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What are orographic gravity waves?

Potential Incoming wind forces air over mountain
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What are orographic gravity waves?

In stably stratified atmosphere, this leads
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What are orographic gravity waves?

On the lee of the mountain, less dense air
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What are orographic gravity waves?

This creates a vertically propagating wave
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What are orographic gravity waves?
As density decreases with height, the

Potential amplitude grows, until the wave breaks
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What are orographic gravity waves?
This causes a turbulent drag force on the
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They affect Polar Vortex Variability

During Vortex breakdown
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Gravity waves change the winds and
temperatures in the Polar Vortex
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Stratosphere is important for surface predictability
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Polar vortex death toll rises to 21 as
US cold snap continues

® 1 February 2019

’ US polar vortex

GETTY IMAGES

| Chicago's frozen shoreline

At least 21 people have died in one of the worst cold snaps to hit the US
Midwest in decades.
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Northern hemisphere cold air outbreaks are more likely
to be severe during weak polar vortex conditions

Jinlong Huang, Peter Hitchcock & amanda C. Maycock, Christine M. McKenna & Wenshou Tian
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Abstract

Severe cold air outbreaks have significant impacts on human health, energy use, agriculture,
and transportation. Anomalous behavior of the Arctic stratospheric polar vortex provides an
important source of subseasonal-to-seasonal predictability of Northern Hemisphere cold air
outbreaks. Here, through reanalysis data for the period 1958-2019 and climate model
simulations for preindustrial conditions, we show that weak stratospheric polar vortex
conditions increase the risk of severe cold air outbreaks in mid-latitude East Asia by 100%, in
contrast to only 40% for moderate cold air outbreaks. Such a disproportionate increase is also
found in Europe, with an elevated risk persisting more than three weeks. By analysing the
stream of polar cold air mass, we show that the polar vortex affects severe cold air outbreaks
by modifying the inter-hemispheric transport of cold air mass. Using a novel method to assess

Granger causality, we show that the polar vortex provides predictive information regarding

severe cold air outbreaks over multiple regions in the Northern Hemisphere, which may help

with mitigating their impact.







Orographlc flow blocking and gravity wave drag
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Orography and model resolution

Grid-mean
orography




Resolved gravity wave drag increases when more
mountains are resolved

Plots show zonal mean gravity wave drag from
resolved waves in ECMWEF IFS global simulations
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Orography and model resolution
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What are orographic gravity waves?
This causes a turbulent drag force on the

atmosphere
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Derivation of gravity wave momentum fluxes
Momentum
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Derivation of gravity wave momentum fluxes

Momentum
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Cartesian coordinates
Shallow atmosphere
No rotation
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Derivation of gravity wave momentum fluxes

Momentum
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Derivation of gravity wave momentum fluxes

Momentum
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Derivation of gravity wave momentum fluxes

Momentum
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Derivation of gravity wave momentum fluxes
Momentum
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Derivation of gravity wave momentum fluxes
Momentum
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Derivation of gravity wave momentum fluxes
Momentum
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Derivation of gravity wave momentum fluxes

Momentum
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Expression for the surface momentum flux is given by
mountain height

Linear hydrostatic gravity wave surface stress in spectral space:

T, Ty = (pou'w’, pov'w')= (poaw*, pew*)
= A poNodn? [% [ YD Uk + Vol)| 7] dk dl

pPo = Density

N, = Stability

k, | = zonal and meridional wavenumber
1

K=(k+1)2

A = Area

Uy, Vo = Surface wind

|fz| = Spectral transform of mountain height
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Mountains are assumed to be ellipses

Grid-box

=

< ECMWF

Linear hydrostatic gravity wave surface stress:

co 0o

Ty, Ty = A71pg f f(u’,v’)w’dxdy

— 00 —O00
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|ﬁ| = Fourier transform of surface height

Assume elliptical mountains (Lott and Miller 1997, Phillips 1984):
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Parametrizing flow blocking drag

Gravity wave drag:

1
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Effective mountain height
Mountain anisotropy
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o = standard deviation of subgrid orography
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Parametrizing flow blocking drag

Gravity wave drag: Flow blocking drag:

1
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Parametrizing flow blocking drag

Gravity wave drag: Flow blocking drag:
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Parametrizing gravity wave propagation and breaking

Incoming wind forces air over mountain

10 km

Height
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ECMWF n(z¢) = hess, wave amplitude at surface



Parametrizing gravity wave propagation and breaking

p(z—1N(EZ-1DU(=z-1)
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A vertically propagating wave is

n(z) =n(z - 1)]
generated

n(z) = Amplitude at particular height

U = wind in direction of wave vector 10 km
N = Brunt-Vaisala frequency (stability)
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Parametrizing gravity wave propagation and breaking

p(z—1N(EZ-1DU(=z-1)

nz) =n(z - 1)]
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Parametrizing gravity wave propagation and breaking

e 1) 0(z=1N(z - 1DU(z 1) As density decreases with height,
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Parametrizing gravity wave propagation and breaking

e 1) 0(z=1N(z - 1DU(z 1) As density decreases with height,

Z) =n(z —

M= p(DNDU(2) the amplitude grows, until the wave
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Resolved gravity wave drag increases when more
mountains are resolved

Plots show zonal mean gravity wave drag from
resolved waves in ECMWEF IFS global simulations
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Resolution sensitivity of gravity wave drag parametrization

Resolved GW momentum flux
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Resolution sensitivity of gravity wave drag parametrization

Parametrized GW momentum flux
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Resolution sensitivity of gravity wave drag parametrization
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Resolution sensitivity of gravity wave drag parametrization
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Zonal Momentu

Resolution sensitivity of gravity wave drag parametrization
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Mountains are assumed to be ellipses

Grid-box

i

< ECMWF

Linear hydrostatic gravity wave surface stress:

co 0o

Ty, Ty = A71pg f f(u’,v’)w’dxdy

= A" poN,yam? [© [ Lok + Vo) |h| dk di

0 J—co K

|ﬁ| = Fourier transform of surface height

Assume-elliptical mountains (Lott and Miller 1997, Philli{s 1984):
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oN » hZ 5 JD)
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Effective mountain height efs ‘
Mounptatfi anisotropy



Resolution sensitivity of gravity wave drag parametrization
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Resolution sensitivity of gravity wave drag parametrization
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Derivation of gravity wave momentum fluxes

Momentum
4 C)
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Non-propagating (evanescent) waves

Propagating wave
Plots show the Pagating

streamline
displacement induced
by the wave
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Non-propagating (evanescent) waves

Plots show the Propagating wave Non-propagating wave
streamline 0
displacement induced e
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by the wave
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Turbulent orographic form drag
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Parametrizing turbulent orographic form drag

Turbulent surface stress for one mountain:

Trorp = P2aBCropp|V - h|?|U|?

< ECMWF



Parametrizing turbulent orographic form drag

Turbulent surface stress for one mountain:

Trorp = P2aBCropp|V - h|?|U|?

Vertically distributed drag for one mountain:

ou

— = —p2afCropp|V - h|*|U|Uexp (_ E)
0t TorD

[

< ECMWF



Parametrizing turbulent orographic form drag

Turbulent surface stress for one mountain:

Trorp = P2aBCropp|V - h|?|U|?

Vertically distributed drag for one mountain: Z :
U

— = —p2afiCropp|V - h|*|U|Uexp (_ E)
0t TorD

[

Drag from several mountain waves:

ou

® 2 zk
S = —pZa,BCTOFD|U|Uf k2|h| exp (__> dk
0t ToFD 2

ko

|ﬁ| = Spectral transform of mountain height
S ECMWF



Parametrizing turbulent orographic form drag

Power spectrum of orography from 100m data

Turbulent surface stress for one mountain:

Trorp = P2aBCropp|V - h|?|U|?

