RIKEN's activities to integrate DA and AI/ML

Takemasa Miyoshi*

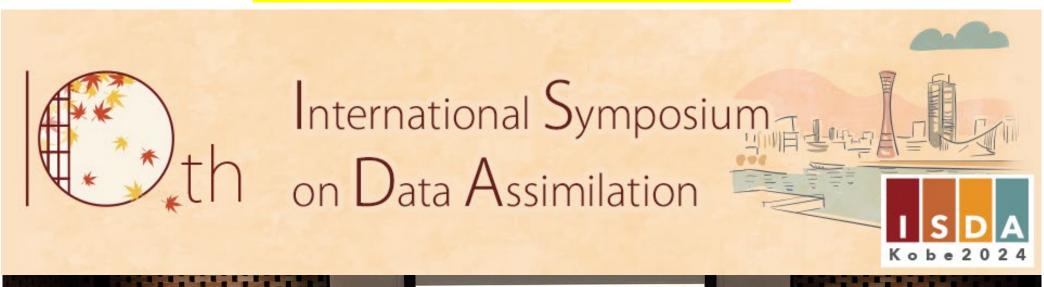
S. Otsuka, J. Liang, M. Goodliff (RIKEN) G. Saliou, S. Ouala, P. Tandeo (IMT Atlantique)

*PI and presenting, Takemasa.Miyoshi@riken.jp

RIKEN R-CCS, Kobe, Japan

Thank you!!!

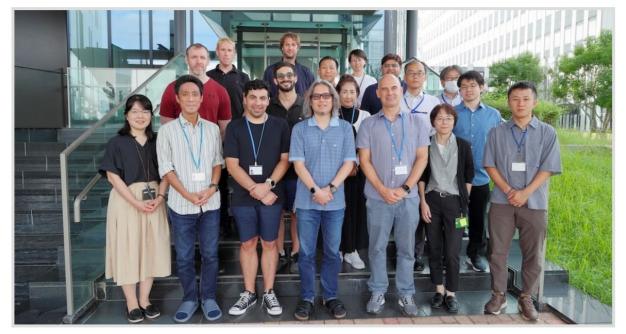
https://www.data-assimilation.riken.jp/isda2024/



Data Assimilation Research Team

Weather prediction is a great achievement of human intelligence by integrating advanced sensing, supercomputing, and information and communications technologies. Here, data assimilation plays a pivotal role. Connecting the most advanced radar sensing technology and supercomputers "K" and "Fugaku", data assimilation made it possible to predict sudden downpours. Data assimilation brings links to the future and expands synergistic opportunities.

- RIKEN Weather Forecast
- COVID-19 Realtime Forecast
- Youtube: AGU-TV RIKEN Digest(1 minute) / Full(5 minutes)
 - RIKEN Data Assimilation Channel



October 15, 2024 at R-CCS

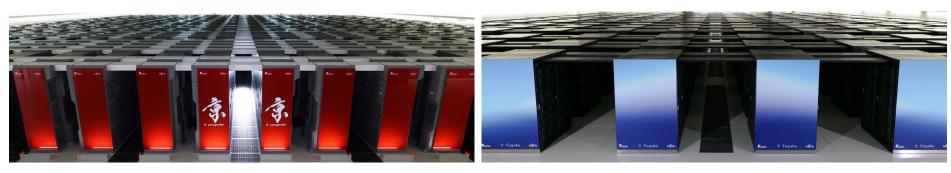
Pushing the limits

Big Data × Big Simulations

Big ensemble (10240 ensemble members)
Rapid update (30-second update)

High resolution (100-m mesh)

→ Future Numerical Weather Prediction



September 2012 ~100x

March 2021

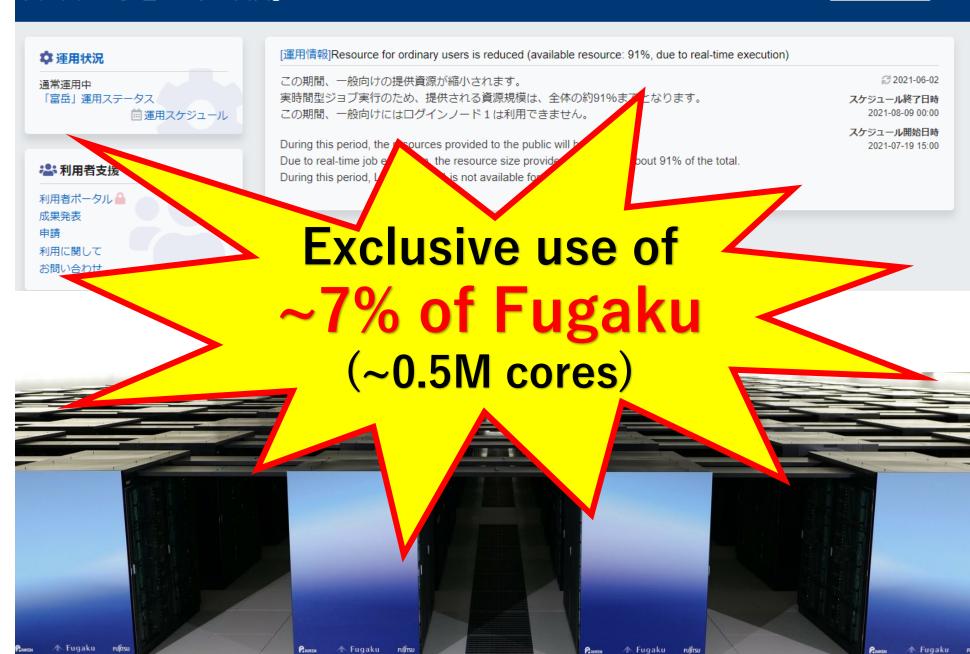
https://awards.acm.org/bell-climate

SC23 in Denver, CO (November 2023)

FINALIST 3

Big Data Assimilation: Real-time 30-second-refresh Heavy Rain Forecast Using Fugaku During Tokyo Olympics and Paralympics Authors: Takemasa Miyoshi, Arata Amemiya, Shigenori Otsuka, Yasumitsu Maejima, James Taylor, Takumi Honda, Hirofumi Tomita, Seiya Nishizawa, Kenta Sueki, Tsuyoshi Yamaura, Yutaka Ishikawa, Shinsuke Satoh, Tomoo Ushio, Kana Koike, and Atsuya Uno

https://sc23.supercomputing.org/2023/09/eyes-beyond-the-prize/

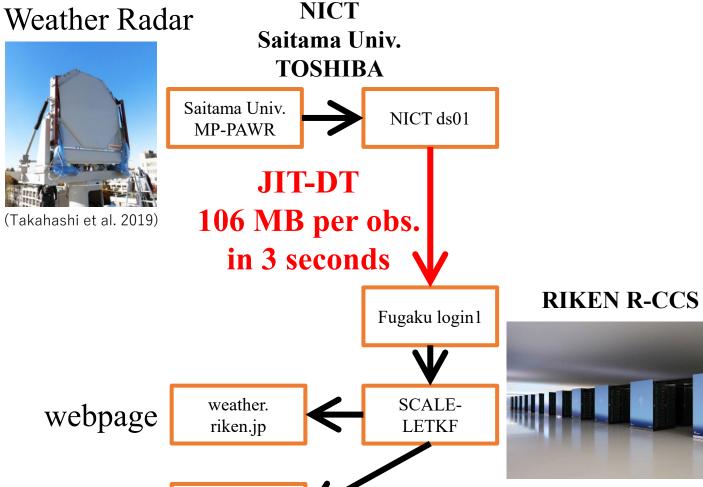


30-s refresh real-time workflow with "Fugaku"

smartphone

Dual-polarimetric Phased Array Weather Radar

(installed at Saitama Univ.)



