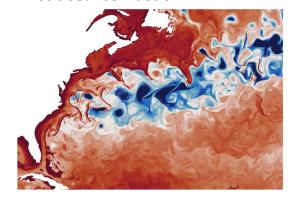
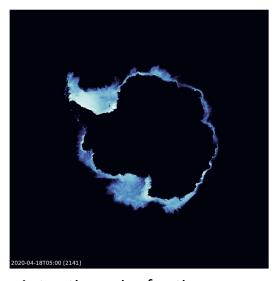
Advancing the global km-scale models underpinning the DestinE Digital Twins

Benoît Vannière

on behalf of colleagues developing the IFS at km-scale at ECMWF in collaboration with ECMWF Member States

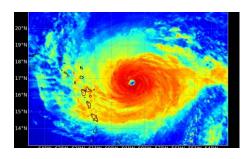

BUILDING ON PIONEERING GLOBAL KM-SCALE MODELLING


10m wind gust in IFS-FESOM (atmosphere ~5km/ ocean ~5km)

Arctic sea ice fraction

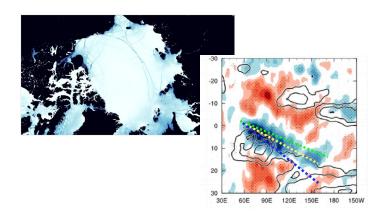
Mixed-layer depth

Antarctic sea ice fraction



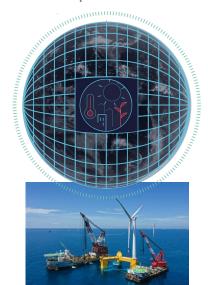
GLOBAL KM-SCALE MODELLING EFFORTS AT ECMWF

Short forecasts pioneering physics for global km-scale

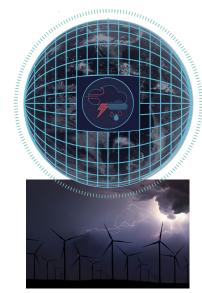

Multiple case studies up to IFS(2.8km/1.4km) + NEMO12(9km)

Multidecadal coupled simulations

In 2024, 30 years of IFS (4.4km) + *NEMO025* (25km) IFS(4.4km) + FESOM(5km)



Destination Earth



Pathway to operational use

Climate adaptation DT

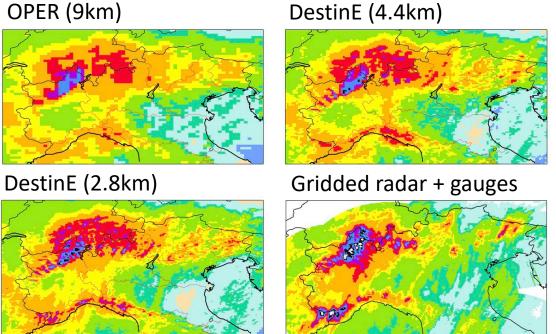
Weather-Induced Extremes DT

KM-SCALE MADE POSSIBLE BY THE WORLD'S FASTEST SUPERCOMPUTERS

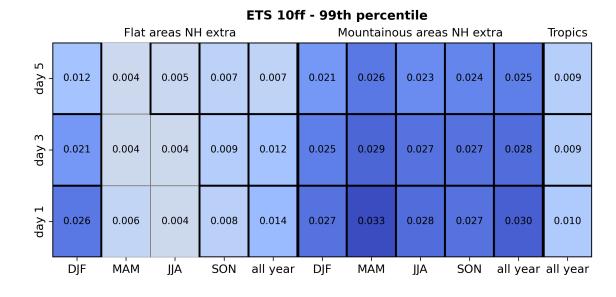
	SDPD	Computer	CPU nodes
IFS-FESOM 5km (Climate DT)	180	LUMI-C	201
IFS-NEMO 5km (Climate DT)	160	MareNostrum5	284
IFS-NEMO 5km (Extremes DT)	70	ECMWF Atos	128

Throughput allows for decade-long simulations and is fast enough for operational weather predictions

IMPROVEMENT DUE TO KM-SCALE



OROGRAPHIC PRECIPITATION AND NEAR-SURFACE FIELDS


Storm Alex 24h TP, 2020-10-01 T+60h

50.0

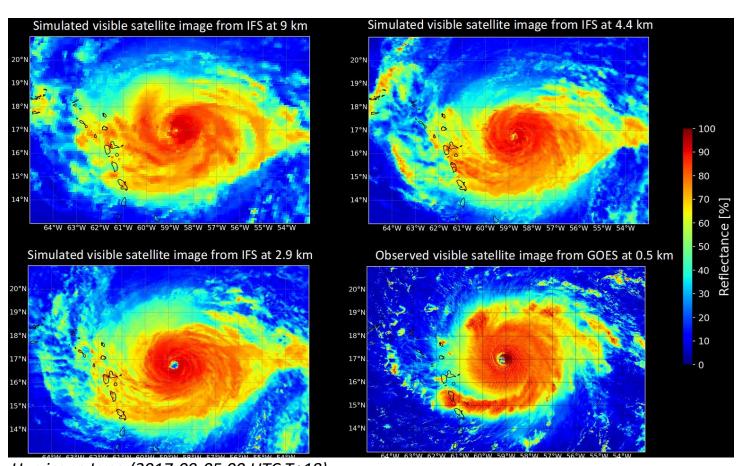
150.0

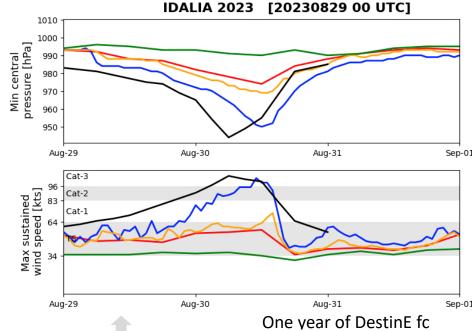
"Extremes score-card" (ref SYNOP)

$$ETS = rac{\mathrm{H} - \mathrm{C}}{\mathrm{H} + \mathrm{M} + \mathrm{F} - \mathrm{C}}$$

