Canadian Arctic Prediction System

(CAPS Version2)

Jean-Philippe Paquin on behalf of CAPS Working Group

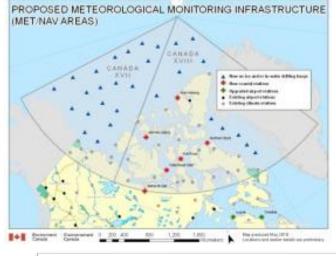
Sarah MacDermid, Frédéric Dupont, Mathieu Plante, Gregory C. Smith, François Roy, Jean-François Lemieux, Barbara Casati, Danahé Paquin-Ricard,

Nathalie Gauthier, Fraser Davidson, François Lemay

(CMD-EM, CMD-N, RPN-EM, RPN-A)

Context – A changing Arctic

Current ECCC's Responsibilities in the Arctic

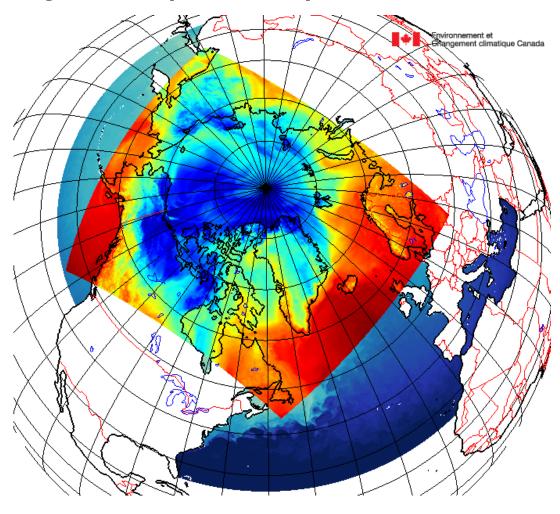

- Canada responsible for METAREAS 17&18
- Environmental emergency response (atmospheric pollutants, oil spill, etc.)
- Supports Canadian Ice Services for navigation safety
- Supports Coast Guard for Search&Rescue

Arctic Forecasts rely on

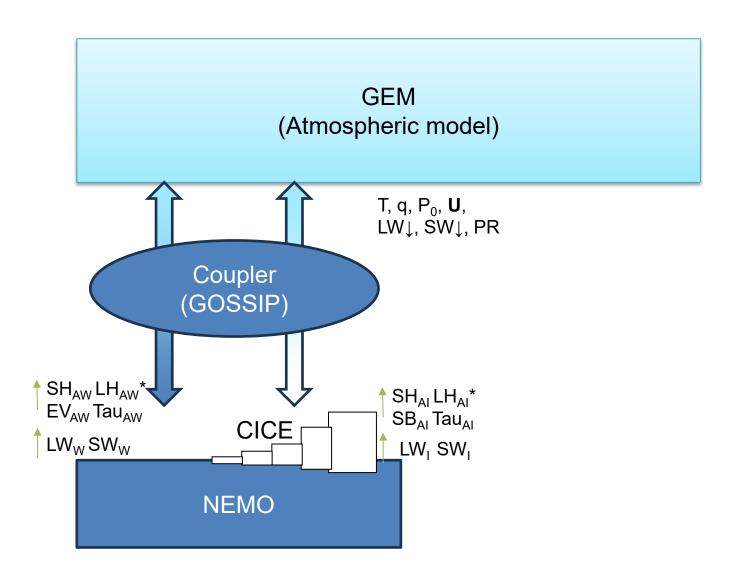
- (i) Global system (GDPS coupled 15 km; G0 uncoupled 10km)
- (ii) Regional Arctic (HRDPS; uncoupled atm. 3 km)
- Sea ice & Ocean forecasts done with Regional Ice-Ocean Predictions System RIOPS (3-5km; forced by GDPS-G0)

Requests from National Defense

- High-resolution pan-Arctic coupled atmosphere-ice-ocean system for short-term predictions
 - Flight operations (esp. in Canadian Arctic Archipelago)
 - Harsh & rapidly changing conditions
 - Navigation Hazards in ice infested waters
 - Acoustic detection
- Require system in operations for development of specific applications



Canadian Arctic Prediction System (CAPS_{v2})


- **Atmosphere : GEM5.2** (Côté et al. 1998; McTaggart-Cowan et al. 2019)
 - **HRDPS-Nord**
 - **3km** horizontal grid size; 62 vert. lvls (Dyn 35m, Thermo 17.5m)
 - Microphysics: Predicted Particle Properties (P3; Morrison & Milbrandt 2015)
 - Radiative Transfert: cccmarad (Li 2002, Li & Barker 2005, Li et al. 2005)
 - PBL: Moistke (Bélair et al. 1999, McTaggart-Cowan & Zadra 2015)
 - Convection: Kain and Fritsch (1990, 1992)
- Ocean-Ice: NEMO3.6 CICE6
 - **RIOPS** (Dupont et al. 2015; Smith et al. 2021, Smith et al. 2024)
 - **2-8 km** horizontal grid size (ORCA 1/12° tri-polar)
 - VP rheology (EVP with 900 subtimesteps), 10 ice thickness categories Landfast ice (Lemieux et al. 2015, 2016, 2018)
 - **Tides**
 - Atmospheric pressure effect (storm surge)
 - River runoffs: Dai & Trenberth + Glacier melt from Mercator
 - Initialized from RIOPS-analysis (SAM2; Ice Cover Analysis)

