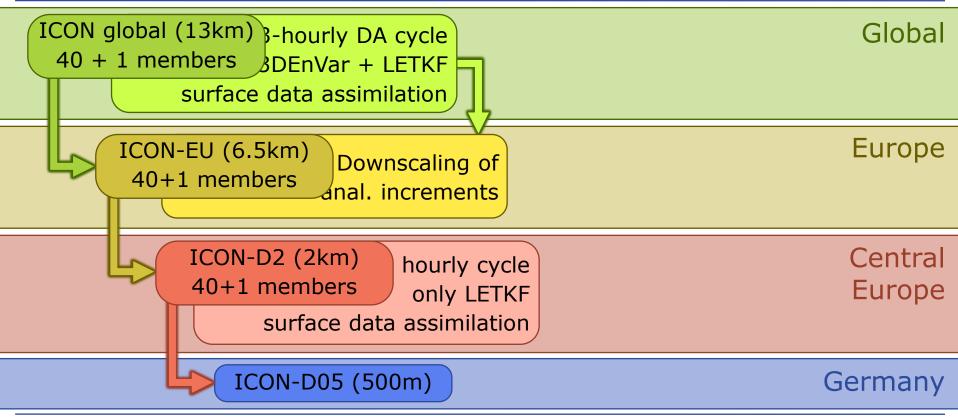


DWD's vision for future NWP: A fully data-driven data assimilation approach

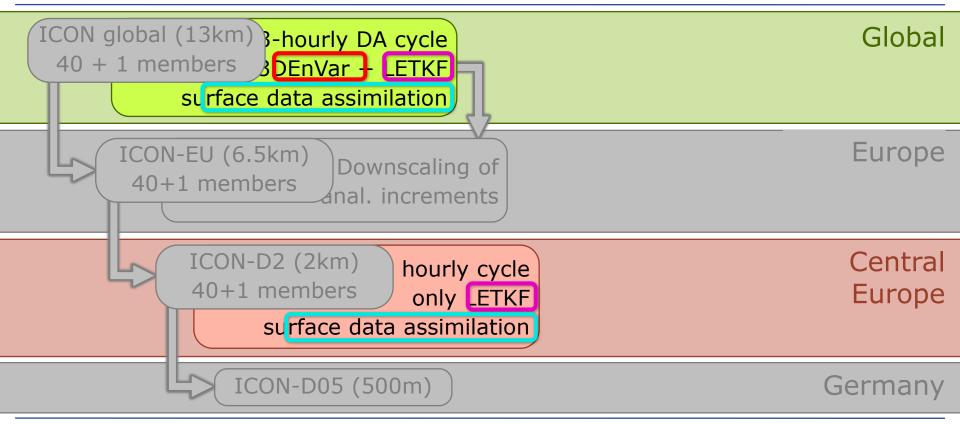
Jan Keller

Roland Potthast, Thomas Deppisch and the AI development team at DWD

Data Assimilation at DWD – Status

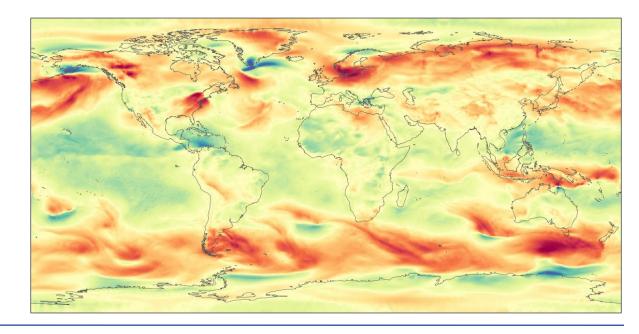


Data Assimilation at DWD – Status



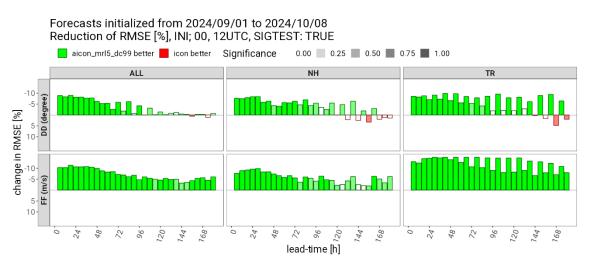
AICON – DWD's AI-based NWP model

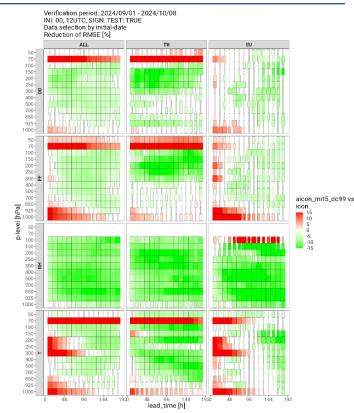
- Developments show benefits of Al-based models
 - Higher performance and better forecast quality
- AICON
 - Al model for ICON
 - Global and LAM configurations in development



