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Outline

1. Overview of the current scheme: ecRad
— Treatment of gases, aerosols and clouds

2. Optimization considerations (spectral vs spatial vs temporal)
— Evaluating the impact of choices on forecast skill

3. Using radiation observations for forecast verification

4. Remaining challenges
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ecRad in the context of the IFS
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Radiation currently run once per hour in forecasts

— Changed from every 3 hours in most streams before 46r1,
improving tropical 2-m temperature forecasts by around 3%

Radiation is computed at a coarser grid
— HRES: 3.2x3.2 times coarser = 10.24x fewer gridpoints

— ENS: 2.5x2.5 times coarser = 6.25x fewer gridpoints
Total cost in ENS (including interpolation) is 5.8%

If radiation scheme was faster:

— Could call more frequently: further ~0.5% improvement in
tropical 2-m temperature

— Reduce noise?

— Increase accuracy, e.g. with more than two streams or
represent 3D effects?

Efforts to replace ecRad with a neural network replace the
call to RADIATION_SCHEME (i.e. the ‘black box’)



Why should | care what's inside the black box?

* Radiation is the driver of weather.

 All other physical parameterizations rely (directly or indirectly) on the fluxes
and heating rates from the radiation scheme.

 Important to understand how changes in other schemes might affect radiation
scheme.
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What would happen if the sun went out?
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lsurface_ Inside ecRad... Modular radiation scheme became operational in IFS in
properties July 2017 (Hogan and Bozzo, 2018)

Surface optics

« Gas optics
Interpolate to radiation grid _ o ) ) i
...................................................... — Provides radiative properties for atmospheric gases in a
gas mixing|  aerosol cloud range of spectral intervals.
ratios mixing ratios properties ] L. .
— Like most current GCM radiation schemes, it uses the
Gas optics correlated k-distribution (CKD) method.
. v - Aerosol optics
S;l;ft?g; Aerosol optics — Flexible framework for including a range of aerosol species
properties sourced from either a climatology (e.g., Tegen) or
- rogonostic aerosol (i.e., CAMS).
cleigtisclgl Cloud optics  |a— Prog ( )
properties cloud optical » Cloud optics
Y properties — Searches look-up tables for cloud optical properties for each
I — spectral interval, given the input cloud properties.
Interpolate to model grid .. . ‘ . .
---------------------------------------------------------- — Solves radiation equations for a number of ‘bands’ spanning
_ - different parts of the spectrum given the gas, aerosol and
Surface optics Surface optics cloud optical properties.

— ecRad includes a number of different solvers including
McICA (operational), Tripleclouds and SPARTACUS
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Gas absorption spectra has the greatest wavelength dependence of all atmospheric components
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Line-by-line calculations would be too expensive, so divide spectrum into ‘bands’ and apply correlated-k method.
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What is the CKD method? 1. Consider longwave absorption spectrum (k)

Planck function

Water vapour spectrum (k)

o o o o
- (V) w I

Spectral irradiance (W m ™2 (cm™")™")
o

—
OI
™

—

OI
no
o

| |
na na
= [iS]

—

OI
ro
>3

3]
oo

Molecular absorption cross—section (cm‘?)
— i
o, o

|
—_
[as]

Wavelength (um)

4

00 30 15 10 9 8 7 6 5
03

290 K
210 K

Line-by-line reference
requires 106 to 107
monochromatic
radiation calculations

500 1000 1500 2000
Wavenumber (cm‘1)

2500

500 1000 1500 2000
Wavenumber (cm‘1)

2500 8




What is the CKD method? 2. Bands

Wavelength (um)
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- * What determines optimum
2 o3 band structure?
o g « Note that the full-spectrum
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What is the CKD method? 3. Reorder spectrum within each band

Wavelength (um)
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What is the CKD method? 4. Discretize smooth reordered spectra

Wavelength (um)
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New tool, ecCKD, can automatically generate CKD model to specified error tolerances

« Unsurprisingly, error decreases with number of k terms

* Full-spectrum correlated-k (FSCK) method works well in longwave, but not yet in shortwave

Longwave: -
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day CKDMIP scenario’

* LW-FSCK-27 with 27 k terms has slightly

lower RMS error than LW RRTMG with
140 k terms

— Entire longwave scheme 5.2x faster!