Short-term forecasts (48h) 2xday (00Z & 12Z)

Evaluation: 1-year (2021-2022) - Coupled (CAPS) vs Uncoupled (HRDPS) 48h forecasts (every 36h)

Coupling Strategy in CAPS

- Coupling every common time step $(\Delta t_{coupling} = 300 \text{ s}; \text{ GEM:100s, NEMO: 300s})$
- Fluxes calculated on ocean grid & aggregated
- Fluxes calculated over the 10 ice thickness categories (0.0, 0.1, 0.15, 0.30, 0.50, 0.70,1.20, 2.0, 4.0, 6.0+)
- Flux calculations consistent between **GEM & NEMO-CICE** (in & out of coupling zone)

5. Changes in surface Temperature (1.5m)

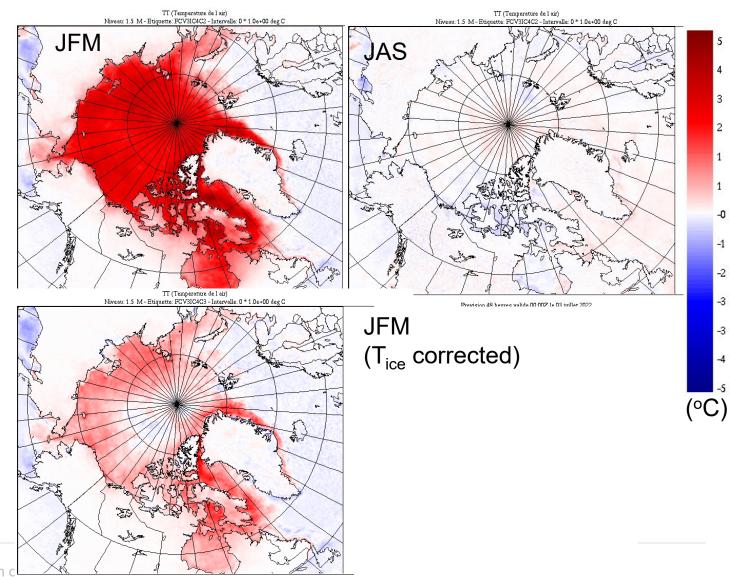
CAPS – HRDPS (at t=48h)