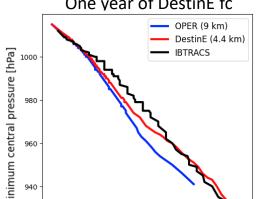
H: Hits

M: Misses


F: False alarms


C: Correct negatives

Precipitation totals and surface wind are in better agreement with the observations. But poses verification challenges because of data quality/quantity and double penalty issue

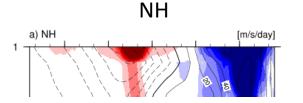


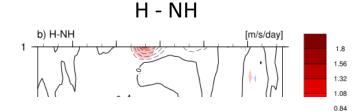
HOW DOES KM-SCALE IMPROVE TROPICAL CYCLONES?

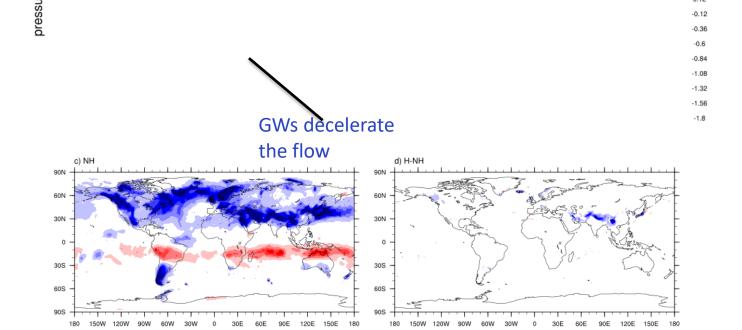
Maximum wind speed [kt]

Hurricane Irma (2017-09-05 00 UTC T+18)

... improved mesoscale features & intensity but lingering slow propagation bias




WHERE HAVE WE MADE PROGRESS?


IS THE HYDROSTATIC ASSUMPTION STILL VALID AT KM-SCALE?

2.8 km resolution simulations for end of January 2022 (winds over Himalayas ~50 m/s)

... mostly **YES**, difference between H and NH is limited to a few specific flow situations.

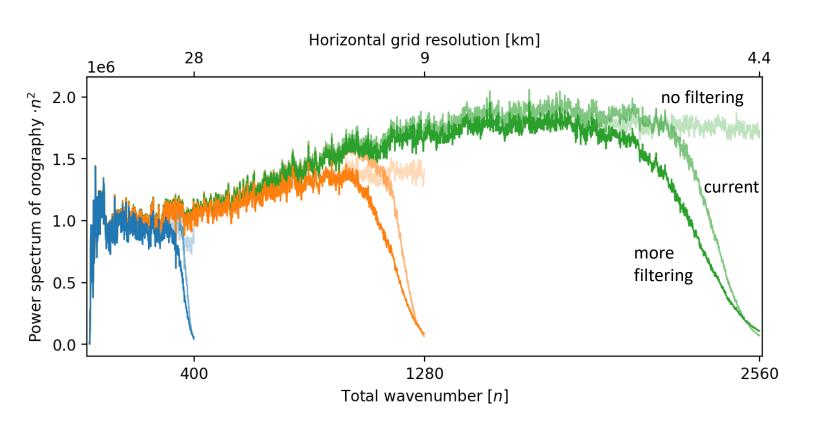
Fortunately, because NH is >2 times more expensive.

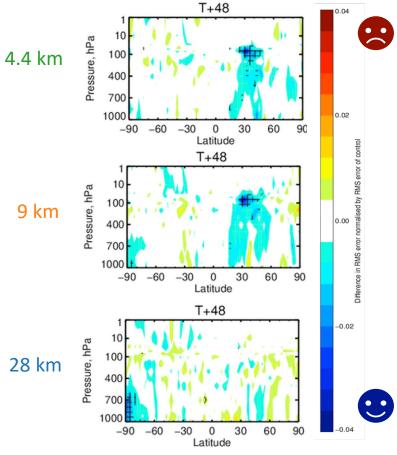
 $\bar{\rho}u'w'$

@90hPa

GWs carry westward momentum

GWs carry eastward momentum

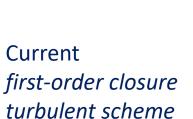

[mPa]

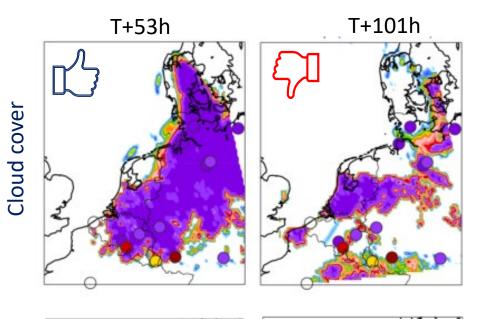


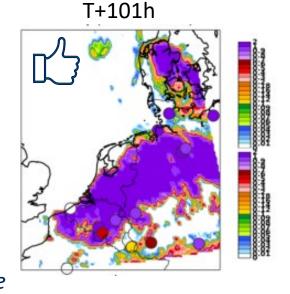
HOW TO TREAT OROGRAPHY?