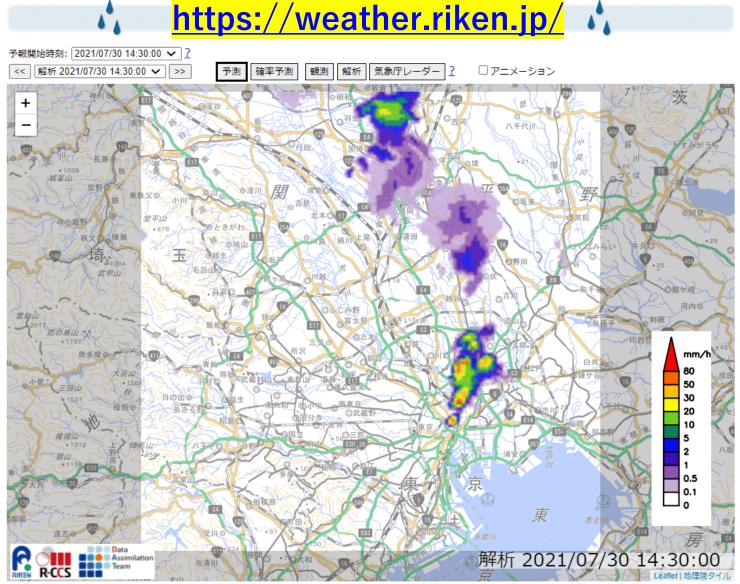
MTI

Amazon AWS

ホーム

世界の降水予報 関東の降水予報 関西の降水予報

| データ同化研究チームについて



Bird's-eye view

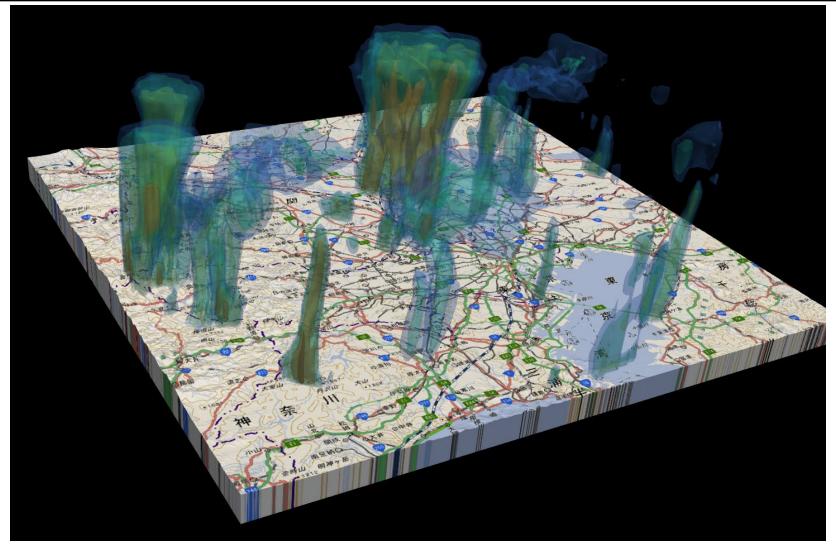


Figure 8: 3-D bird's-eye view of 30-minute forecast rains at 04:48:00 UTC, July 30, 2021. Colors represent simulated radar reflectivity every 10 dBZ for 10-50 dBZ. Vertical scale is stretched by three times. Map data is from the web page of the Geospatial Information Authority of Japan (Courtesy of H. Sakamoto of RIKEN).

120x faster, big ensemble, precision

	,	r		1	\sim	1
(as	\cap t	ear	I \ /	71	1ノ イ
'	(US	Οī	Car	ıy		720,

NWP system	Center	Data assimilation method	Forecast grid spacing / # grid points	Frequency for initialization / free forecast	Use of radar data	Ensemble forecast grid spacing / # members
LFM [6,7,8,9]	JMA, Japan	Hybrid 3DVar, 5-km grid spacing	2 km / 1581 x 1301 x 76	1 h / 1 h	Assimilation of RH from radar and radial wind	None (MEPS: 5 km / 21 members)
HRRR v4 [10,11,12]	NCEP, US	Hybrid 3D EnVar, 36 members	3 km / 1799 x 1059 x 51	1 h / 1 h	Latent heating	None
HRDPS 6.0.0 [13,14,15]	ECCC, Canada	4DEnVar perturbations from global ensemble	2.5 km / 2576 x 1456 x 62	6 h / 6 h	Latent heat nudging	None
UKV [16,17]	Met Office, UK	4DVar	1.5 km / 622 x 810 x 70	1 h / 1 h	Latent heat nudging	2.2 km / 3 members
AROME France [18,19,20]	Météo- France	3DVar	1.25 km / 2801 x 1791 x 90	1 h / 3 h		2.5 km / 12 members
ICON-D2 [21,22,23]	DWD, Germany	LETKF 40 members	2.2 km / 542040 cells x 65 levels	1 h / 3 h	Latent heat nudging	2.2 km / 20 members
BDA2021 This paper	RIKEN, Japan	LETKF 1000 members	500 m / 256 x 256 x 60	30 s / 30 s	Reflectivity, Doppler velocity	500 m / 11 members

Skillful forecast achieved

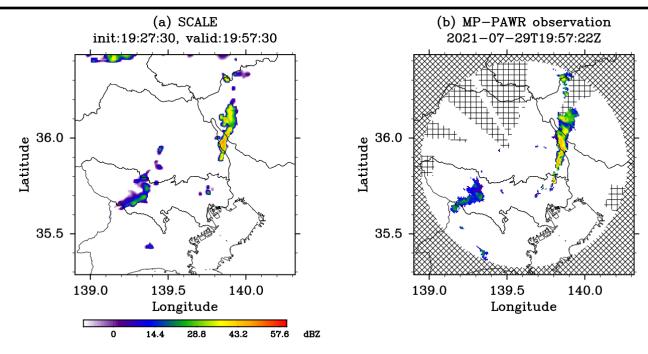


Figure 6: (a) 30-minute forecast rains at 19:57:30 UTC, July 29, 2021. Colors represent radar reflectivity (dBZ) at the 2-km height. (b) Similar to (a), but for the actual MP-PAWR observation at the closest time. Hatched areas indicate no data due to out of the 60-km range, radar beam blockage, or other reasons.

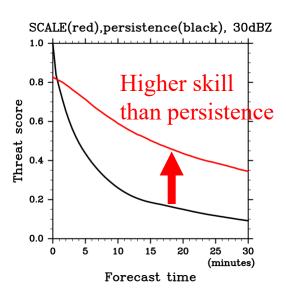


Figure 7: Heavy rain forecast skill as shown by threat scores (the higher, the more skillful) for radar reflectivity at the 30dBZ threshold for 120 forecast cases between 19:00:00 UTC and 20:00:00 UTC, July 29, 2021. Red and black lines indicate the BDA system and persistence, respectively.