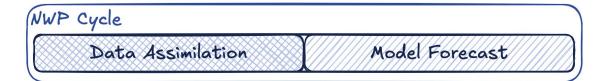
AICON – DWD's AI-based NWP model

 AICON global (development version) performance against operational ICON

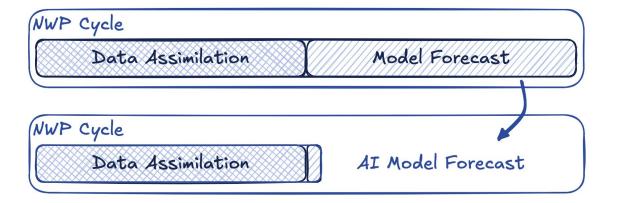




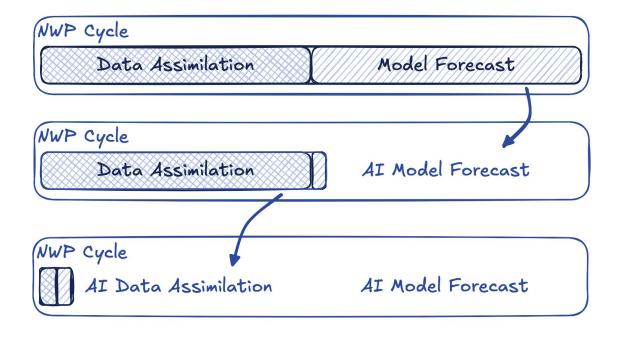
Al in the NWP cycle



Al in the NWP cycle

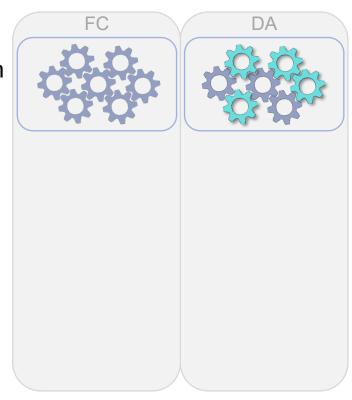


Al in the NWP cycle



AI in Data Assimilation

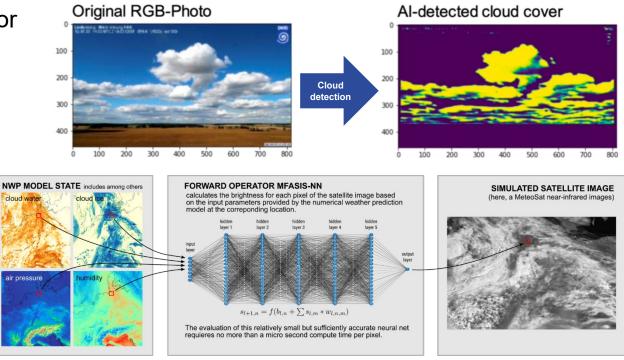
- Approaches in Al-based data assimilation
 - Substituting / adding modules in the DA system
 - bias correction
 - observation operators



AI in Data Assimilation

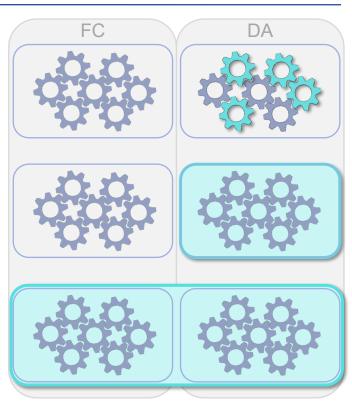
- Al components implemented and tested in DA at DWD
 - Forward operators for cloud cameras

- Radiative transfer accelerator
 MFASIS
 - integrated into RTTOV



Al in Data Assimilation

- Approaches in Al-based data assimilation
 - Substituting / adding modules in the DA system
 - bias correction
 - observation operators
 - Learning the data assimilation step
 - Learn the mapping from forecast / observations to analysis (increments)
 - End-to-End approach
 - Integration of DA and forecasting into one model using observations for initialization



- Al-Var as a basis for DWD's AIDA framework
- How does it work?
 - Common Al approach would train on

input: forecast (background x_{ξ}^b) and observations (y_{ξ}) target: analysis (x_{ξ}^a)