Vertically distributed drag for one mountain: fom 4
o 2aB Cropp|V - h|2|U|Uexp () :
—_— —_—— (04 . ex _—
dt TorD P rorDb PATT 0.01 .
Drag from several mountain waves: 0.001 SN A I S B
0.0001 0.001 k (m-1) 0.01 0.1
6 km 100 m
ou *© 1712 zk
— = —p2aBCropp|UIU | K?|h| exp|——)dk
dt TorD 2

ko

|f1| = Spectral transform of mountain height
S ECMWF



Parametrizing turbulent orographic form drag

Power spectrum of orography from 100m data
10 Ty — —

Turbulent surface stress for one mountain:

Trorp = P2aBCropp|V - h|?|U|? L ]
Vertically distributed drag for one mountain: fom 5
o 2aBCropp|V - hI*[U|Uexp () '
— = —pla : exp | —-
Bt TorD P TOFD p I 0_01% i
Drag from several mountain waves: 000—— e bl T
0.0001 0.001 1 0.01 0.1
6km <™ 100 m
a_U _ —,02“,3CT0FD|U|UJ k2|ﬁ|2 exp (_ ﬁ) di Approximate the shape of the power
0t Torp ko 2 spectrum

|ﬁ| = Spectral transform of mountain height
S ECMWF



Parametrizing turbulent orographic form drag

Turbulent surface stress for one mountain:

Trorp = P2aBCropp|V - h|?|U|?

Vertically distributed drag for one mountain:

ou

~p2aBCropp|V - hI*|U|Uexp (
0t TorD

Drag from several mountain waves:

-2

k2F0 (m)

ou

ot TOFD

—p2afCrorp|lU|U2.109 exp (

1500

/

Power spectrum of orography from 100m data

0.01F

0001 |
0.1

70.0001 0.001

6 km

Approximate the shape of the power
spectrum — and integrate

k (m=) 100 m

\

|h| = Spectral transform of mountain height

< ECMWF
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Non-orographic gravity wave drag

‘Non-orographic’ gravity waves are all

Brightness Temperature Perturbations from gravity waves not generated by mountains

AIRS satellite at ~ 40 km ASL

AIRS | 2019-01-01, 13:30 LT

They can be generated from:
- front\jet instabilities
- convection
- secondary gravity wave breaking

60°

30° |
o | They are typically smaller amplitude and,
therefore, can reach very high up in the

30° atmosphere before breaking

4.3 micron BT perturbation [K]

-60° |
' They are not ‘steady’ (as with mountain

waves) and so their phase varies in space
and time

-120° -60° 0° 60° 120°

https://datapub.fz-juelich.de/slcs/airs/gravity_waves/
S ECMWF



July at z=85km 0.0087756 hours

Meridional distance (km) I
g g g g 8 g g

< ECMWF

20
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2
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8
c
©
B, 2
[
) =
S
3 -1
-5
2
-10
-15
B -20
2 1 i 2
*

wave

July at y=0km 0.0087756 hours

100

8

Z

Altitude (km)
3

Example of idealized convectively generated gravity

Non-orographic gravity wave drag - convection

Heating is imposed near the
surface = leads to vertical
displacement

In stable atmosphere, this
generates a wave, much like
flow over mountains

Some of the waves begin to
break and generate
turbulence where their
speed == the background
wind speed (thin blue line)

This is a ‘critical line” where
wave ‘drags’ the flow



Derivation for non-orographic gravity wave drag

J

Momentum
fau’ N Uau’ +V6u’ N ,0U 16p’\
ot T ox oy "V ez pox
ov' N U@v’ +V6v’ N ,0V._ 10p’
ot T ox ey "W ez pay
dp"
\aZ — pg
Mass Continuity
ou’ N v’ N ow' 0
dx 0dy 0z
Thermodynamics
00’ N Uae' +V69’+ ,00 0
ot T ax oy "W ez T

A4

Following approximations are made:

Cartesian coordinates
Shallow atmosphere
No rotation
Adiabatic + incompressible
Hydrostatic
Not steady state

Linearised :
u=Uz)+u(x,y,zt),u'u ~0



Derivation for non-orographic gravity wave drag

Momentum

/ U 1 \
—liw + U dik +V Uil + W — = —— pik
0z p
av 1
—Viw + U vik +V Vil + W— = —— pil
0z P
0p
o Y

Mass Continuity

aw
[ulk+vll+— =0 ]
0z

Transform to spectral space:

Thermodynamics W~ J j wexp(ikx + ly — wt)) dk dl dw
00
—Biw + Uik +V Bil + w— = O]

0z




Derivation for non-orographic gravity wave drag

Momentum

-

—Uiw + U ik +V il +w
—DViw + U Vik +V il + W
0p

\az

—PY

L)

- = - "'k
0z ppl

— ! 5il
0z ppl

J

Mass Continuity

ow
[ﬁik+ﬁil+— = OJ
0z

Thermodynamics

—Oiw + U Bik +V Oil + w

6@_0
0z

Combine equations:

N?(k? + 1%)

02W+
(w — Uk +VI)?