Possible deep learning applications

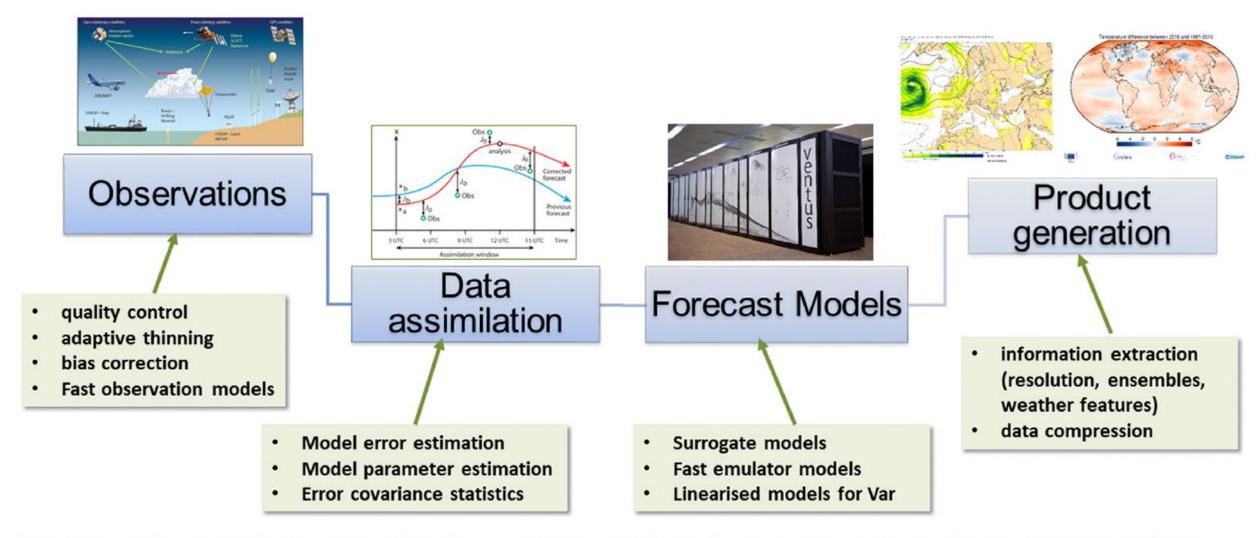
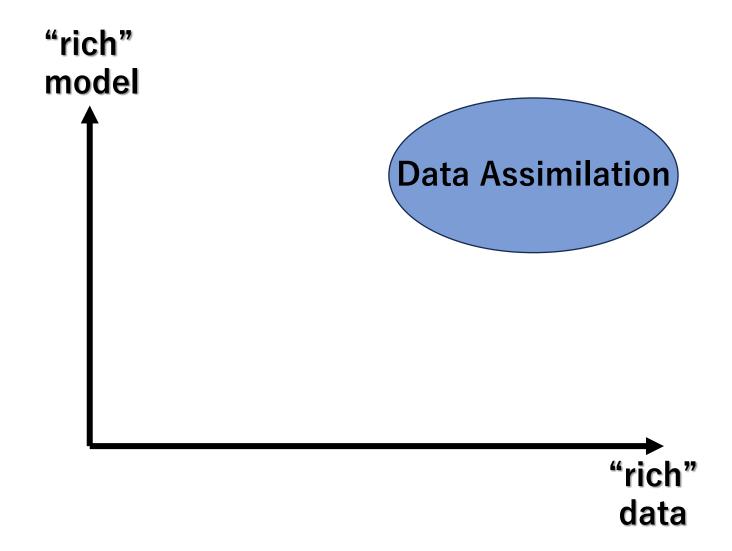
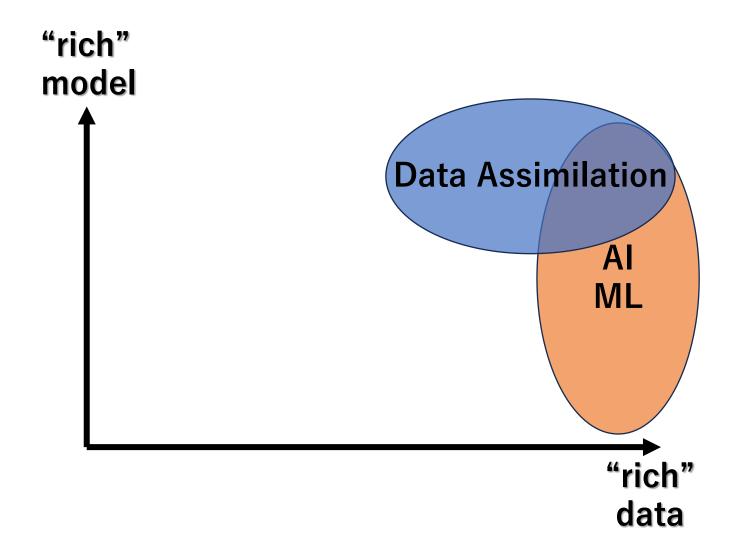
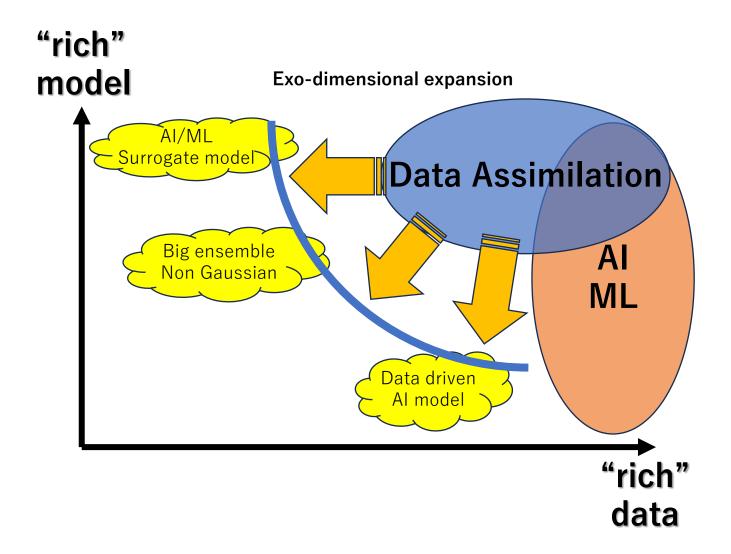


Fig. 1. Examples of possible machine learning applications in the various components of a standard NWP workflow.







Precipitation nowcasting with deep learning

S. Otsuka and T. Miyoshi (RIKEN)

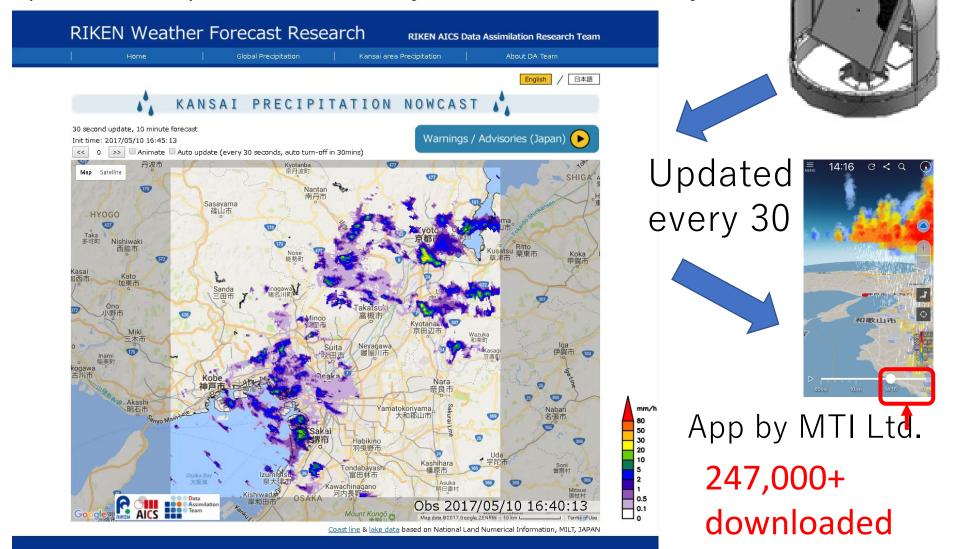
Acknowledgment

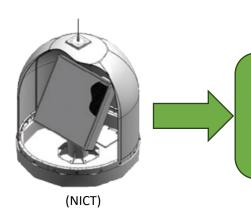
Y. Maejima, P. Tandeo, M. Ohhigashi, V. P. Huynh, S. Satoh, T. Ushio, P. Baron

Phased-Array Weather Radar 3D nowcast (https://weather.riken.jp/)

(NICT)

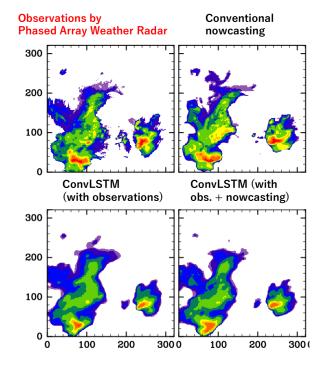
Open to the public since July 2017 (Licensed by JMA)