Training data would be sampled from

$$S_1 := \{ s_{\xi} = (y_{\xi}, x_{\xi}^b, x_{\xi}^a), \quad \xi = 1, ..., n_t \}$$

and the model would train using the loss function

$$l = (\hat{\mathbf{x}} - \mathbf{x}^a)^2$$

- However, in Al-Var, we learn the DA functional itself $f(x^b, y) \mapsto x^a$
- Training data now samples only from

$$S_2 := \{ s_{\xi} = (y_{\xi}, x_{\xi}^b), \quad \xi = 1, ..., n_t \}$$

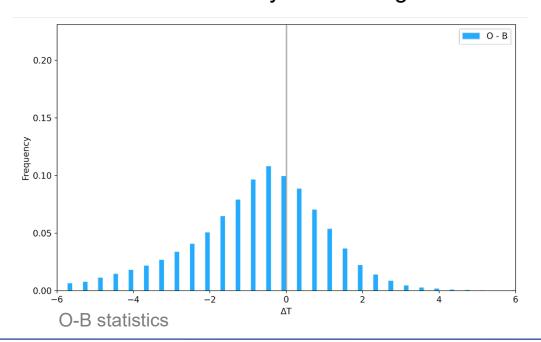
Data assimilation cost function is injected into the training as loss function

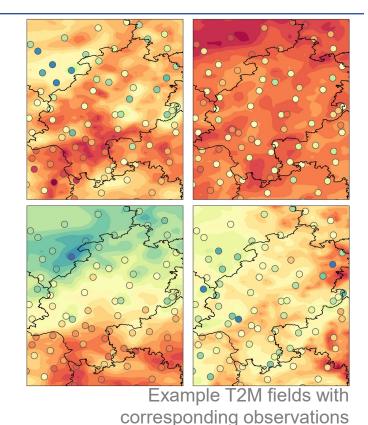
$$l = (\hat{\mathbf{x}} - \mathbf{x}^b)^T \mathbf{B}^{-1} (\hat{\mathbf{x}} - \mathbf{x}^b) + (\hat{\mathbf{y}} - \mathbf{y})^T \mathbf{R}^{-1} (\hat{\mathbf{y}} - \mathbf{y})$$

→ Loss penalizes deviations from first guess as well as observed data

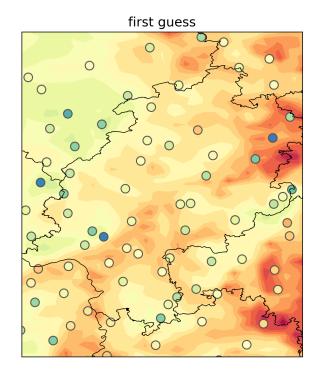
 Further details and results can be found in Keller and Potthast (2024, https://arxiv.org/abs/2406.00390)

 Example of T2M assimilation with the old COSMO-REA6 reanalysis as first guess



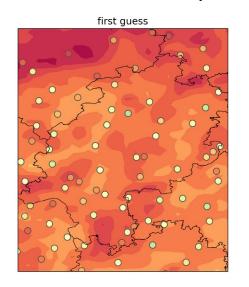


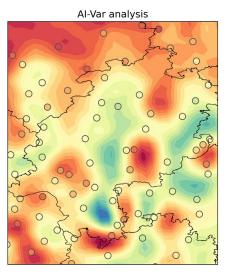
- Input for AI training
 - Observations: SYNOP T2M
 - First guess:T2M fromCOSMO-REA6