Prevision 48 heures valide 00:00Z le 03 janvier 2022

Over Sea ice

- Large-scale wintertime warming (2-5°C)
- No significant differences in summer

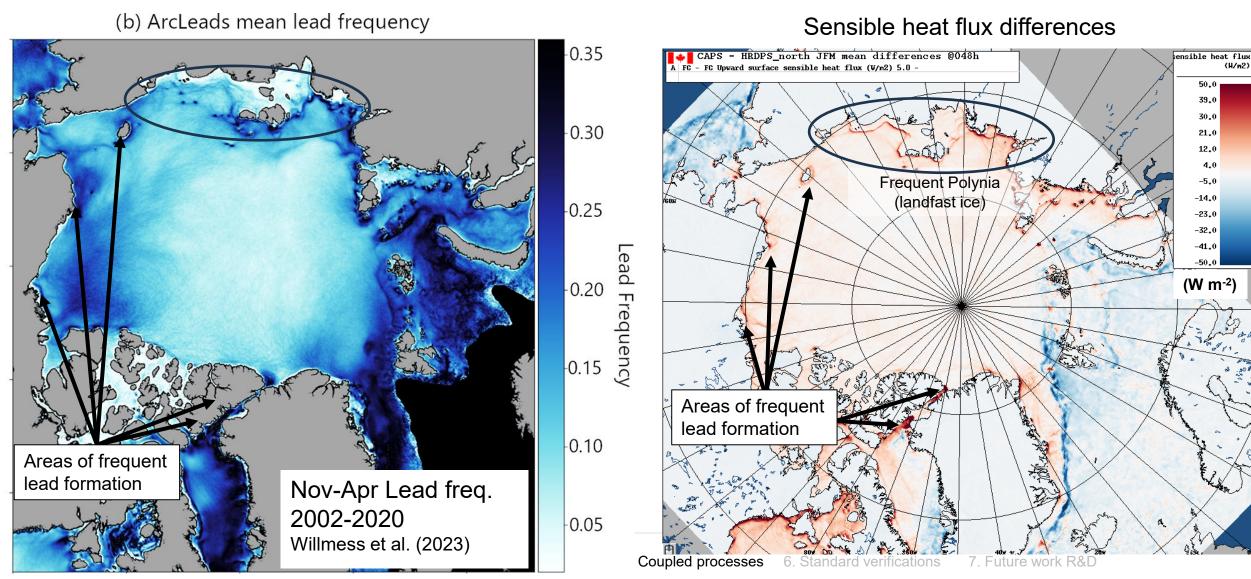
Over Ocean


Cooling in fall-winter-spring

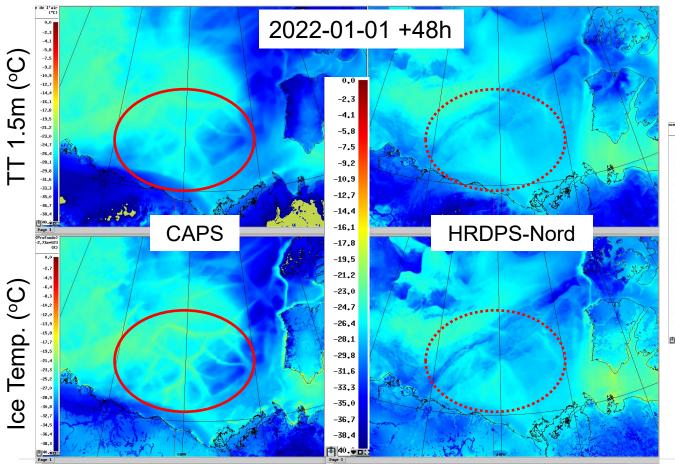
Over land

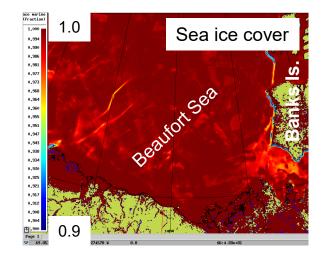
No clear signal except coastal areas

Explained by:

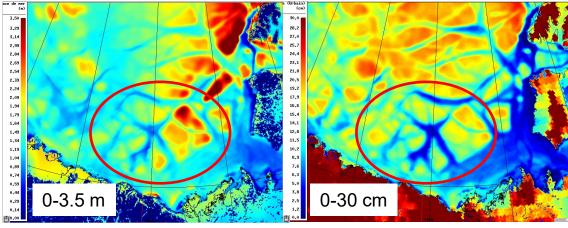

- HRDPS unrealistic ice temperature profile
- Leads under-represented in ice analysis
 - Initial conditions in HRDPS
- Opening of leads in coupled forecasts
 - o vs. persistence in HRDPS
- Large-scale differences in surface fluxes
- Fluxes through the ice
- Representation of snow-on-ice (small impact)

1. Context 2. Objectives 3. Timeline 4. System of

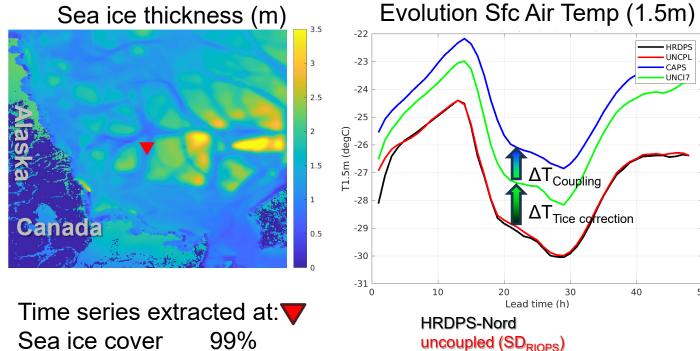

5. Changes in Turbulent Heat Fluxes


Winter (JFM) turbulent heat fluxes differences (at 48h) CAPS – HRDPS

5. Heat flux through the ice - Case study 2022-01-01


- Stable Sea ice cover: >90%; no leads opening during forecast
- CAPS: Warmer & patterns from ice thickness & snow depth
- HRDPS: Colder both atm & ice temperatures warming patterns mostly absent

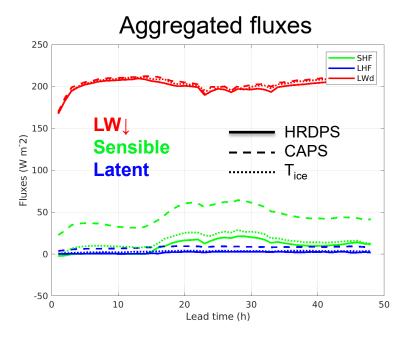
Sea ice Thickness


Snow Depth

N.B.

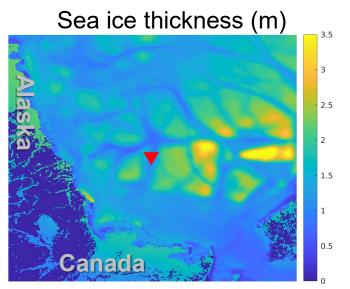
- CAPS&HRDPS-Nord: SIT & SD initilized from RIOPS
- CAPS: evolving (longer time-scales)
- HRDPS-Nord: Persistence over 48h

5. Heat flux through the ice – Case study 2022-01-01

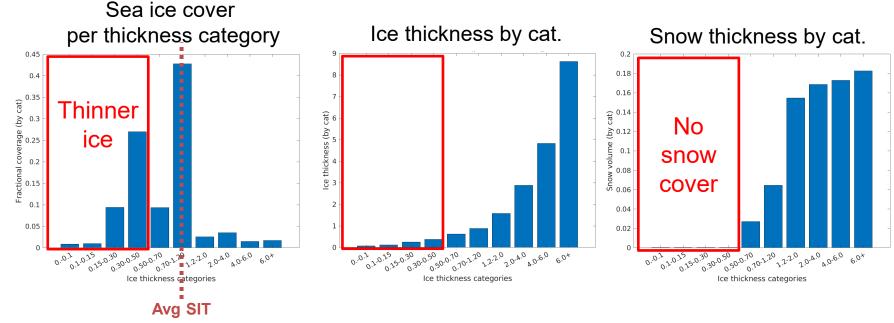


- 99% Sea ice cover Sea ice thickness 0.92m
 - CAPS warmer (at t=0h; air temp identical)

T_{ice} (uncoupled)