« SW-Wide-38 with 38 k terms has much

lower RMS errors than SW RRTMG with
its 112 k terms

— Entire shortwave scheme 2.9x faster!
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Surface optics (currently outside ecRad)

 Surface scheme computes grid box mean skin temperature, longwave emissivity,
shortwave direct and diffuse albedo in six spectral intervals.

c) July 12-27,2002

ober 14,2002

—y

d) September 30-Oct

e

0.0 0.1 0.2 0.3 0.4 0.5
Surface Albedo (0.86 pm) Moody et al., 2005
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Surface optics (currently outside ecRad)

« Surface scheme computes grid box mean skin temperature, longwave emissivity,
shortwave direct and diffuse albedo in six spectral intervals.

» More sophisticated coupling between radiation and the surface is in preparation.

— Hogan et al., (2018) describe a method for representing 3D- radiative interactions in forest

canopies
— Use SPARTACUS for 3D radiative transfer in urban areas (Hogan 2019)
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Aerosols optics

* While aerosols play an important role in determining climate, their day to day variability

IS probably of secondary importance for medium-range weather forecasts.

- However, the mean radiative effect of aerosols is important to include as it can be

significant, particularly for absorbing aerosols (see e.g., Benedetti and Vitart, 2018).

* Within IFS, CAMS monthly climatologies (now 3D in CY46R1) are used to account for

direct effects.

* Indirect effects of aerosols are partially accounted for in cloud scheme (e.g.,

parameterizations of N, from wind speed or land/sea mask).
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CAMS aerosol climatology
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Impact of updating aerosol climatology

« Atmospheric forcing depends on absorption optical depth:

Monsoon
rainfall

I— E—
0.0|05 0.01 0.02 0.04 0.06 0.08 0|.1 0.12 0.15 0.2

1. Decreased absorption over Arabia in new CAMS
climatology weakens the overactive Indian Summer
Monsoon, halving the overestimate in monsoon rainfall
(Bozzo et al., 2017)

2. Increased absorption over Africa degraded 850-hPa
temperature, traced to excessive biomass burning in
CAMS.

Vinoj et al., 2014
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Impacts of dust outbreaks over Europe

« Saharan dust outbreaks can cause large surface
temperature errors in ECMWF operational forecast
(Magnusson et al., 2021)

« CAMS forecasts using prognostic aerosol reduces errors,o, :
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Cloud optics

« Converts model cloud liquid/ice water content to optical scattering properties via look-
up tables.

« Uncertainty in cloud microphysical/radiative properties provides one of the greatest
sources of error in the radiative transfer for any given cloudy profile.

* Plans for more consistent definitions between physics schemes + DA...

Liquid water cloud optics:

— Slingo (1989) and Lindner and Li (2000)
I — SOCRATES I

Ice cloud optics:
‘ — Fu (1996) and Fu et al., (1998)
— Yietal., (2013)
— Baran et al., (2014)

‘ Used operationally

All make assumptions on particle size
distribution and particle habit(s)

< ECMWF



Fu vs Yi ice scattering properties
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Solver

« Combines clear-sky and cloudy optical properties according to the cloud fraction and

assumptions on cloud inhomogeneity and overlap, and computes irradiance profiles.
 Four solvers are currently available in ecrad:

— Homogeneous: Fast solver using binary cloud fraction

— McICA: Monte Carlo Independent Column Approximation .
Used operationally

— Tripleclouds: Deterministic handling of cloud overlap and cloud inhomogeneity

— SPARTACUS: Tripleclouds + 3D effects

< ECMWF



Improving the representation of cloud radiative effects (1)
most models until ~2000

Easy way to tackle the problem: compute
the clear and cloud part of the grid box
(according to cloud fraction and overlap at
each level) and merge fluxes

Input from cloud scheme:
cloud fraction, LWC/IWC

200

400

600

Pressure hPa

800

1000
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Improving cloud radiative effects (2)
independent column approximation ICA (if we had infinite computing power)

K = number of spectral intervals (g-points)

<F> average flux in the grid box
N = number of independent sub-columns

[ ENEEEEEE I Ntot = total number of transmission
0 T N L . function computations

200 1 &
5 F == Fn
< 400 N o=
2 600 ICA RT scheme:
£ Ntot = N * K ~ O(10"3)

800

1000 HH”'”” -

%
@,Q
1 Number of sub-columns %Qec'
N
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ImpI’OVing CIOUd radiative effeCtS (3) Barker et al. (2003), Cloud generator: Raisanen et al.
Monte Carlo Independent Column Approximation MclCA  Pincus etal. (2003) (2004)

Pressure hPa
0 0

—

Stochastic cloud
generator:
transforms the
grid-box input
profile from the [
cloud scheme

' fM
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McICA: approximates < F >

randomly assigning a different cloud profile for each spectral-point from the distribution of
M profiles created by a cloud generator