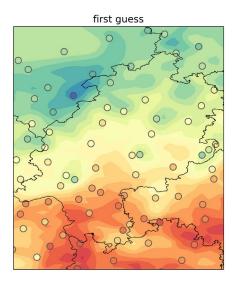


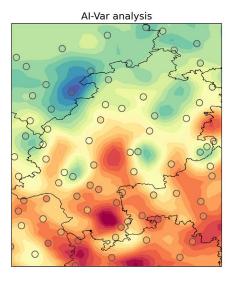


Further examples

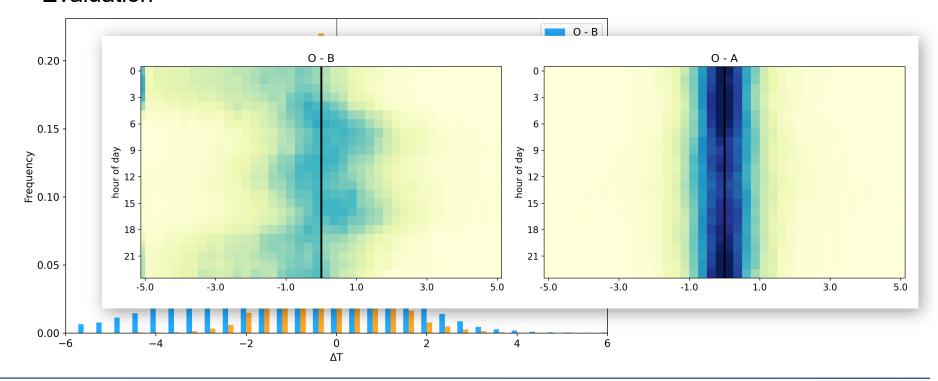




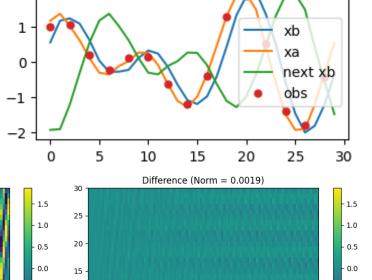


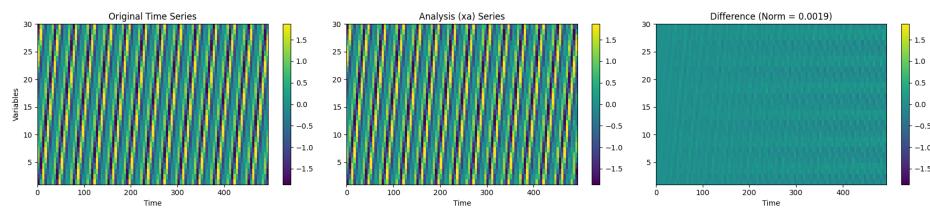


Evaluation



- Cycling with Al-Var
 - DA cylce was implemented and tested with Lorenz96

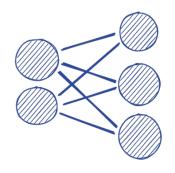




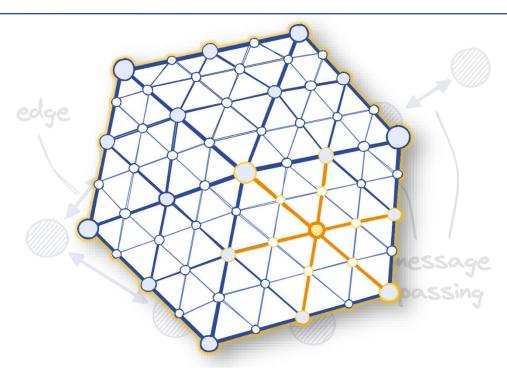
- Building a general framework for AI-based data assimilation → AIDA
 - Flexibility of
 - first guess structure (horizontal or vertical grid)
 - observation types
 - Built on a Graph Neural Network (GNN) architecture
 - First guess:

T2M reanalysis

The GNN approach

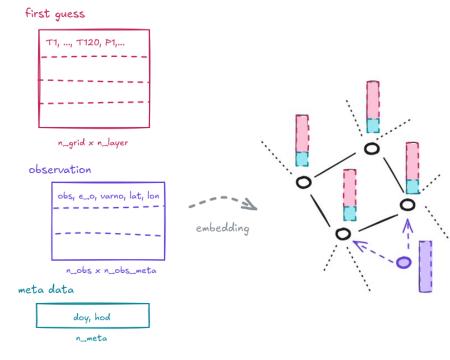


Fully connected Neural Network

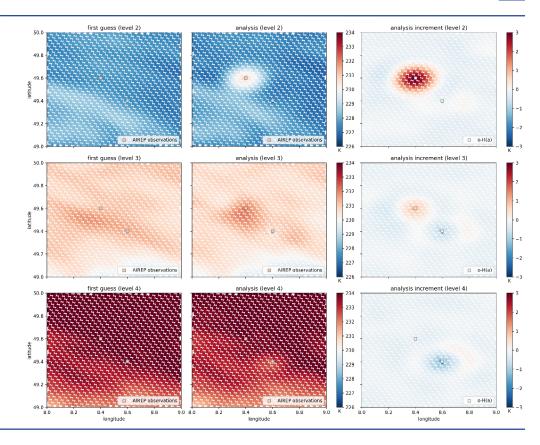


Graph Neural Network

- Observations in the GNN
 - Information on the nodes through vector of data
 - model data
 - meta data
 - Observations
 - can be added to vector,
 e.g., nearest neighbor
 - can be added as separate nodes in graph