... careful balance between filtering small scales to improve accuracy, while preserving orographic detail

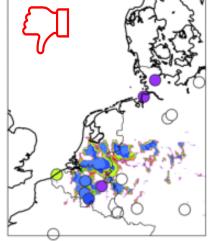
Change in RMSE of winds More filtering vs current

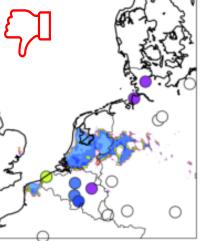


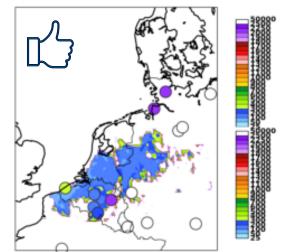



VT at 27/02/2021 05Z

PROGNOSTIC TKE TURBULENT SCHEME






New prognostic TKE turbulent scheme

Ivan Bašták Ďurán

Current

WHAT ARE THE CHALLENGES AHEAD?

HIGH-RESOLUTION DATA ASSIMILATION

FC 4km vs 9km (old)

	•	•	, 	V3 31	O_{j} III	iu <i>j</i>
			n.hem	s.hem	tropics	europe
			rmsef/sdef	rmsef/sdef	rmsef/sdef	rmsef/sdef
an	z.	50				
		100				
		250				
		500				
		850				
	msl					
	ţ	50				
		100				
		250				
		500				
		850				
	vw	50				Ш
		100				
		250				
		500				
		850				
	ŗ	250				
		700				
ob	z	50				
		100				
		250				
		500				
		850				
	ţ	50				
		100				
		250				
		500				
		850				
	vw	50				
		100				
		250				
		500				
		850				
	ŗ	250				
		700				
	2t					
	2d					
	tcc					
	10ff					
	tp			_		
			LUIV	WWI		

FC 4km vs 9km (new)

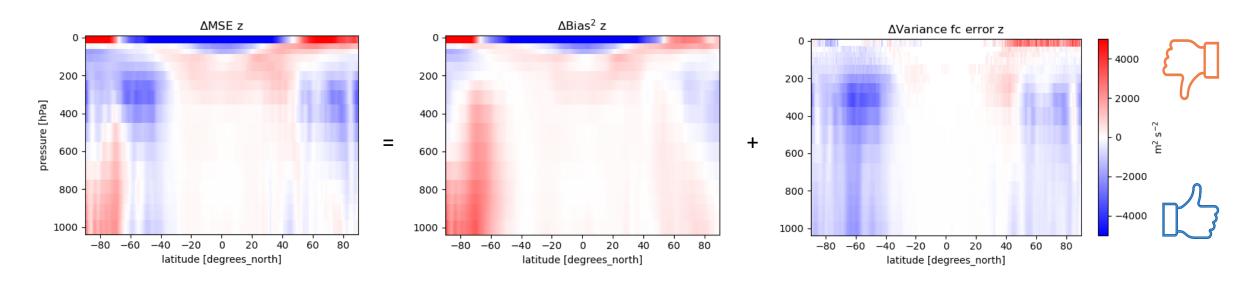
Γ			n.hem	s.hem	tropics	europe
			rmsef/sdef	rmsef/sdef	rmsef/sdef	rmsef/sdef
an	Z.	100				
		250				
		500				
		850				
	msl					
	t	100				
		250				
		500				
		850				
	2t					
	vw	100				
		250				
		500				
		850				
	10ff					
	ŗ	250				
		700				
	10ff@sea					
	swh					
	mwp					
ob	Z.	100				
		250				
		500				
		850				
	<u>t</u>	100				
		250				
		500		•		
		850		•		
	2t					
	vw	100				
		500				
		850				
	10ff					
	ŗ					
		700				
	2d					
	tcc					
	tp					
	swh					

AN+FC 4km vs 9km

			rmsef/sdef	rmsef/sdef	rmsef/sdef	rmsef/sdef
an	Z	100				
		250				
		500				
		850				
	msl					
	t	100				
		250				
		500				
		850				
	2t					
	vw	100				
		250				
		500				
		850				
	10ff					
	ŗ	250				
		700				
	10ff@sea					
	swh					
	mwp					
ob	z	100				
		250				
		500				
		850				
	t	100				
		250				
		500				
		850				
	2t					
	vw	100				
		250				
		500				
		850				
	10ff					
	ŗ	250				
		700				
	2d					
	tcc					
	tp					
	swh					

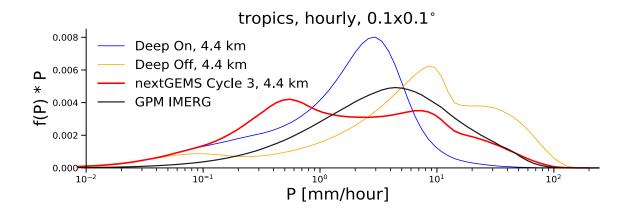
Setup of the high-resolution DestinE analyses:

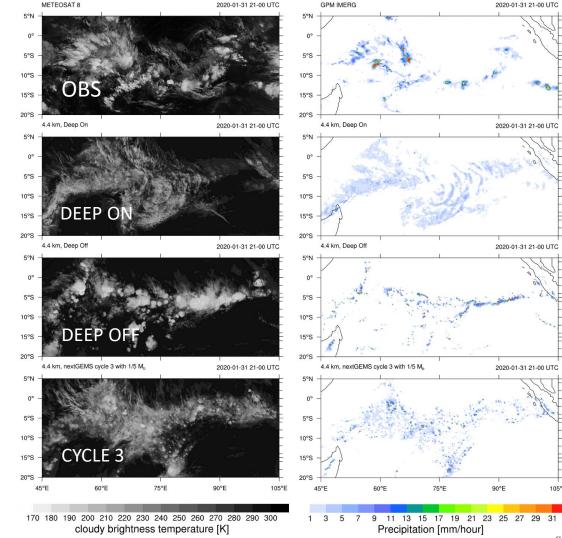
- TCo2559 (4.4 km) **trajectory** using latest 49r1 DestinE forecast (new orog, time-step)
- Increased resolution of minimisation (TL319/TL399/TCo399/TCo511)
- Observation time-slots reduced from 1800s to 400s
- High-resolution geostationary satellite data (reduced thinning)



- Z. Zaplotnik, J. Schröttle,
- E. Orlandi and J. Bandeiras

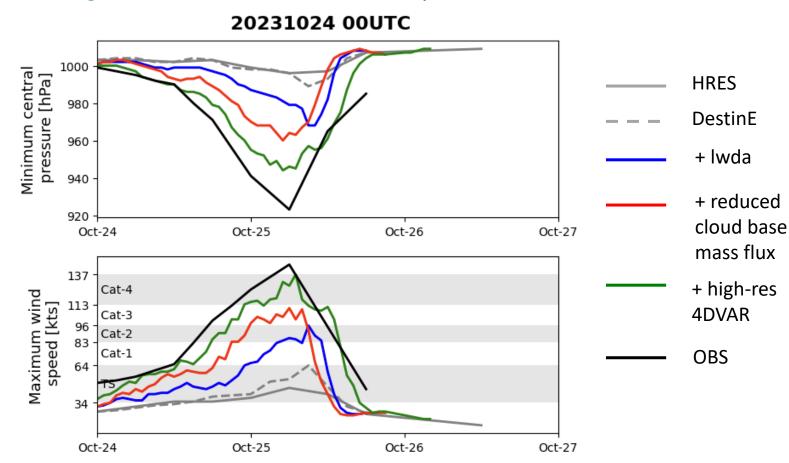
DOES SIMULATING THE KM-SCALE HAVE AN UPSCALE EFFECT?


- One year of DestinE forecasts compared to OPER at T+72h (366 dates)
- $MSE = BIAS^2 + VFE$, VFE = variance of forecast error informs on predictive skill


YES, first demonstration that simulating km-scale processes has a positive impact on the predictive skill in midlatitudes. However, it remains partly masked by bias.

CAN WE TURN OFF THE PARAMETERIZATION OF DEEP CONVECTION?

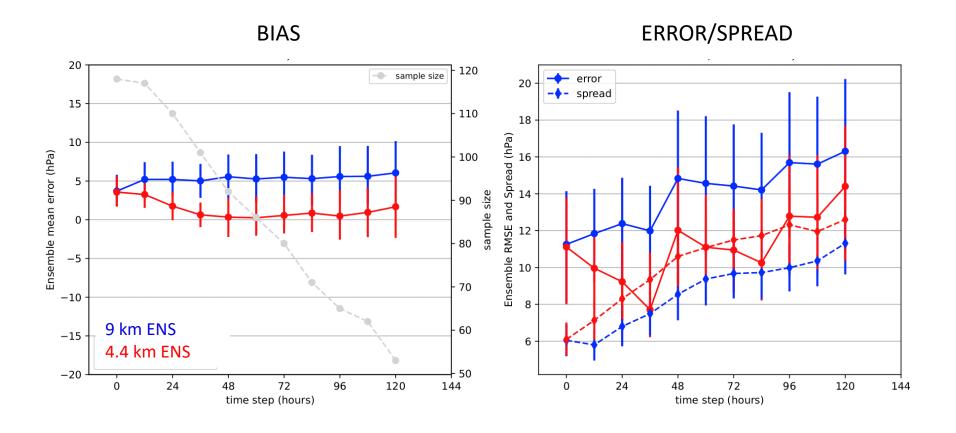
... NO, but a careful modification of the scheme is required which optimizes both NWP scores and physical realism



CASE OF TC OTIS

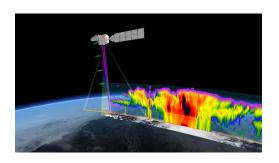
Combining successively extra observations, reduced parameterized convection and higher resolution 4D-Var dramatically increases the forecast skill of Otis.

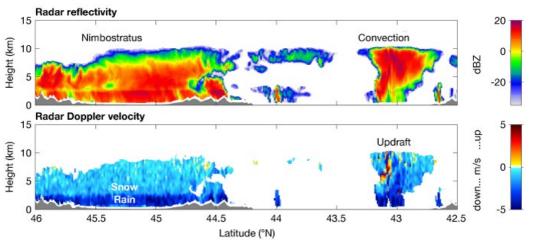
Model Forecast Intensity for Otis


Ziga Zaplotnik, Michael Maier Gerber, Benoit Vanniere

QUANTIFYING UNCERTAINTY

- ENS =10-member ensembles with SPP
- 30 initial dates
- Tropical cyclones minimum SLP