0z2

Solution:

W = Wy exp(imz) , m? = [

w=0

N?(k? +1%)

(w — Uk + V)2



Derivation for non-orographic gravity wave drag

Momentum

-

L)

—liw + U ik + V Qil + W— = —— pik
0z p
1
—viw + U ik +V Dil + W— = —— pil
0z P
ap
o " Y
Mass Continuity
ow
[ﬁik+ﬁil+— =0 ]
0z
Thermodynamics
_ ~ ~ 00
—6iw+U9ik+V9il+WE= 0

Combine equations:

0% w N?(k? + 1?) =0

022 " |(w — Uk +vD2|" ~

Solution:

A (imz) m? — N2(k? +1%)
w = wyexp(imz), m- = (0 — Uk + VD)2

There is not a simple surface boundary
condition (as with mountains) for this

problem

We do not know the nature of the
sources well enough



Parametrizing non-orographic gravity wave drag

m* Empirical relationship between the momentum
- A | fluxes and vertical wavenumber is assumed
-}
= : Relationship is assumed to hold for every k and w
-}
c I
£ | o[ NG A1)
= | = (o —uk+ VD2
m >
m*

< ECMWF



Parametrizing non-orographic gravity wave drag

m* Empirical relationship between the momentum
- A | fluxes and vertical wavenumber is assumed
-}
= : Relationship is assumed to hold for every k and w
-}
c I
£ | o[ NG A1)
= : " (@ = Uk + VD)2

m >
mySs 1 -

T(z,mk,w) < p (

) o

< ECMWF



Parametrizing non-orographic gravity wave drag

m* Empirical relationship between the momentum
| fluxes and vertical wavenumber is assumed

>

Relationship is assumed to hold for every k and w

N?(k? +1%)

2:
(w — Uk + VI)?

m

Momentum flux

m )5 1 m Scheme then uses discretely ‘binned’ values of k
m* (1 i (m )S”) and w, and solves for these individually

T(z,mk,w) < p (

m*

< ECMWF



Parametrizing non-orographic gravity wave drag

m* Empirical relationship between the momentum

A |\ fluxes and vertical wavenumber is assumed

-}

= Relationship is assumed to hold for every k and w
"g Tsat(Z, M, k, w) & m™3

& N , N?(k? +1%)

-~ m- =
S S~ (@ — Uk + VI)?
m >
( k w) (m )S 1 m Scheme then uses discretely ‘binned’ values of k
T(z,m K, w p - (1 B (m )S+t) and w, and solves for these individually
m*

Waves are then saturated (only at large m) using:
T(z,m k,w)< 1, (z,m, k,w)

T(z,m k,w) ==1.,:(z,m, k,w)
& ECMWF



Parametrizing non-orographic gravity wave drag

m* Empirical relationship between the momentum
|\ fluxes and vertical wavenumber is assumed
% A
-}
= Relationship is assumed to hold for every k and w
= N Teat(z,m k,w) xm™3
= ) , N?(k? +1?)
- m=- =
s\l S~ T (w — Uk +VI)2
m >
( k@) (m S 1 m Scheme then uses discretely ‘binned’ values of k
T(z,m K, w p - (1 B (m )S+t) and w, and solves for these individually
m*
Total drag is given by the sum of fluxes over bins: Waves are then saturated (only at large m) using:
M — _1 i ZZT(Z m k (1)) T(Z, m, k, (1))< TSClt(Zl m, k; (U)
dt p 0z - S
@ - T(z,mk,w) == 1., (z,m, k,w)