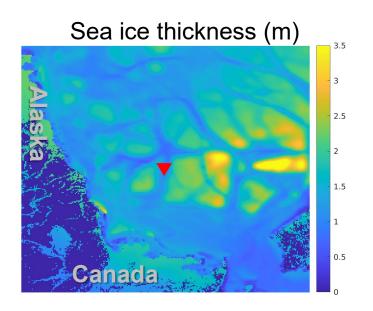

CAPS

Time warmer vs HRDPS (closer to CAPS)

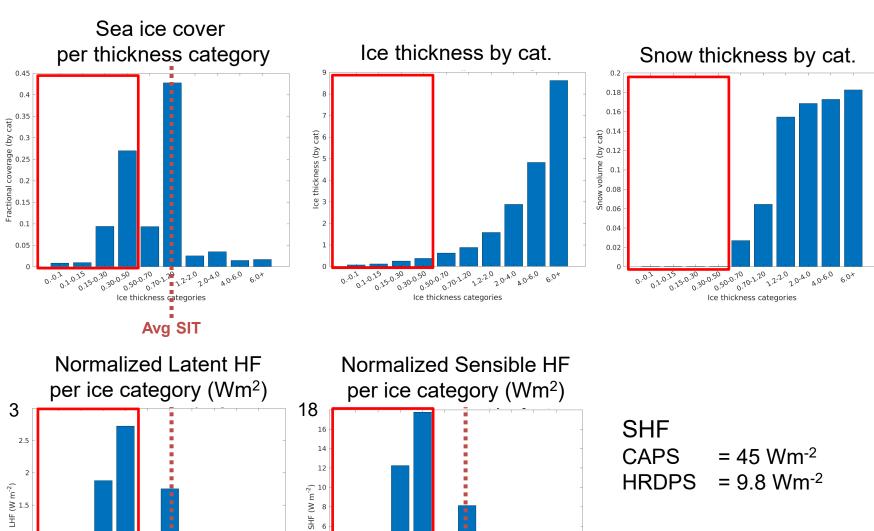


- Increased Sensible HF in CAPS
 - even with sea ice cover >99%
- Small increase in Latent HF
- No significant change in LW↓ at the surface

5. Heat flux through the ice – Case study 2022-01-01



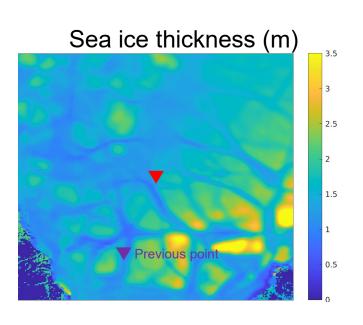
Time series extracted at: \(\neg \) Sea ice cover 99% Sea ice thickness 0.92m



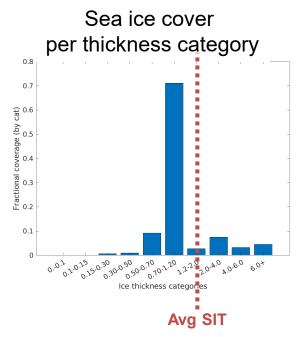
- CAPS (CICE) represents 10 ice thickness categories ~40% of thin ice (<0.5m) & no snow on thin ice
- HRDPS sees averaged sea ice (****** 0.92m) & snow (9cm) thicknesses

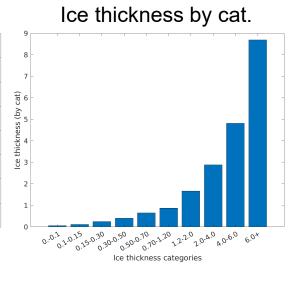
5. Heat flux through the ice – Case study 2022-01-01

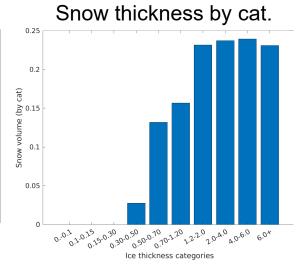
Time series extracted at: 99% Sea ice cover Sea ice thickness 0.92m

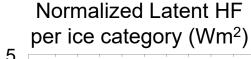

Avg SIT

0.5

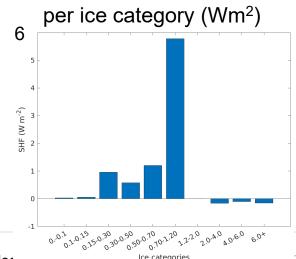

0.0.2,0.25,0.30,0.50,0.70,0.220 2220,040,4060 6.04


Avg SIT


5. Heat flux through the ice - Case study 2022-01-01



Time series extracted at: V Sea ice cover 99% Sea ice thickness 1.5m



- More uniform thickness distribution
 - Almost no thin ice categories
- Smaller heat fluxes
- Smaller differences CAPS vs HRDPS

Normalized Sensible HF

SHF average CAPS = 8.2 Wm² HRDPS = 2.3 Wm²

1. Context 2. Objectives 3. Tirneline 4. System Configuration 3. Couples 2. See categories 7. Future work R&D

7. Summary

- Upcoming proposition to install CAPS in operations to replace current uncoupled system (experimental status)
- National Defense meteorological and environmental applications require high-resolution coupled pan-Arctic predictions
 - Improves representation and coherence of boundary layer fields (atm&ocean)
 - Fine-scale orography & sea ice cover has large impact on near-surface winds in the Canadian Archipelago

PHYSICS

- Uncoupled: Winter warm surface temperature bias/drift
 - Potentially due to overprediction of clouds
 - Ice temperature initialization error keeps ice covered areas artificially cold (error compensation)
- CAPS warmer in winter allows for more physical processes to be represented
 - Ice deformation (leads opening)
 - Impact ice thickness distribution on heat fluxes throught thin ice
- CAPS generally neutral scores against Ice-Ocean prediction system & inland met. stations