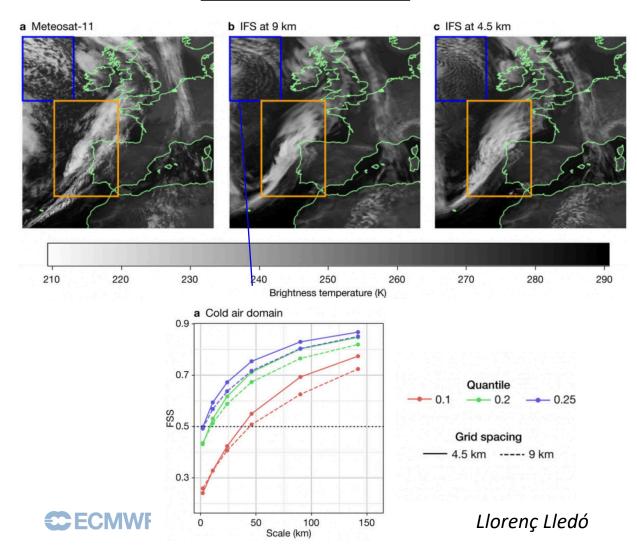


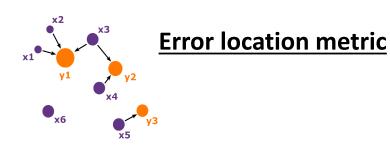

NEW INSIGHTS FROM EARTHCARE WILL BENEFIT KM-SCALE

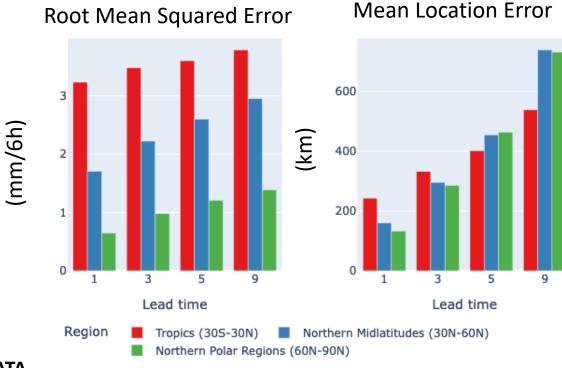

10 km

New EarthCare observations: Radar reflectivity and doppler velocity

- Radar doppler velocity measures rain and snow fall speed, aiding in drop size and rime fraction estimation
- Detailed insights on strength/width of convective updrafts