< ECMWF



Parametrizing non-orographic gravity wave drag

m* Empirical relationship between the momentum
|\ fluxes and vertical wavenumber is assumed
% A
-}
= Relationship is assumed to hold for every k and w
= N Teat(z,m k,w) xm™3
& A , N2(k? +1%)
- m- =
s\l S~ T (w — Uk + V)2
m >
( k@) (m S 1 m Scheme then uses discretely ‘binned’ values of k
T(z,m K, w p - (1 B (m )S+t) and w, and solves for these individually
m*
Total drag is given by the sum of fluxes over bins: Waves are then saturated (only at large m) using:
M — _1 i ZZT(Z m k (1)) T(Z, m, k, (1))< Tsat(Z; m, k; (1))
dt p 0z - S
@ - T(z,mk,w) == 1., (z,m, k,w)

< ECMWF



Getting the QBO right

Reduced diffusion improves model winds in the QBO positive phase

S )

\\,/ GEJ/¢<C)§EKZ |
0\/ W ,N /\/\/ ;,Oi)f\/ N/ \\é
NIV LS B B ¥

—201

Zonal wind (50 hPa)

1994 1996 1998 2000 2002 2004
Time

—— ERAS —— Reduce Diff.
—— cntrl

Plot shows 50 hPa zonal winds averaged between 5S — 5N

Seasonal hindcasts run with the ECMWEF IFS, 7 months long
S ECMWF



Getting the QBO right

Reduced diffusion improves model winds in the QBO positive phase but does not make
things better at the longer range

Zonal wind (50 hPa)

1994 1996 1998 2000 2002 2004
Time

—— ERAS —— Reduce Diff.
—— cntrl

Plot shows 50 hPa zonal winds averaged between 5S — 5N

Seasonal hindcasts run with the ECMWEF IFS, 7 months long
S ECMWF



Tuning non-orographic gravity wave drag

Increased non-orographic gravity wave drag makes the wind evolution better

101 A \M//;\// /
YA/ AV | \%
: VI
£ \i/ \&
AN

—201

Zonal wind (50 hPa)

1994 1996 1998 2000 2002 2004
Time
—— ERA5S —— Reduce Diff.
— cntrl —— Increase GWD (20x)

Plot shows 50 hPa zonal winds averaged between 5S — 5N

Seasonal hindcasts run with the ECMWEF IFS, 7 months long
S ECMWF



Tuning non-orographic gravity wave drag

Increased non-orographic gravity wave drag makes the wind evolution better — but the
winds transition to negative too quickly

ya
/
101
e
S 0]
o]
i=
S
I'_U —10'
[
o
N
_20_
1994 1996 1998 2000 2002 2004
Time
—— ERA5S —— Reduce Diff.
— cntrl —— Increase GWD (20x)

Plot shows 50 hPa zonal winds averaged between 5S — 5N

Seasonal hindcasts run with the ECMWEF IFS, 7 months long
S ECMWF



Tuning non-orographic gravity wave drag

Fine tuning the increased gravity wave drag gives better transition to negative QBO

phase
S
101
= N/ \/
o
-C -
@ 0] .
=]
c
S Va
— —10{
[
Q
N
_20_
1994 1996 1998 2000 2002 2004
Time
—— ERAS —— Increase GWD (20x)
— cntrl —— Increase GWD (15x)

—— Reduce Diff.
Plot shows 50 hPa zonal winds averaged between 55 — 5N

Seasonal hindcasts run with the ECMWEF IFS, 7 months long
S ECMWF



Summary of orographic drag and gravity wave drag

Orographic gravity wave drag:
* These are waves generated by flow over mountains and lead to drag in the upper
atmosphere
* |In the model, the mountains are assumed to be ellipses (not good for resolution sensitivity)
Orographic flow blocking:
* Flow blocking occurs when the surface wind is weak or the stability is very high
* This drag occurs near the surface, around the mountains
Turbulent orographic form drag:
* Occurs when there is turbulent stress near mountains that generate non-propgating
waves
* Assumed to be from small-scale mountain < 5 km wide
Non-orographic gravity wave drag:
* This is drag from all gravity wave sources that are not from mountains
* The source of these waves are assumed to follow an empirical relationship between
vertical wavenumber (m) and momentum flux

< ECMWF
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