7. Future work

CAPS – Improvements to model components

- Improved winter arctic clouds
- Update physical parameterization package (HRDPS-Nat)
- Coupled processes & boundary layer
- Wave-ocean & wave-ice interactions
- Improved sea ice rheology
- Form drag in CICE
- Mushy-layer thermodynamics
- Ice thickness insertion
- Landfast Ice: refinement of the probabilistic seabed-ice keel interactions (Dupont et al. 2022)

Experimental configuration changes & potential applications

- Improve CAPS initialization
- Impact of extended coupled forecasts from 48h to 84h (eventually replacing RIOPS-f)

7. Future work – In-depth evaluation

Special observing periods

- 2018 Iceland-Greenland Seas Project (IGSP)

2019-20 MOSAiC

2024/25 Svalbard Marginal Ice Zone (SvalMIZ)

- 2026 PONEX winter collocated A-I-O observations 1-year collocated A-I-O observations obs + model intercomparison project cloudsµphysics (Beaufort Sea)

Additional diagnostic & new methods

- Conditional evaluation (coastal stations vs wind directions)
- Evaluation against CM-SAF clouds & radiation products
- SST & Ice surface temperature data
- Ice thickness distribution: Upward-looking sonars (Beaufort Gyre; Fram Strait)
- Ice drift against Sea Ice Deformation and Rotation Rate (SIDRR; Plante et al 2025)
- Impact of resolution on winds in orographically controlled areas & MIZ (i.e. CAA, Greenland)

Reference

CAPS

Casati, B., Robinson, T., Lemay, F., Køltzow, M., Haiden, T., Mekis, E., Lespinas F., Fortin V., Gascon G., Milbrandt J., Smith, G.C. (2023). Performance of the Canadian Arctic Prediction System during the YOPP Special Observing Periods. Atmosphere-Ocean, 61(4), 246-272, https://doi.org/10.1080/07055900.2023.2191831

Atmosphere

Bélair, S., Mailhot, J., Strapp, J. W., & MacPherson, J. I. (1999). An examination of local versus non-local aspects of a TKE-based boundary layer scheme in clear convective conditions. Journal of Applied Meteorology, 38, 1499–1518. McTaggart-Cowan, R., & Zadra, A. (2015). Representing Richardson number hysteresis in the NWP boundary layer. *Monthly Weather Review*, **143**, 1232–1258.

Milbrandt, J. A., S. Bélair, M. Faucher, M. Vallée, M. L. Carrera, and A. Glazer, 2016: The Pan-Canadian High Resolution (2.5 km) Deterministic Prediction System. Wea. Forecasting, 31, 1791–1816, https://doi.org/10.1175/WAF-D-16-0035.1

McTaggart-Cowan, R., Vaillancourt, P. A., Zadra, A., Chamberland, S., Charron, M., Corvec, S., et al. (2019). Modernization of atmospheric physics parameterization in Canadian NWP. Journal of Advances in Modeling Earth Systems, 11, 3593–3635.

Li, J. (2002). Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part I: Solution for radiative transfer, including cloud scattering and overlap. Journal of the Atmospheric Sciences, 59, 3302–3320.

Li, J., & Barker, H. W. (2005), A radiation algorithm with correlated-k distribution, Part I: Local thermal equilibrium, Journal of the Atmospheric Sciences, 62, 286–309,

Li, J., Dobbie, P., S. and Räisänen, & Min, Q. (2005). Accounting for unresolved clouds in a 1-D solar radiative-transfer model. Quarterly Journal of the Royal Meteorological Society, 131, 1607–1629.

Kain, J. S., & Fritsch, J. M. (1990). A one-dimensional entraining/detraining plume model and its application in convective parameterization. Journal of the Atmospheric Sciences, 2784–2802.

Kain, J. S., & Fritsch, J. M. (1992). The role of the convective 'trigger' function in numerical forecasts of mesoscale convective systems. Meteorology and Atmospheric Physics, 49, 93–106.

RIPS

Buehner, M., A. Caya, T. Carrieres and L. Pogson, 2016: Assimilation of SSMIS and ASCAT data and the replacement of highly uncertain estimates in the Environment Canada Regional Ice Prediction System, Q. J. R. Meteorol. Soc., 142, 562–573. doi: 10.1002/qj.2408.

Insertion:

Smith, G.C., Roy, F., Reszka, M., Surcel Colan, D., He, Z., Deacu, D., Belanger, J.-M., Skachko, S., Liu, Y., Dupont, F., Lemieux, J.-F., Beaudoin, C., Tranchant, B., Drévillon, M., Garric, G., Testut, C.-E., Lellouche, J.-M., Pellerin, P., Ritchie, H., Lu, Y., Davidson, F., Buehner, M., Caya, A. and Lajoie, M. (2016), Sea ice forecast verification in the Canadian Global Ice Ocean Prediction System. Q.J.R. Meteorol. Soc., 142: 659-671. https://doi.org/10.1002/gj.2555

RIOPS:

Dupont, F., Higginson, S., Bourdallé-Badie, R., Lu, Y., Roy, F., Smith, G. C., Lemieux, J.-F., Garric, G., and Davidson, F.: A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans, Geosci. Model Dev., 8, 1577–1594, https://doi.org/10.5194/gmd-8-1577-2015, 2015.