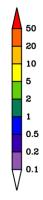


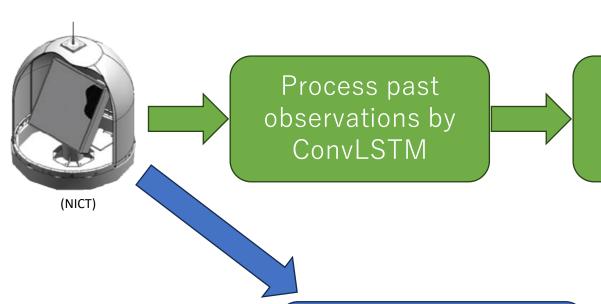


Process past observations by ConvLSTM

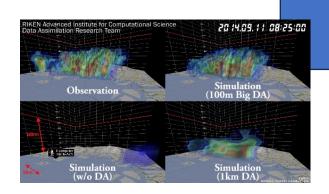
Generate future images by ConvLSTM



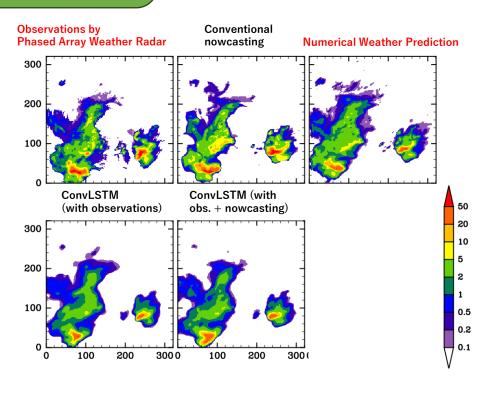


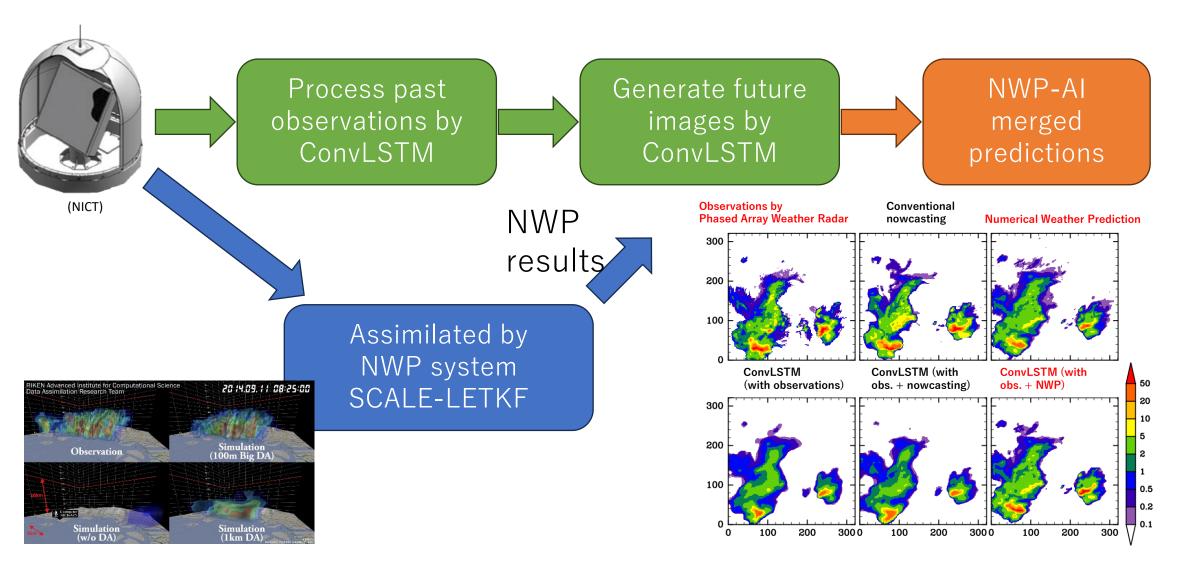


Generate future images by ConvLSTM



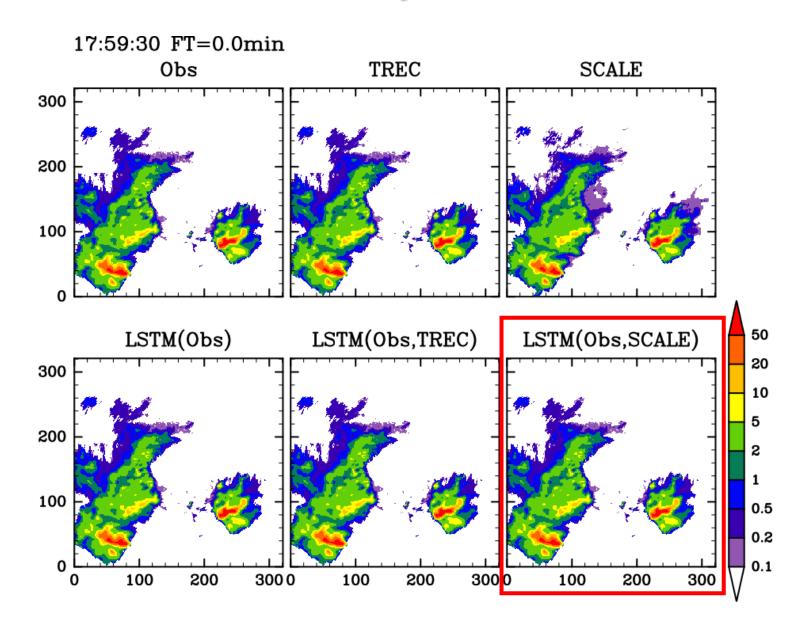
Assimilated by NWP system SCALE-LETKF

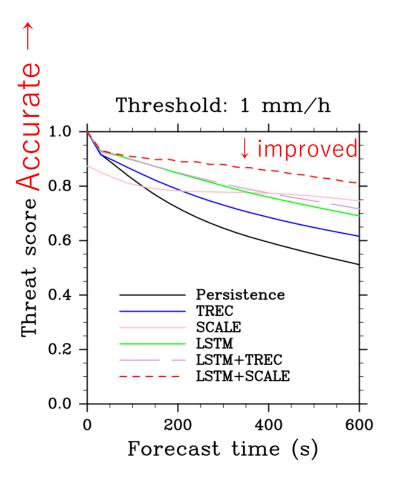




Integrating big data assimilation and deep learning for precipitation nowcasting

Preliminary results (rain rate @ 2km)





Adversarial training for precipitation predictions

• e.g., Ravuri et al. (2021), Baron et al. (2023)

Prediction (generator)

Spatial discriminator

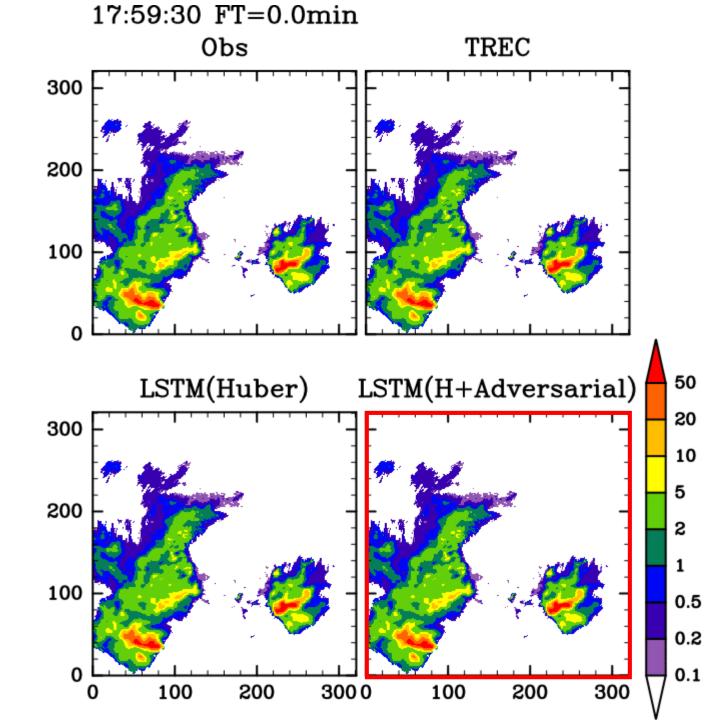
Try to make realistic predictions

Temporal discriminator

Try to discriminate predictions from observations

Preliminary results

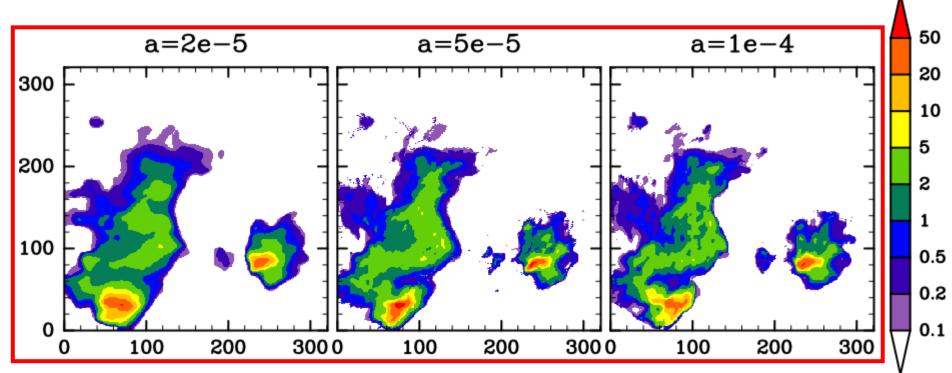
 LSTM with adversarial training produces smallscale signals



18:09:30 FT=10.0min
Obs TREC

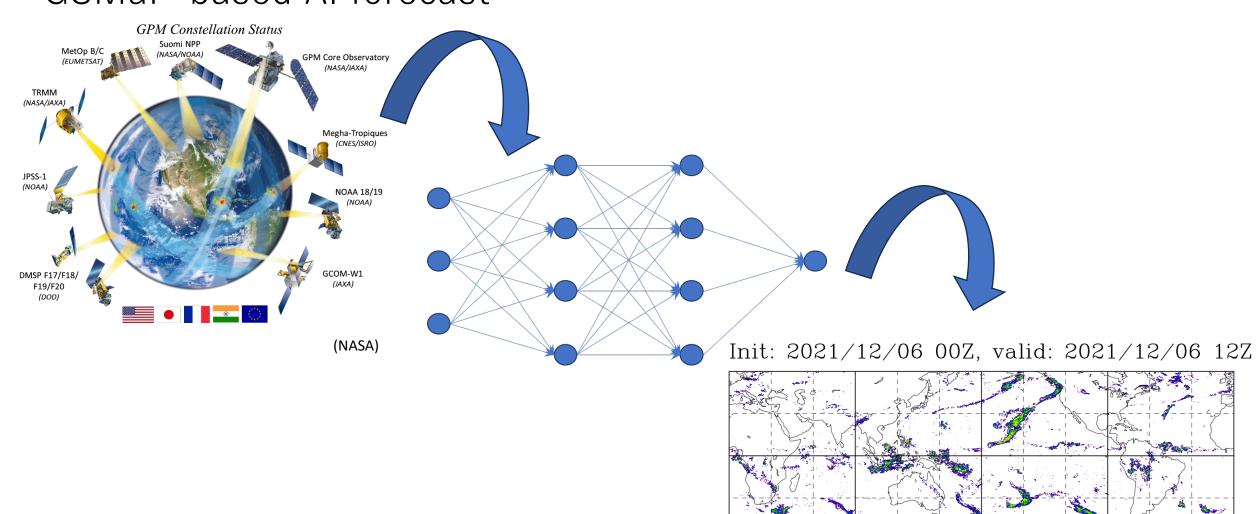
- Larger weight α for the adversarial loss
 - -> More fine scale features