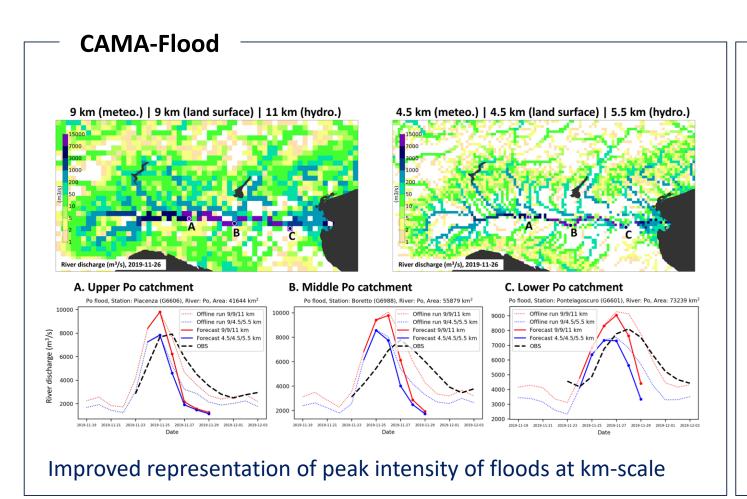




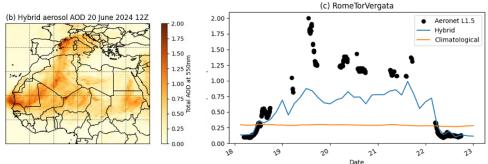


USING SPATIAL VERIFICATION METRICS FOR KM-SCALE PROCESSES

Fraction skill score


DATA

7 years of 9km operational forecasts, verified with analysis-proxy

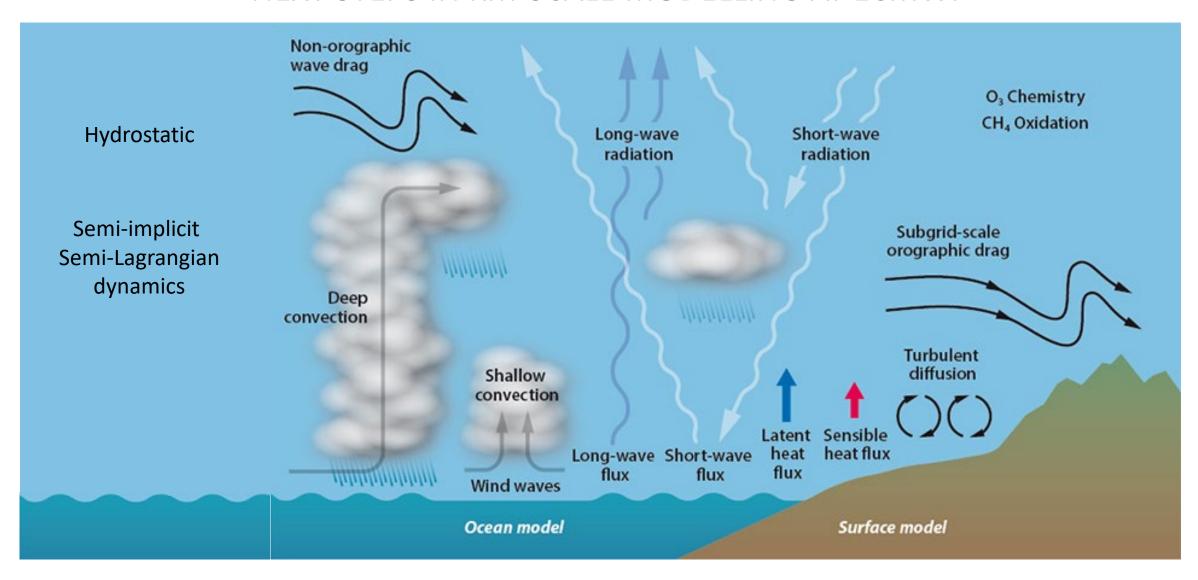


INTEGRATION OF IMPACT SECTOR MODELS IN THE KM-SCALE MODEL

Flexible prognostic aerosols scheme

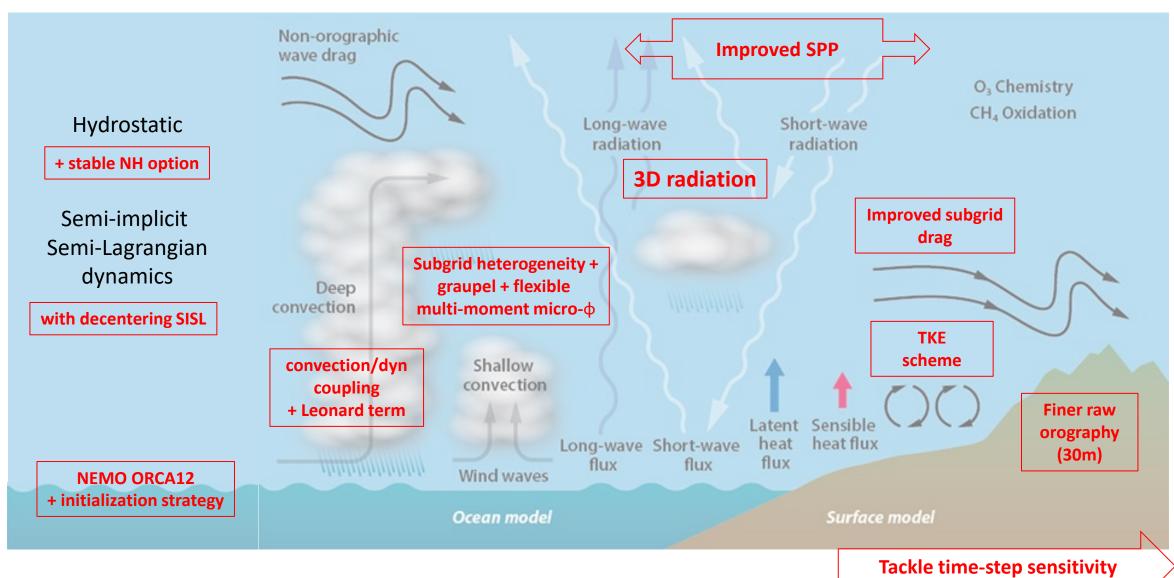
Prognostic dust aerosols, CAMS climatology otherwise, 2024 June 10 12Z

New feature to include custom combination of prognostic and climatological aerosols species in the radiation scheme