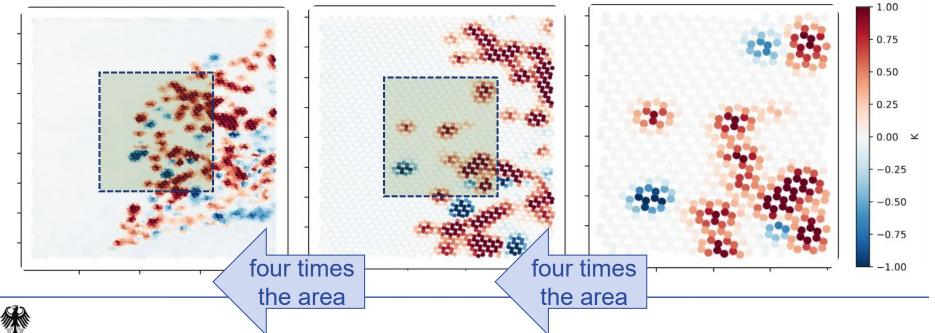


Test case AIREP assimilation



- Code has to be reimplemented not an easy task
- Methods have to be reviewed and adapted
 - Observation operators
 - Conventional implemented
 - RTTOV also works for specific cases
 - Error covariances
 - Bias correction
 - Quality control
 - Localization

- Currently the main challenge: Scalability
 - At the moment the setup has a maximum number of grid points of 70.000 on 8xA100 GPUs



- Possible applications
 - Al-based NWP
 - Ultra rapid data assimilation
 - Reanalysis
 - Post-processing
- Framework is also intended as the backbone for tempo-spatial AI applications in DWD's AI development unit

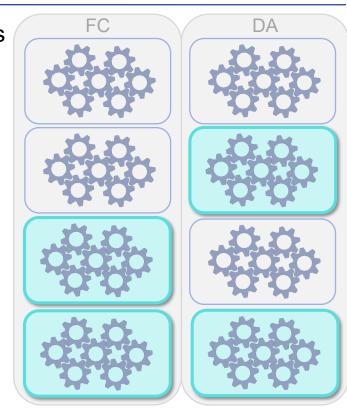
Plans for DWD's future DA

- Modular approach to allow for various combinations
 - Physics-based model classical DA

Physics-based model – Al-based DA

Al-based model - classical DA

Al-based model - Al-based DA



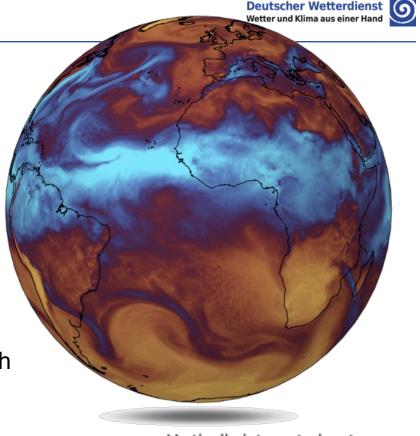
Reanalysis data for training

ICON-DREAM

- Global reanalysis (13km) with additional refinement over Europe (6.5km)
- 20 member ensemble
- 15 years produced (2010-2024) with back-extension to 1978 in progress

ICON-FORCE

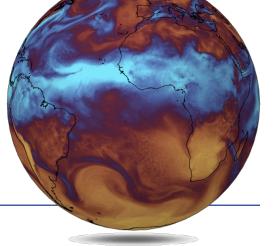
- Reanalysis for Central Europe (2km) with
 20 member ensemble
- Aimed at a 10 year period (2016-2025)



Plans for DWD's future DA - Reanalysis

- How will we produce new reanalysis data?
 - 1. Model resolution can be "easily" increased for physical models
 - → Downscaling
 - 2. Al-based model will be trained on downscaled data (emulator for the model)
 - 3. Al model and Al data assimilation to create a reanalysis
 - 4. Al-based model will be trained on reanalysis data
 - 5. ...

→ Iterative approach



Plans for DWD's future DA - Summary

- Building an Al-based data assimilation framework together with an Al NWP model
 - Based on the Al-Var approach
- Enabling a fast data assimilation cycle and quick production of forecasts
 - Preferrably with a higher forecats quality
- Higher frequency allows for an ultra rapid data assimilation (URDA)
 - New forecasts possible every 15, 10 or even 5 minutes?
 - Important in severe weather situations
 - Blending of NWP and nowcasting through AIDA
- SynCast AIDA-based platform for merging various data sets into one

Plans for DWD's future DA - Questions

- What about estimating background error covariances?
 - Will we use huge ensemble?
 - Will we use ensembles at all?
- How to generate ensembles?
 - Initial condition uncertainty, model uncertainty
- Which parts of the NWP chain will be replaced?
- Is there still the need for classical modelling / DA?

DWD's vision for future NWP: A fully data-driven data assimilation approach

Jan Keller

Roland Potthast, Thomas Deppisch and the AI development team at DWD