• Larger α destabilizes training



ML-based global precipitation nowcasting

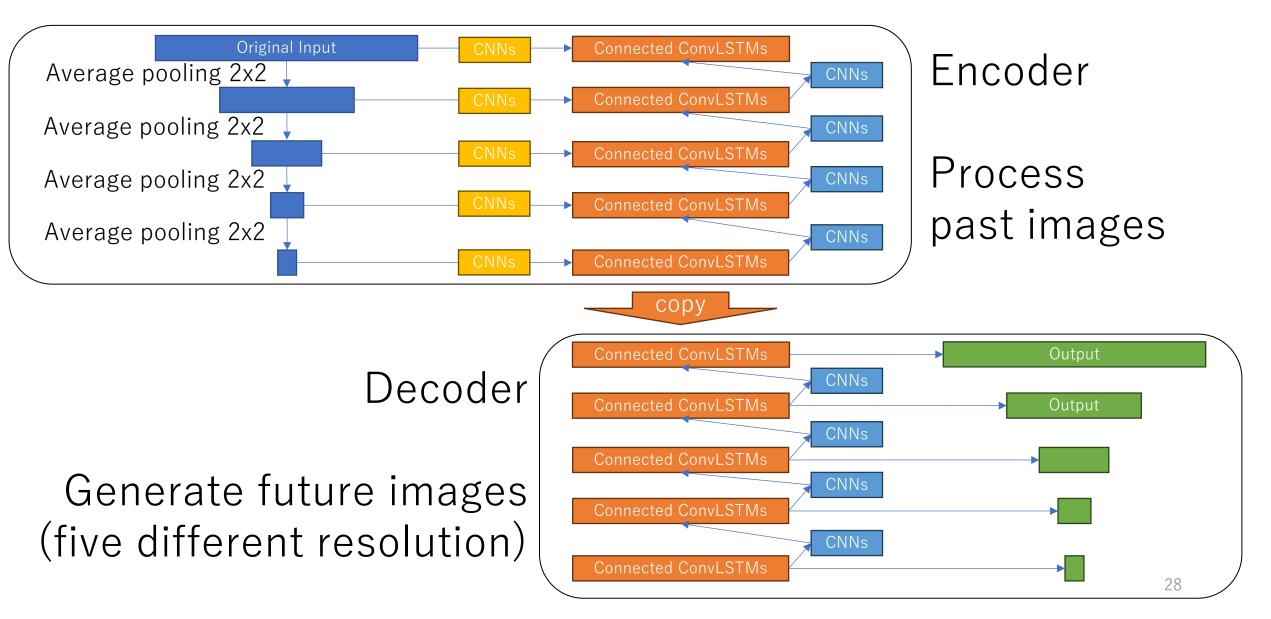
GSMaP-based Al forecast



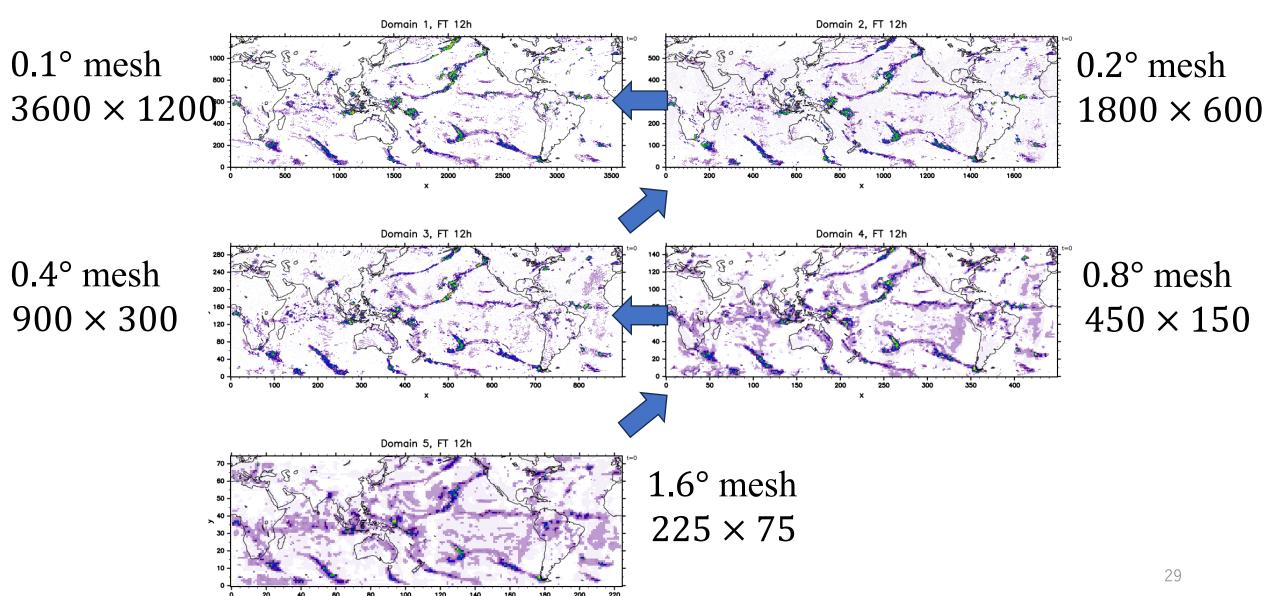
Difficulties when applying ML to global precipitation nowcasting

- Inhomogeneity due to multi-satellite observations
 - → Use of quality index by the data provider
- Scale mismatch
 - Spatial resolution: 0.1° vs. temporal resolution: 1 h
 - → Hierarchical network structure
- Blurry prediction
 - → Adversarial training, non-local loss

ConvLSTM-based generator for adversarial training



Progressive training from low- to high-res



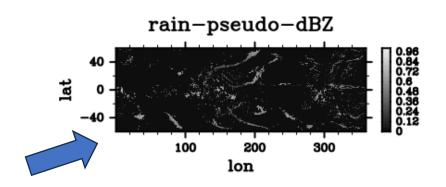
Training loss

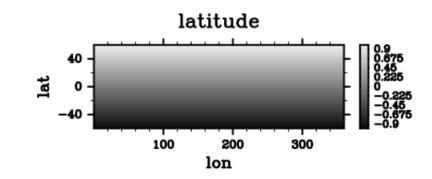
- Loss pixelwise = Σ i(Huber(xi, yi) * wi)
- Loss_adversarial = BinaryCrossEntropy(D_spatial(x, 0.8))
 + BinaryCrossEntropy(D_temporal(x, 0.8))
- Loss non local:
 - parameters:
 - Mean and higher-order moments: For each time step, $(\overline{x^p})^{\frac{1}{p}}$, p=1,2,4,6,8,10

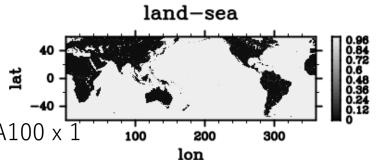
 - Sharpness: For each time step, $(\overline{(\nabla^q x \overline{\nabla^q x})^p})^{\frac{1}{p}}, p = 2,4, q = 2,4,6,8$ To avoid unrealistic pattern: For time-averaged value, $(\overline{(\nabla^q x \overline{\nabla^q x})^p})^{\frac{1}{p}}, p = 2,4, q = 2,4,6,8$
 - To avoid unrealistic pattern: For each time step, $(\overline{(x\nabla^q x \overline{x}\overline{\nabla^q x})^p})^{\overline{p}}$, p = 2,4,q = 2,4,6,8
 - Loss for each resolution, each parameter $X: \left(\frac{X_{Prediction} X_{Truth}}{X_{Time-averaged truth}}\right)^2$

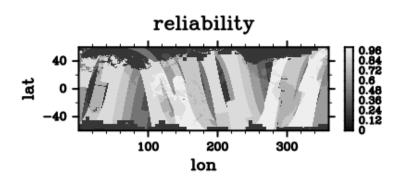
Data

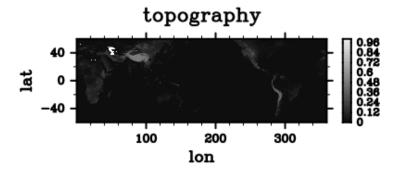
- Input: hourly, past 24 h
 - GSMaP Near-Real-Time (NRT) v8
- Truth: hourly, 12-h lead
 - GSMaP Standard (MVK) v8
- Training: 2022/01/01 2023/12/31
 - ~2 weeks on A100 x 1
- Validation:2021/12/06
- Test: 2024/01/01 2024/01/31
 - \sim 5 seconds/12-h-prediction on A100 x $\overline{1}$
 - ~10 seconds for I/O