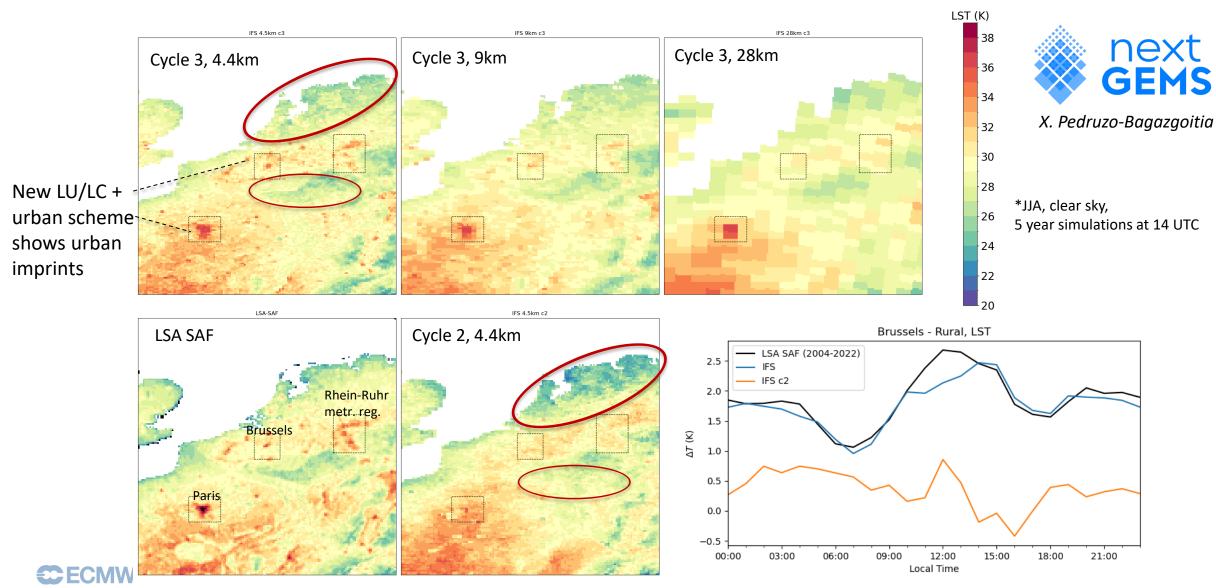


KM-SCALE MODELLING AT ECMWF

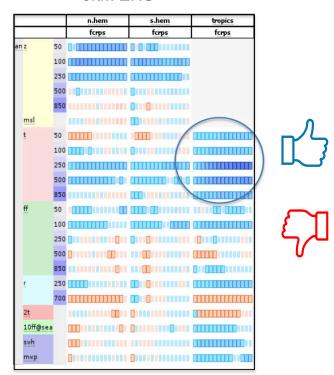
- Clear improvement of the km-scale to simulate several types of extreme weather
- DestinE operationalizes km-scale IFS simulations for weather prediction and climate projections by leveraging **EuroHPC** supercomputers
- Delivers better information to application sectors and improves boundary conditions for ACCORD models
- Adapting moist physics for km-scale remains challenging but developments to the representation of convection, turbulence and microphysics, and new observations of cloud and precipitation from EarthCARE provides a good way forward
- Km-scale models present a major opportunity for training AI-based NWP, and improve their representation of mesoscale and extreme weather prediction



NEXT STEPS IN KM-SCALE MODELLING AT ECMWF

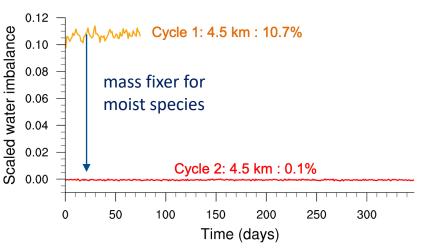

NEXT STEPS IN KM-SCALE MODELLING AT ECMWF

IMPACT OF CITIES AT THE LOCAL SCALE

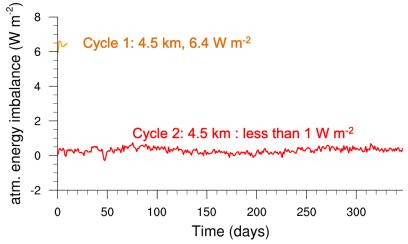


TUNING A GLOBAL KM-SCALE CLIMATE MODEL

Biases identified during nextGEMS Hackathon in climate simulations...

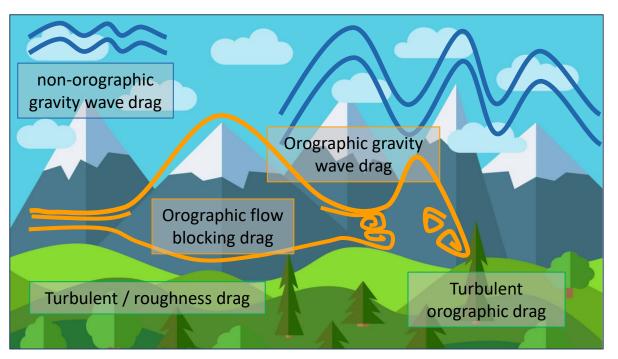

... improve scores of ENS forecasts and extreme DTs

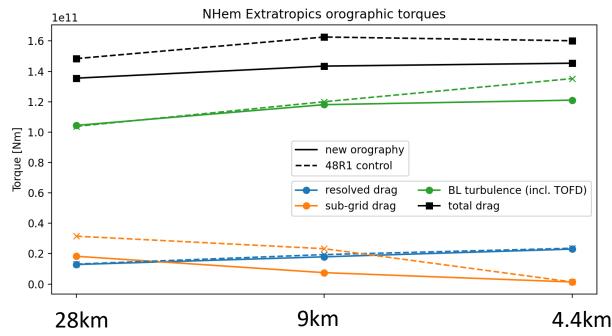
9km ENS



8-member d(fCRPS)

Water budget

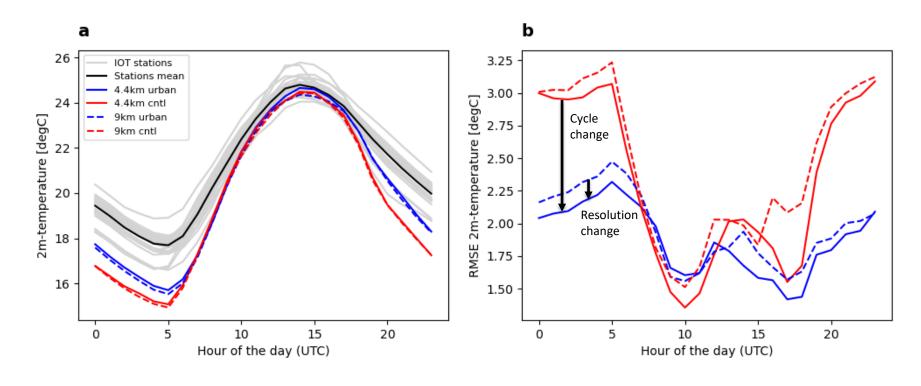

Energy budget



SUB-GRID OROGRAPHIC PROCESSES STILL IMPORTANT AT HIGH RESOLUTION

Annelize Van Niekerk, Birgit Sützl

- Updated field processing so that subgrid drag evolves smoothly and consistently with resolution.
- Exploiting high-resolution data to build ancillary fields (Copernicus DEM at resolution 30m)
- Bayesian optimization strategy for tuning subgrid drag



IMPACT OF CITIES AT THE LOCAL SCALE

Paris RDP project evaluating Paris t2m against 30 IOT stations

HIGH-RESOLUTION DATA ASSIMILATION

FC 4km vs 9km (old)