Roy, F., M. Chevallier, G. C. Smith, F. Dupont, G. Garric, J.-F. Lemieux, Y. Lu, and F. Davidson (2015), Arctic sea ice and freshwater sensitivity to the treatment of the atmosphere-ice-ocean surface layer, J. Geophys. Res. Oceans, 120, doi:10.1002/2014JC010677 Smith, G. C., Liu, Y., Benkiran, M., Chikhar, K., Surcel Colan, D., Gauthier, A.-A., Testut, C.-E., Dupont, F., Len, J., Roy, F., Lemieux, J.-F., and Davidson, F.: The Regional Ice Ocean Prediction System v2: a pan-Canadian ocean analysis system using an online tidal harmonic analysis, Geosci. Model Dev., 14, 1445-1467, https://doi.org/10.5194/gmd-14-1445-2021, 2021.

Smith GC, Hébert-Pinard C, Gauthier A-A, Roy F, Peterson KA, Veillard P, Faugère Y, Mulet S and Morales Maqueda M (2024) Impact of assimilation of absolute dynamic topography on Arctic Ocean circulation. Front. Mar. Sci. 11:1390781. doi: 10.3389/fmars.2024.1390781

Chikhar, K., J.-F. Lemieux, F. Dupont, F. Roy, G.C. Smith, M. Brady, S.E. L. Howell & R. Beaini (2019) Sensitivity of Ice Drift to Form Drag and Ice Strength Parameterization in a Coupled Ice—Ocean Model, Atmosphere-Ocean, 57:5, 329-349, DOI: 10.1080/07055900.2019.1694859

Ice & Landfast ice

Dupont, F., Dumont, D., Lemieux, J.-F., Dumas-Lefebvre, E., and Caya, A.: A probabilistic seabed-ice keel interaction model, The Cryosphere, 16, 1963–1977, https://doi.org/10.5194/tc-16-1963-2022, 2022.

Lemieux, J. et al. (2015): A basal stress parameterization for modeling landfast ice. J. Geophys. Res. Oceans, doi: 10.1002/2014JC010678

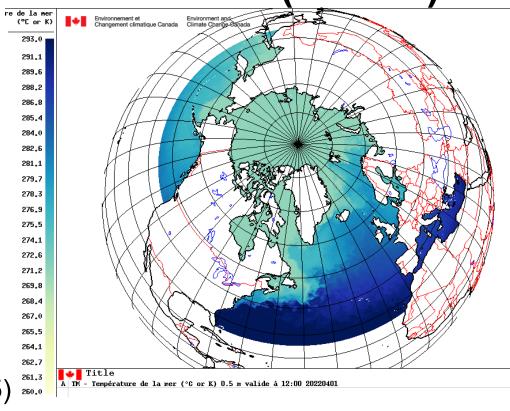
Lemieux, J.-F., F. Dupont, P. Blain, F. Roy, G. C. Smith, and G. M. Flato (2016), Improving the simulation of landfast ice by combining tensile strength and a parameterization for grounded ridges, J. Geophys. Res. Oceans, 121, doi:10.1002/2016JC012006. Lemieux, J.-F., Lei, J., Dupont, F., Roy, F., Losch, M., Lique, C., and aliberté, F.: The impact of tides on simulated landfast ice in a pan-Arctic ice-ocean model, J. Geophys. Res.-Atmos., 123, 7747-7762, https://doi.org/10.1029/2018JC014080, 2018.

Plante, M., Lemieux, J.-F., Tremblay, L. B., Bouchat, A., Ringeisen, D., Blain, P., Howell, S., Brady, M., Komarov, A. S., Duval, B., Yakuden, L., and Labelle, F.: A sea ice deformation and rotation rate dataset (2017–2023) from the Environment and Climate Change Canada automated sea ice tracking system (ECCC-ASITS), Earth Syst. Sci. Data, 17, 423–434, https://doi.org/10.5194/essd-17-423-2025, 2025.

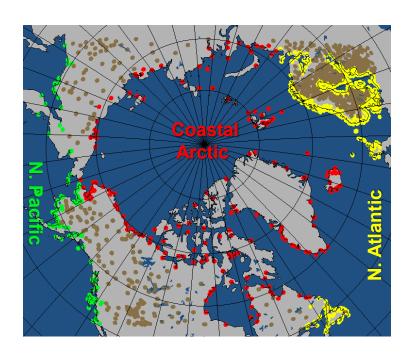
Reference (2)

SIREx

Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D., Garric, G., et al. (2022). Sea Ice Rheology Experiment (SIREx): 1. Scaling and statistical properties of sea-ice deformation fields. *JGR Oceans*, 127, e2021JC017667. https://doi.org/10.1029/2021JC017667


Hutter, N., Bouchat, A., Dupont, F., Dukhovskoy, D., Koldunov, N., Lee, Y. J., et al. (2022). Sea Ice Rheology Experiment (SIREx): 2. Evaluating Inear kinematic features in high-resolution sea ice simulations. *JGR Oceans*, 127, e2021JC017666.https://doi.org/10.1029/2021JC017666

1. Context 2. Objectives 3. Timeline 4. System configuration 5. Coupled processes 6. Standard verifications 7. Future work R&D