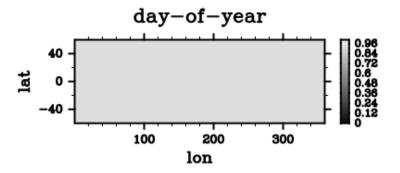










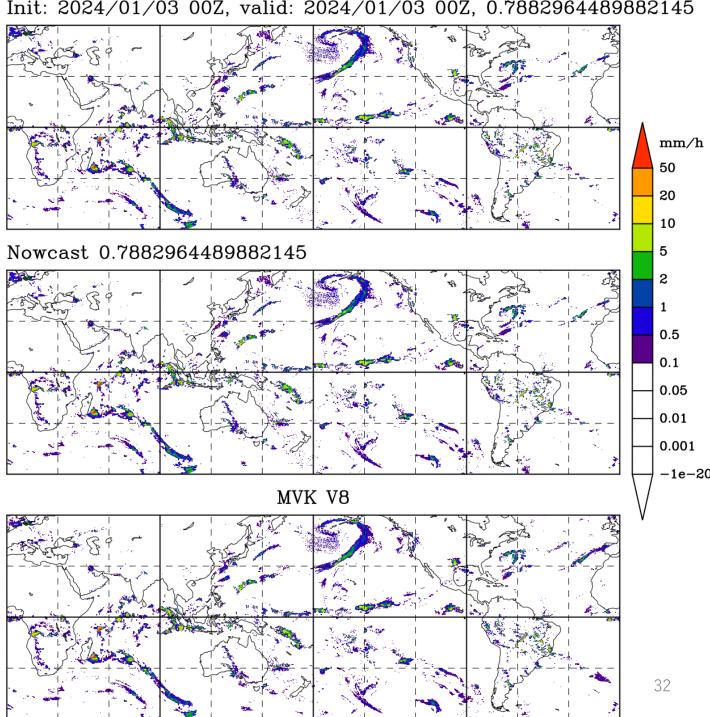


Comparison with a conventional algorithm

Proposed

Conventional tracking algorithm

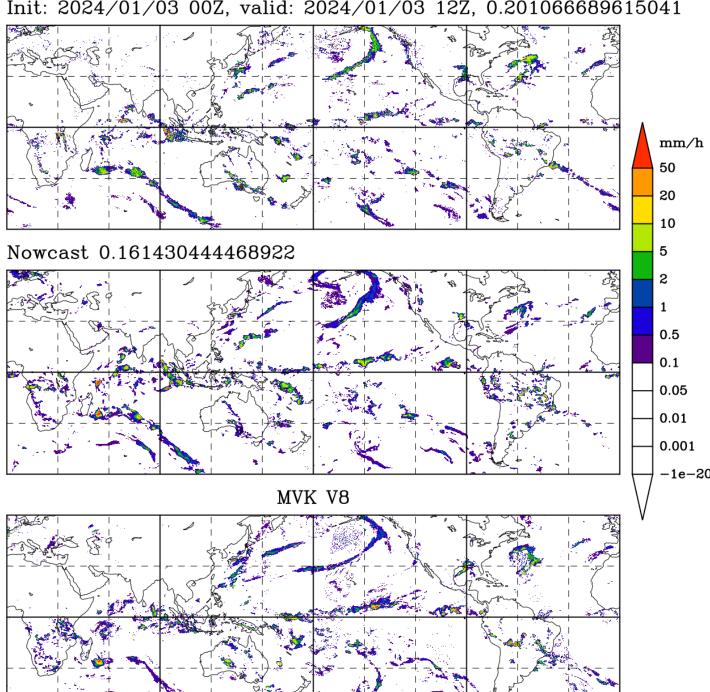
Observations



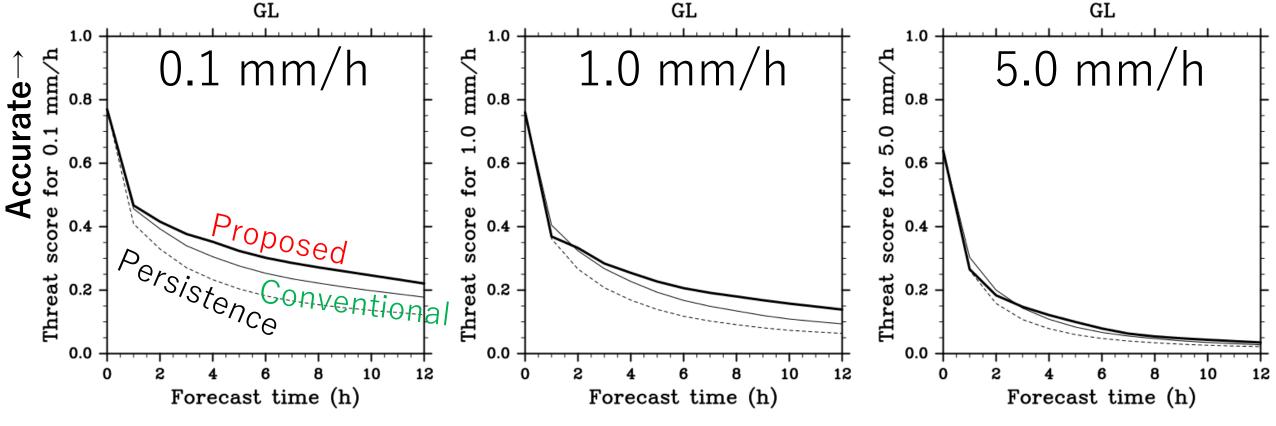
Comparison with a conventional algorithm

Proposed

Observations



Verification scores for January 2024



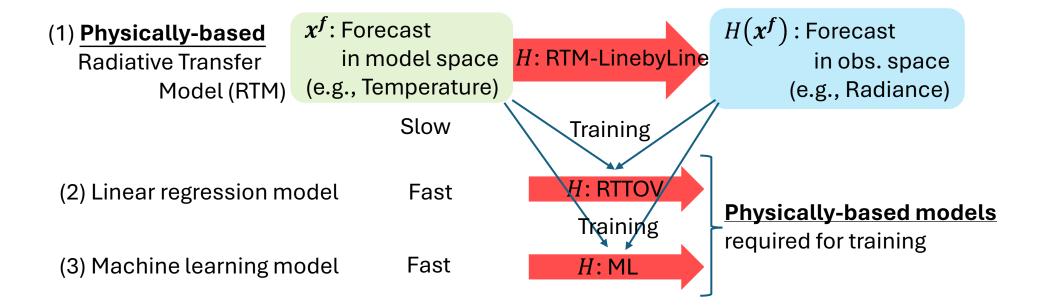
Threat scores with respect to GSMaP MVKv8

A machine learning approach to the observation operator for satellite radiance data assimilation

J. Liang and T. Miyoshi

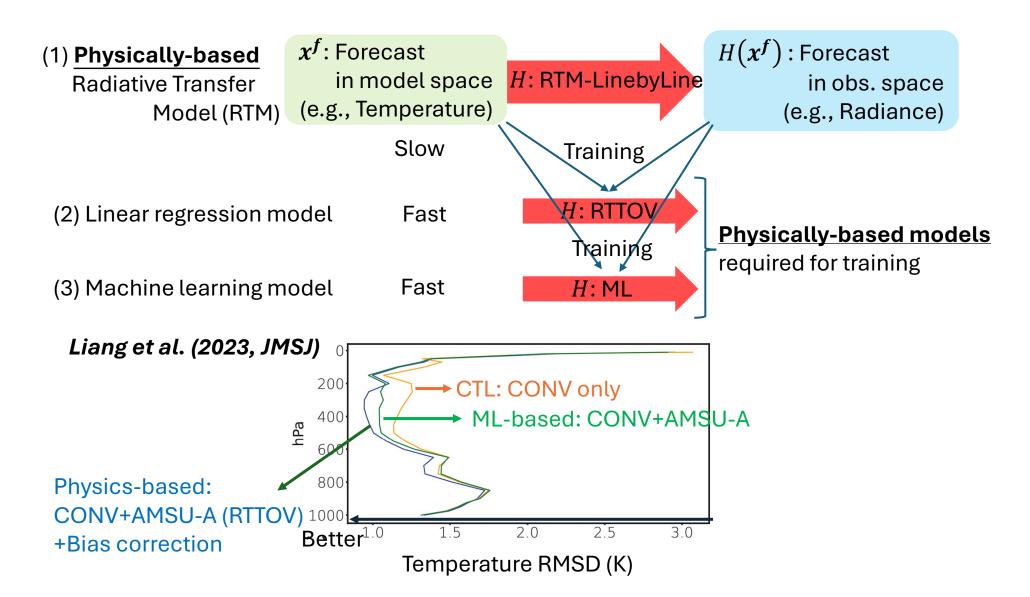
Machine Learning for satellite obs. operator

$$\mathbf{x}^a = \mathbf{x}^f + \mathbf{K}[\mathbf{y} - \mathbf{H}(\mathbf{x}^f)]$$