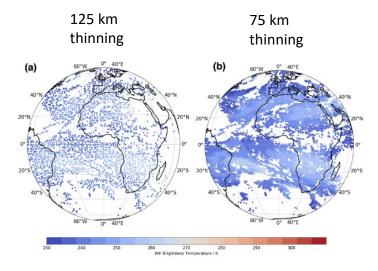
	ſ	-	4KIII	VS 91	cm (o	iuj
			n.hem	s.hem	tropics	europe
L			rmsef/sdef	rmsef/sdef	rmsef/sdef	rmsef/sdef
an	z.	50				
		100				
		250				
		500				
		850				
	msl					
	<u>t</u>	50				
		100				
		250				
		500				
		850				
	vw	50				ш
		100				
		250				
		500				
		850				
	ŗ	250				
		700				
ob	z.	50				
		100				
		250				
		500				
		850				
	ţ	50				
		100				
		250				
		500				
		850				
	vw	50				
		100				
		250				
		500				
		850				
	ŗ	250				
		700				
	2t					
	2d					
	tcc					
	10ff					
	tp					

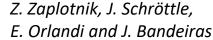
FC 4km vs 9km (new)

250

100 250

500

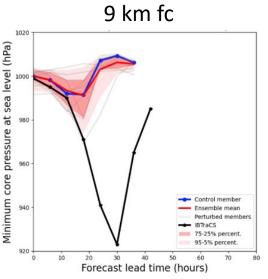

rmsef/sdef rmsef/sdef rmsef/sdef rmsef/sdef

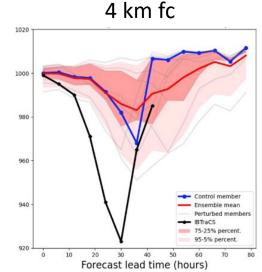

AN+FC 4km vs 9km

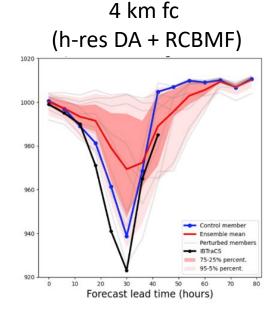
		n.hem	s.hem	tropics	europe
		rmsef/sdef	rmsef/sdef	rmsef/sdef	rmsef/sdef
an z	100				
	250				
	500				
	850				
msl					
t	100				
	250				
	500				
	850				
2t	П				
vw	100				
******	250				
	850				
10ff					
r	250				
-		m.m			
10ff@sea		M			
swh			<u> </u>		
mwp					
ob z	100				
	250				
	500				
	850				
t	100				
	250				
	500				
2t	850				
	100				
vw					
	500				
	850				
10ff					
ŗ					
	700				
2d					
tcc					

Setup of the high-resolution DestinE analyses:

- TCo2559 (4.4 km) trajectory using latest 49r1 DestinE forecast (new orog, time-step)
- Increased resolution of minimisation (TL319/TL399/TCo399/TCo511)
- Observation time-slots reduced from 1800s to 400s
- High-resolution geostationary satellite data:

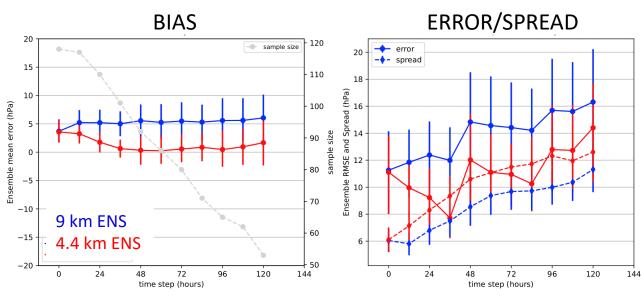





QUANTIFYING UNCERTAINTY

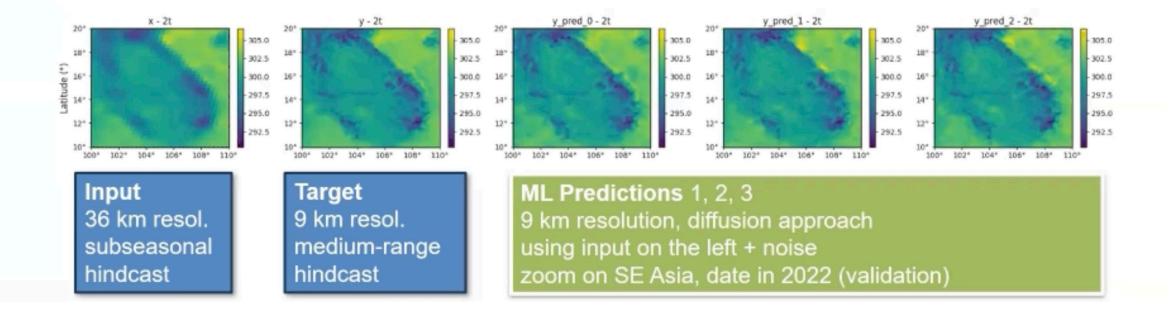
Evaluating 4.4 vs 9 km 10-member ensembles with SPP + additional physics changes

> **Tropical Cyclone Otis** (24-25 Oct 2023)



30 initial dates

Aristofanis Tsiringakis



Representing uncertainties at kilometre scale resolutions

- Funded by **Destination Earth**, work is on-going to test and further develop uncertainty representations at high resolution (Δx ≤4.4 km)
- Lack of affordability to run large IFS ensemble at km-scale in the next five to ten years
- Alternative approach: Use ML to learn probabilistic downscaling and assess realism via comparison with IFS km-scale simulations