Advantages of McICA

« Approximates a full ‘ICA’ calculation in an intuitive way
e Each sub-column is fast to compute: cloud fraction is either 1 or O

« Easy to implement different overlap schemes or subgrid-cloud

Inhomogeneity scheme

 Efficient when optimized

o)
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Disadvantages of McICA

* McICA is inherently noisy, particularly for LW heating rates

Error in surface downwelling flux
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Optimising ecRad — spectral vs spatial vs temporal considerations
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ECMWEF calls radiation scheme relatively infrequently

« Temporal, spatial and spectral resolution in various global NWP models:

Centre Radiation timestep (h) Horiz. coarsening  Bands  Spectral intervals
HRES ENS HRES ENS SW W SW LW
ECMWF 1 A1l 10.24 6.25 14 16 112 140
NCEP 1 1 1 1 14 16 112 140
DWD 0.4 0.6 4 4 14 16 112 140
Météo France 1 1 1 1 6 16 — 140
Met Office 1 1 1 1 6 9 21 47
CMC 1 1 1 1 4 9 40 57
JMA 1 1 (SW), 3 (LW) 4 4 16 11 22 156
FSCK - —~ - ~ 2 I |~15 ~ 32

. has lowest spatial resolution for radiation

— Experiments show this barely degrades forecasts (unlike 3-h radiation timestep)
* Met Office NWP model uses 3.7 times fewer g-points than RRTM-G

» Full-spectrum correlated-k estimates of coarsest possible spectral resolution

o)
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Using ecCKD gas optics could increase efficiency and accuracy greatly

» ecRad tutorial dataset. ERAS pole-to-pole slice from 11 July 2019:

Thanks to Shannon Mason
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Computational cost of various configurations of ecRad (offline)

RRTMG/McICA I «— Current operational configuration
RRTMG/Tripleclouds NN I | < Orriginal Tripleclouds is 25% slower
RRTMG/Optimized Tripleclouds | I «— After optimizing
ecCKD/McICA I I " Gas optics — ecCKD is fast but McICA too noisy
ecCKD/Tripleclouds | I .z(:,l:jvzszcssolver « Original Tripleclouds is 15% slower
ecCKD/Optimized Tripleclouds | NN m Shortwave solver «— Optimized Tripleclouds around the

I
0 10 20 30 40 50 60 70 80 90 100 110 120 130 same cost as McICA!

Relative time per profile (%)

* An accurate gas optics model with a noise-free solver can be implemented with only
30% the cost of RRTMG

 Clouds implemented generically: easy to add rain, snow, graupel etc with different optical
properties

» Potential to make TL/AD consistent: use cheap ecCKD gas optics model with differentiable
Tripleclouds solver
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Evaluating the impact of recent radiation scheme changes on forecast skKill
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Impact of radiation timestep on forecast skill scores

300 hPa temperature

700 hPa temperature
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Impact of 1 hourly radiation on ENS
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Using radiation observations for forecast verification
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CERES evaluation of free running IFS (4x 1-year, cycle 47r1 coupled to ocean)

 Evaluation of each model cycle: https://www.ecmwf.int/en/forecasts/charts/physics/physics clim2000
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https://www.ecmwf.int/en/forecasts/charts/physics/physics_clim2000

Evaluation of net shortwave radiation in operational 24-h forecasts, 2003-present
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* Improvement in Southern-Ocean dark bias in DJF E .
» Steady reduction in RMS error since 2003 %30
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* Antarctica too reflective gzv .
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Evaluatlon of net Iongwave radiation In operatlonal 24-h forecasts , 2003-present
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- Outgoing Longwave Radiation (OLR) bias Comparison with CERES SYN 1 degree dally mean TOA fluxes

reduced from +12 W m=2in 2006 to +2 W m™2 25 w w I
in 2018
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* OLR still too high over Indian Ocean:
convective clouds not extensive or deep
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Pressure (hPa)

Improving the middle atmosphere in the IFS
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Five “Grand Challenges” for radiation in :
NWP mOdeIS Solar spectrum ‘“
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Summary and outlook

* New ecRad scheme is good platform for future developments, but
Interaction and consistency between schemes is also very important

 Global tropospheric climate of the IFS is excellent, but need
concerted effort on many fronts to tackle much larger regional and
stratospheric biases

* Five main Grand Challenges in the coming years:

1. Overhaul surface treatment, including 3D interactions with cities and
forests

2. Package of physically-based improvements to clouds
3. Role of aerosols in predictability; upgrade water vapour continuum

4. Remove middle-atmosphere temperature bias via new UV solar
spectrum

5. Much more efficient gas optics and spectral integration
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Further reading
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