Machine Learning for satellite obs. operator

$$x^a = x^f + K[y - \underline{H}(x^f)]$$



Machine Learning for satellite obs. operator

$$\mathbf{x}^a = \mathbf{x}^f + \mathbf{K}[\mathbf{y} - \mathbf{H}(\mathbf{x}^f)]$$

(1) Physically-based Radiative Transfer Model (RTM) x^f : Forecast in model space (e.g., Temperature)

 $H(x^f)$: Forecast H: RTM-LinebyLine in obs. space (e.g., Radiance)

Slow

(2) Linear regression model

Fast

(3) Machine learning model

Fast

 $H: \mathsf{RTTO} \setminus$ **Physically-based models** Training

required for training

(4) Machine learning model (this study)

H: MLTraining

H: ML

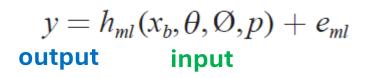
Training

Pure data-driven approach:

Utilize obs. promptly without the physically-based models

y: Real observations (e.g., AMSU-A) x^{true} : Approximated by x^f and x^a from the NICAM-LETKF system

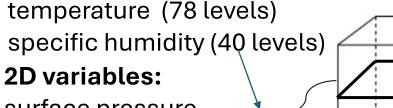
Design of the machine learning models



input

3D variables:

pressure (78 levels)



surface pressure surface temperature

10-meter u-wind and v-wind

2-meter temperature

2-m specific humidity

Hidden layers

Output: y

satellite brightness temperature from channel 6, 7, 8

other bias predictor: Satellite zenith angle, Scan angle, latitude

Output layer

Deep neural networks (DNNs) for each channel and satellite

Input

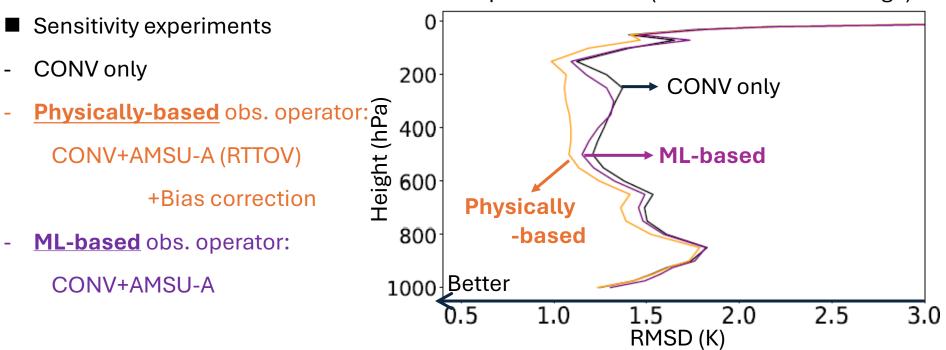
layer 205 features, includes different vertical levels 350 205

Hyperparameters searching:

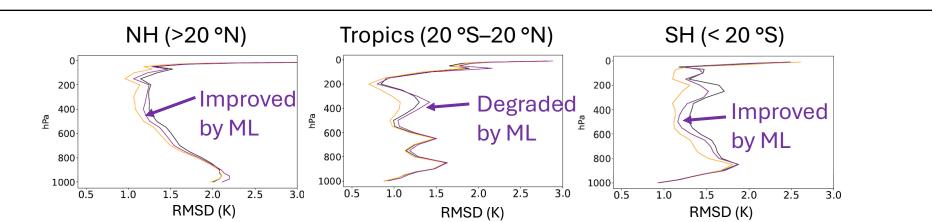
activation function	ReLu
learning rate	1e-6
Units	300
Layers	4

Validation relative to ERA Interim

Temperature RMSD (1-month Global Average)

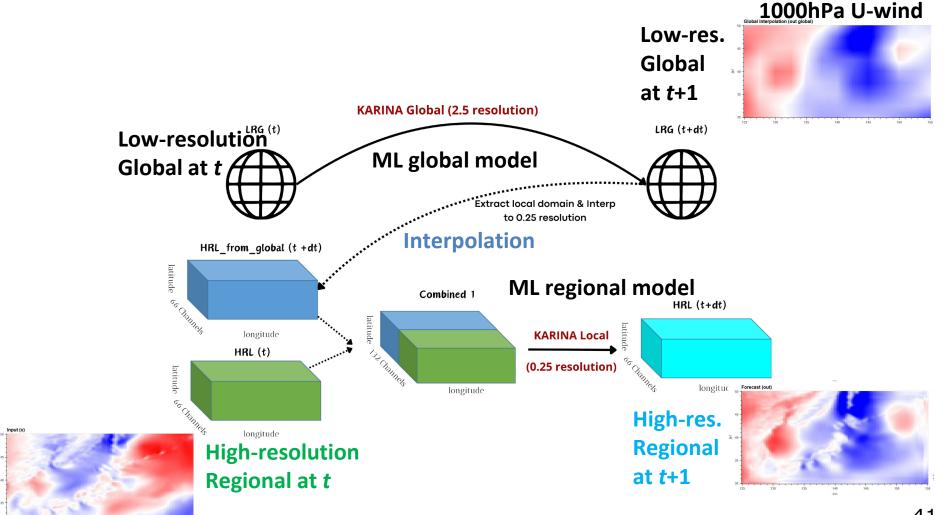


Accuracy: Physically-based > ML-based > CONV only



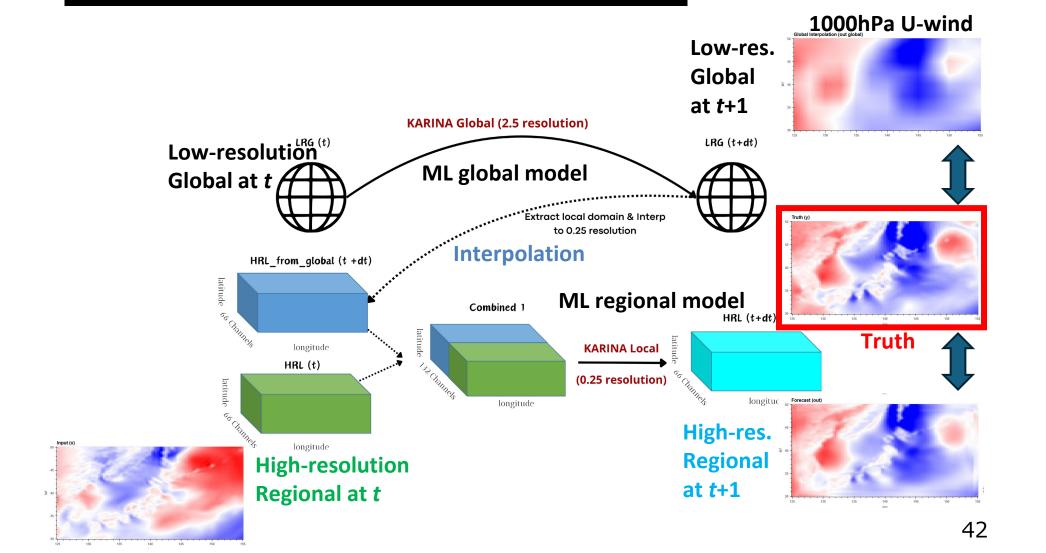
Machine Learning-Based Regional Weather Prediction

G. Saliou, S. Ouala, P. Tandeo, M. Goodliff, T. Miyoshi



Machine Learning-Based Regional Weather Prediction

G. Saliou, S. Ouala, P. Tandeo, M. Goodliff, T. Miyoshi



Using Data Assimilation to Improve Data-Driven Surrogate Models

Michael Goodliff and Takemasa Miyoshi

NPG preprint available:

DOI:10.5194/egusphere-2025-933

The Systems: Lorenz 63 (3 and 5 variables)

Using the 3 variable Lorenz 63 Numerical Model, can we use machine learning and data assimilation to create a surrogate model of the 5 variables Lorenz 63 model, for the same 3 variables?