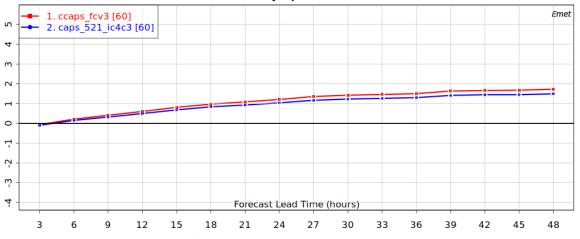

REGIONAL ICE-OCEAN PREDICTION SYSTEM (RIOPS)

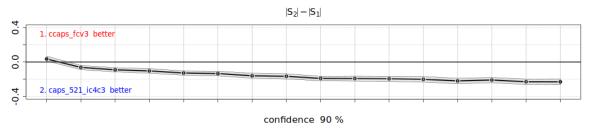
NEMO – CICE (same as used in CAPS) - 3-8 km

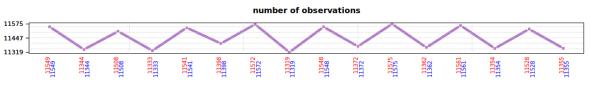
- Improved ice model physics
 - Landfast ice, tensile strength
- SAM2 ocean data assimilation
 - T&S (Argo, CTD, XBT, moorings, marine mammals)
 - SST (satellite & in situ observations)
 - SLA from satellite altimeters (AVISO)
- Tidal online harmonic analysis
- Updated Mean Dynamic Topography (Smith et al. 2024)
- Ice initialization
 - Rescale Forecast Tendencies (RFT; Smith et al. 2015)
 - Blending with RIPS ice analysis + Coherence check SST & ice
 - 5km resolution, 4x daily
 - SSMI, SSMI/S,AVHRR, ASCAT, AMSR2,CIS charts, RCM images
- Atmospheric forcing
 - Global Deterministic Forecasting System (10km)
 - T, q, winds (at 1st prognostic IvI); SW&LW↓, precip, MSLP
- Short-term forecasts (84h) 4xday

6. Temperature drift in atmospheric component – CAPS vs HRDPS

New control (HRDPS-Nord) under way

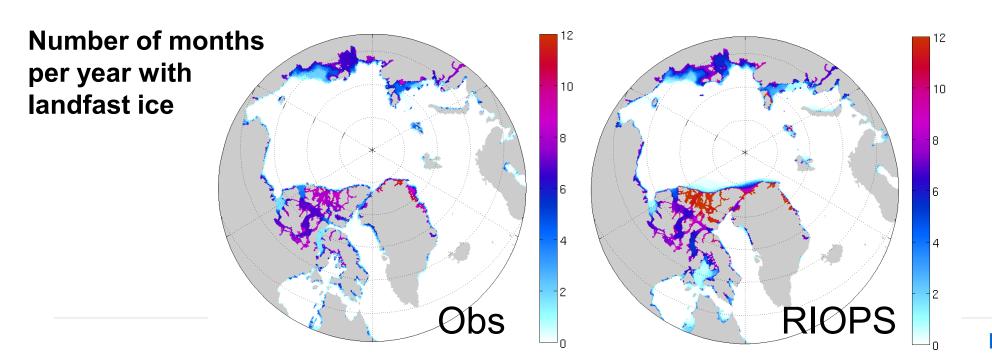

Corrected Ice temperature profiles


Preliminary results:


- Winter bias over Coastal Arctic now very similar between HRDPS & CAPS
- Next Step: better understand & fix the drift

CAPS vs HRDPS (I7 corrected)

MEAN ERROR (P-O) OF SCREEN-LEVEL AIR TEMPERATURE (C) 2022-01-01 @ 2022-03-30 alt diff max 100 ade synop swob metar Coastal Arctic



SEA ICE - LANDFAST ICE & RHEOLOGY

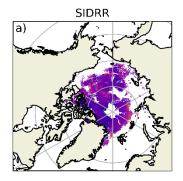
Adding a new term in sea ice rheology

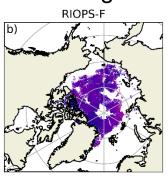
$$m\frac{D\mathbf{u}}{Dt} = -mf\hat{k} \times \mathbf{u} + \mathbf{\tau}_a + \mathbf{\tau}_w + \mathbf{\tau}_b - mg\nabla H_d + \nabla \cdot \boldsymbol{\sigma}$$
seabed stress rheology

