-linear

(and state-dependent)
Overland et al (2016)



The link between Barents/Kara sea ice and cold Eurasian winters
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Mori et al. (2014)

Composite of DJF 2m 

temperature difference between 

years with low and high sea-ice 

cover in the Barents and Kara 

Seas (1979-2013)

→Ural blocking favouring cold-

air advection over Eurasia

Blackport et al. (2019) argue that (in observations) this seems to be co-incidence rather than causation:

anomalous atmospheric circulation drives both sea ice loss and severe mid-latitude winters



Arctic atmosphere impact on mid-latitude predictions
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Jung et al. (2014)

Relative reduction of z500 RMSE in 

winter forecasts achieved by Arctic 

atmosphere relaxation (full column)

→ Especially over mid-latitude Eurasia, 

strong linkages to the Arctic
Day 1-5 Day 6-10

Day 11-30 Day 11-30 compared 

to tropical relaxation



Sea ice atmospheric impact in a nutshell
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1. Strong and fast impact on lower atmosphere (local heating)

2. Multifaceted circulation response via

• Changes to baroclinity

• Vertical waves and stratosphere-troposphere coupling

3. Robustness and generality of statements limited by

• Dependence on time scale and background state; nonlinearity

• Difficulties to infer causality

• signal to noise ratio (need long observational records and/or large ensembles)

• Deficiencies in weather and climate models

4. Cold Eurasian winters closely linked to sea ice loss in Barents/Kara Seas



Some take away messages

➢ Sea-ice modelling essential for predicting air-sea interactions at high latitudes

➢ Slow time scales of sea ice = potential source of predictive skill

for sub-seasonal to seasonal (s2s) atmospheric predictions

➢ Latest generation of operational models have skill in predicting sea ice at s2s range,

with obvious potential for improvement (e.g. thickness initialization)

➢ Sea ice presence strongly imprints on regional atmospheric vertical structure and circulation

➢ Broad spectrum of linkages to mid-latitude weather and climate in a changing climate
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