Lorenz 63 Models

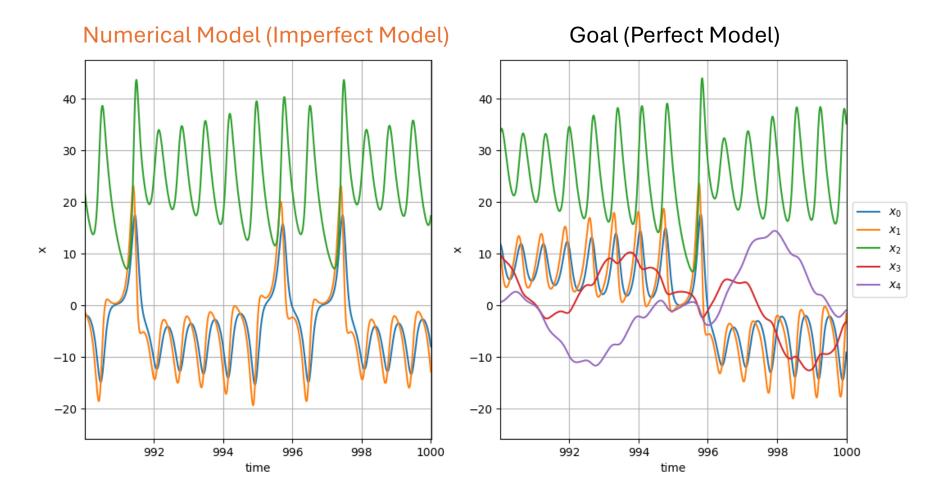
$$\frac{dx_0}{dt} = -\sigma(x_0 - x_1) + x_4$$

$$\frac{dx_1}{dt} = -\rho x_0 - x_1 - x_2 x_0 + x_3$$

$$\frac{dx_2}{dt} = x_0 x_1 - \beta x_2$$

$$\frac{dx_3}{dt} = -\omega x_4 - k(x_3 - x_3^*) - x_1$$

$$\frac{dx_4}{dt} = \omega(x_3 - x_3^*) - kx_4 - x_0$$



Experiment Setup

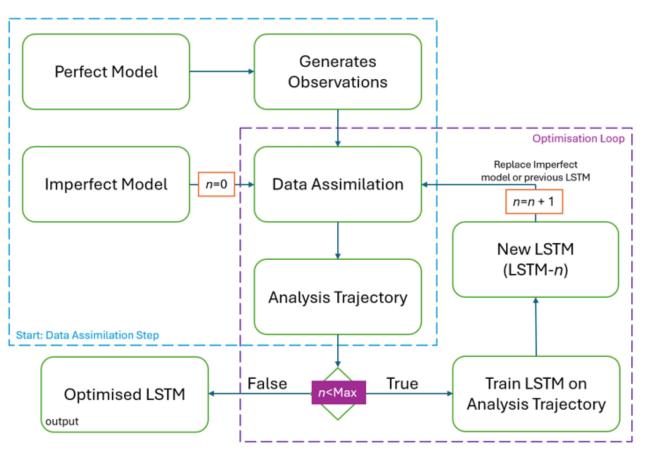
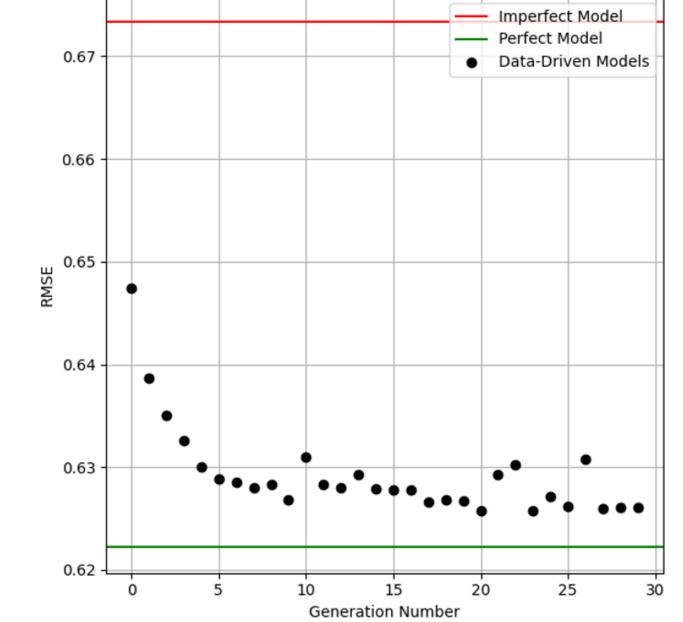


Figure 1. This figure shows the cycling algorithm implemented in this paper. The blue dashed box is the traditional DA cycle, the purple dashed box is our additional loop until the max iteration number is reached, giving an optimised LSTM. When n=0 indicates the iteration number, LSTM-0 would be the initial LSTM trained on the imperfect model analysis trajectory after its correction using DA.

- 1. Run our numerical model
- 2. Update trajectories using data assimilation on observations from the 5-variable system. $\sigma \in \{x_0^{5v}, x_1^{5v}, x_2^{5v}\}$
- 3. Create an LSTM using the analysis trajectory.
- 4. Use this LSTM to run a new trajectory
- 5. Repeat 2-4 until convergence

(Goodliff and Miyoshi, 2025, submitted, DOI:10.5194/egusphere-2025-933)



(Goodliff and Miyoshi, 2025, submitted, DOI:10.5194/egusphere-2025-933)

Figure 2. This figure shows the analysis RMSE of our cycling algorithm on the Lorenz 63 model. As we cycle through the algorithm, we see the analysis/forecasts getting closer to the perfect system.

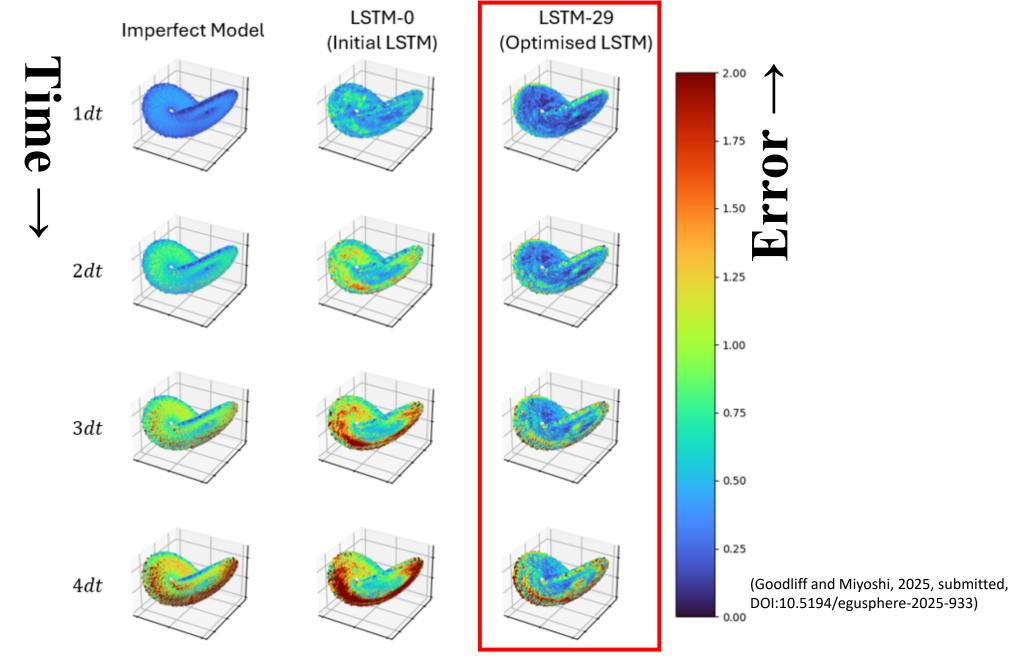
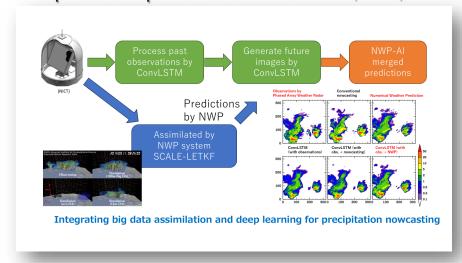


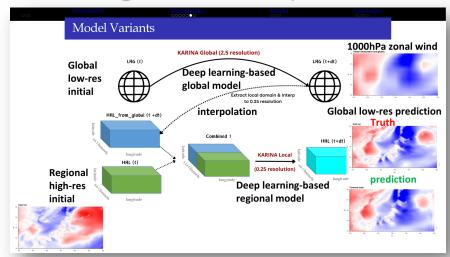
Figure 4. This plot illustrates the spatial distribution of forecast errors for 1–4dt forecasts. The colours represent the model forecast error for three cases: (1) the imperfect model, (2) the initial LSTM (LSTM-0), and (3) the Optimised LSTM (LSTM-29).

Summary

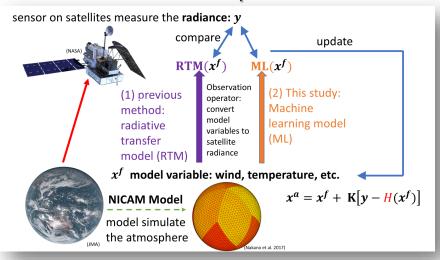
Precipitation prediction with ML/DA/NWP



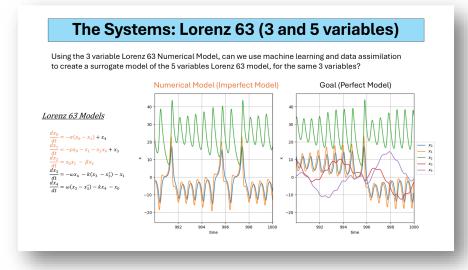
ML regional weather prediction



ML observation operator in DA



Model improvement through DA



Raw observations: y