Lemieux et al., 2016

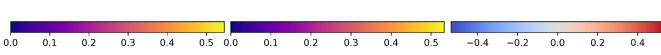
Lemieux et al., 2018

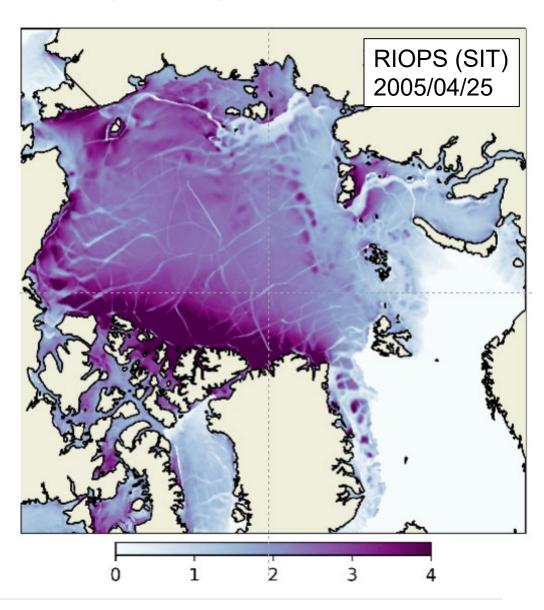
RIOPS - SEA ICE VERIFICATION

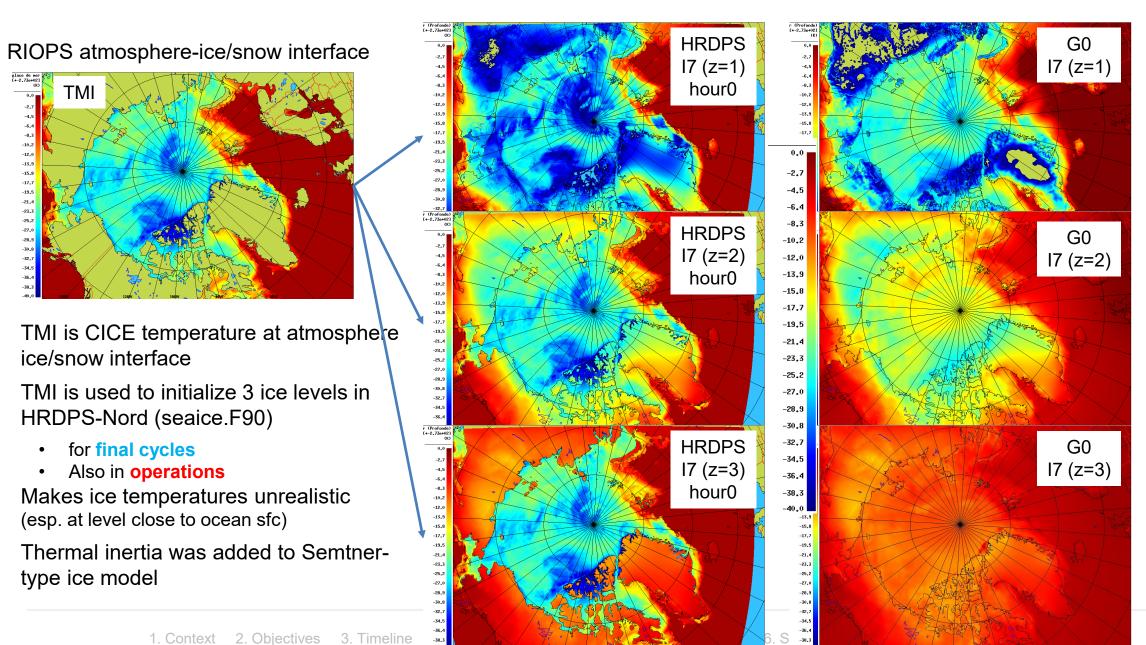

Sea Ice Rheology Experiment (SIREx)


(Bouchat et al. 2002; Hutter et al. 2022)

- RIOPS good performance
 - Modified rheology parameters (e=1.5) (good representation of LKFs)
 - Good numerical **convergence** (900 subcycles)


Current work


- Investigation of misrepresentation of angles between fault lines (common to most ice models)
- Ice drift evaluation using RCM data

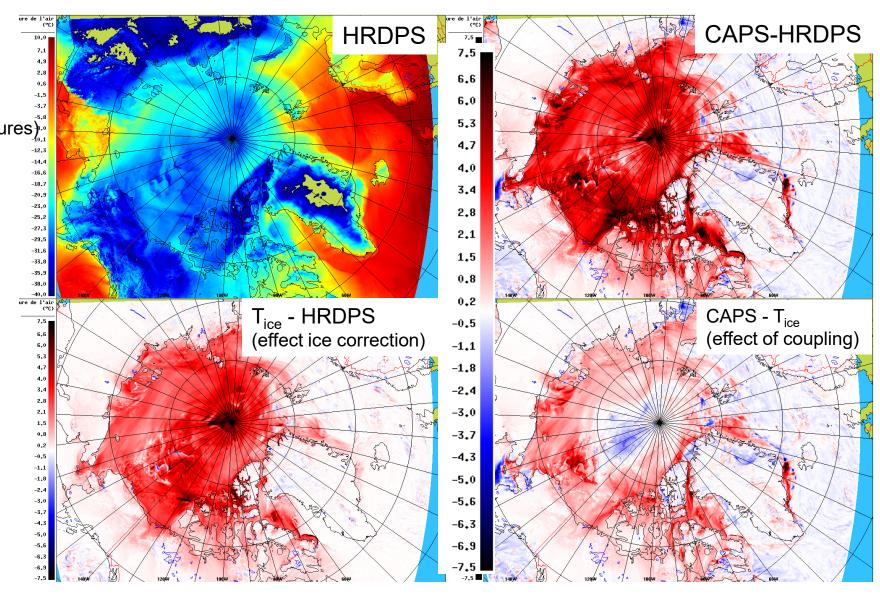


5. Ice temperature initilization – issue in HRDPS-Nord

5. Ice temperature initilization – issue in HRDPS-Nord

Test case 2022-01-01 (48h forecast)

- 1. HRDPS (ref)
- 2. CAPS
- 3. T_{ice} : Uncoupled (corrected ice temperatures)


from G0

from RIOPS 1st level:

- Correcting ice temperature profile large-scale warming TT (1.5m)
- magnitude of diff. similar between T_{ice} & CAPS
- Effect of coupling visible

2nd & 3rd:

- Areas of ice deformation & thinner ice
- Advection of warmer temperatures

