Planetary Boundary Layer 2

Surface layer and empirical functions

Annelize van Niekerk, Irina Sandu, Anton Beljaars

Annelize.vanNiekerk@ecmwf.int

Contents

- What do we need from a turbulence parameterization?
- Local eddy diffusion (K-profile)
- Surface layer similarity theory
- Roughness length
- Empirical stability function "cookbook" and history

Set of equations to solve in the model

Momentum

$$\frac{\partial \overline{u}}{\partial t} = -\frac{1}{\rho} \left[\nabla \cdot (\rho \overline{u} \overline{u}) + \frac{\partial \rho \overline{u'w'}}{\partial z} \right] + f v - \frac{1}{\rho} \frac{\partial p}{\partial x}$$

$$\frac{\partial \overline{v}}{\partial t} = -\frac{1}{\rho} \left[\nabla \cdot (\rho \overline{v} \overline{u}) + \frac{\partial \rho \overline{v'w'}}{\partial z} \right] + f u - \frac{1}{\rho} \frac{\partial p}{\partial y}$$

$$\frac{\partial \overline{p}}{\partial z} = -\rho g$$

Large scale terms – resolved by model

Thermodynamics

$$\frac{\partial \overline{\theta}}{\partial t} = -\frac{1}{\rho} \left[\nabla \cdot (\rho \overline{\theta} \overline{u}) + \frac{\partial \rho \overline{\theta' w'}}{dz} \right] + S_{\theta}$$

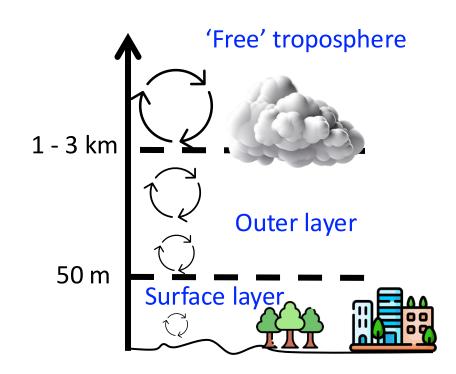
Moisture

$$\frac{\partial \overline{q}}{\partial t} = -\frac{1}{\rho} \left[\nabla \cdot (\rho \overline{q} u) + \frac{\partial \rho \overline{q' w'}}{\partial z} \right] + S_q$$

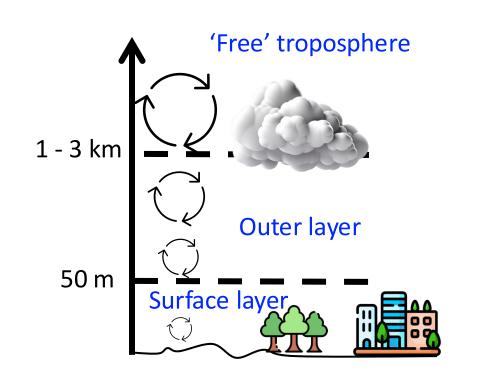
Small scale turbulent fluxes – must be parametrized

Sources and sinks (e.g. heating and cooling from radiation)

- Provide turbulent exchange of heat, momentum, moisture (and tracers) between the surface and the upper atmosphere
- Account for differences in stability and surface properties



- Provide turbulent exchange of heat, momentum, moisture (and tracers) between the surface and the upper atmosphere
- Account for differences in stability and surface properties
- Provide profiles of winds and temperatures at the surface, where the model does not resolve in the vertical



Model level heights:

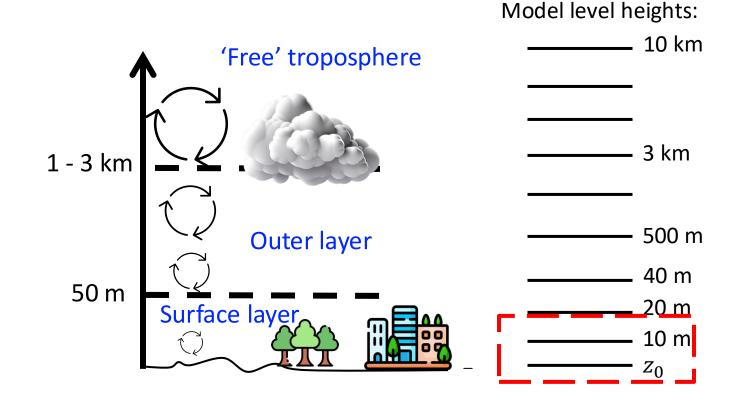
_ 10 km

3 km

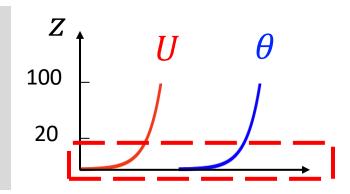
500 m

40 m

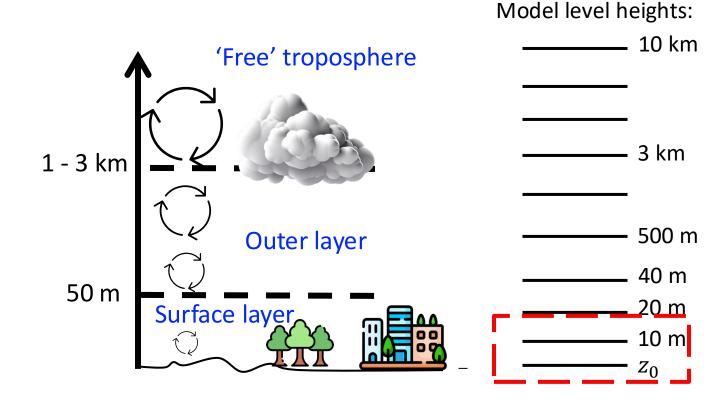
- Provide turbulent exchange of heat, momentum, moisture (and tracers) between the surface and the upper atmosphere
- Account for differences in stability and surface properties
- Provide profiles of winds and temperatures at the surface, where the model does not resolve in the vertical



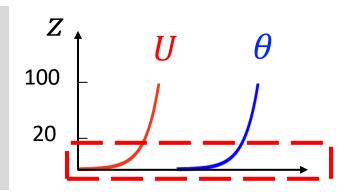
- Model does not resolve surface layer
- There are strong gradients and is where people live
- Requires diagnosis of profiles below 10m



- Provide turbulent exchange of heat, momentum, moisture (and tracers) between the surface and the upper atmosphere
- Account for differences in stability and surface properties
- Provide profiles of winds and temperatures at the surface, where the model does not resolve in the vertical
- Provide turbulent mixing throughout the entire atmosphere – the mixed layer, the cloud layer and the stratosphere



- Model does not resolve surface layer
- There are strong gradients and is where people live
- Requires diagnosis of profiles below 10m



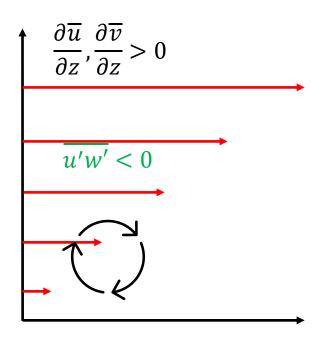
$$\frac{\partial \overline{\phi}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{\phi' w'}}{dz} \right]$$

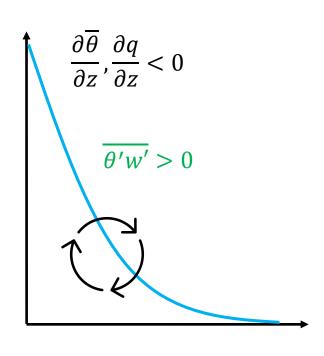
$$\left[\frac{\partial \overline{\phi}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{\phi' w'}}{dz} \right] \sim -\frac{1}{\rho} \frac{\partial}{dz} \left(-\rho K_{\phi} \frac{\partial \overline{\phi}}{\partial z} \right) \right]$$

The magnitude of K_ϕ determines the 'stirring' of these conserved quantities by turbulent eddies

Any quantity ϕ :

$$\left[\frac{\partial \overline{\phi}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{\phi' w'}}{dz} \right] \sim -\frac{1}{\rho} \frac{\partial}{dz} \left(-\rho K_{\phi} \frac{\partial \overline{\phi}}{\partial z} \right) \right]$$



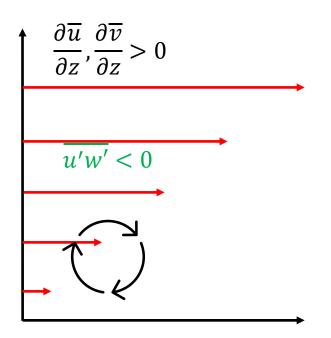


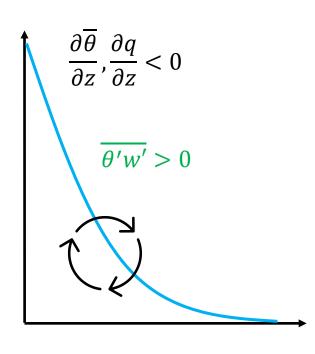
The magnitude of K_ϕ determines the 'stirring' of these conserved quantities by turbulent eddies

Wind / temperature gradient with turbulent eddies will generate mixing

Any quantity ϕ :

$$\overline{\phi'w'} = -K_{\phi} \frac{\partial \overline{\phi}}{\partial z}$$





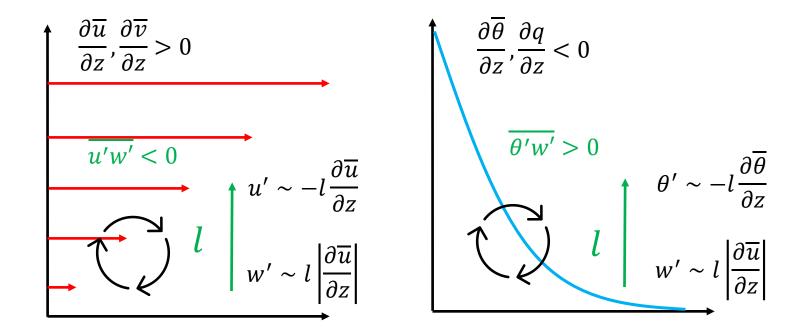
The magnitude of K_{ϕ} determines the 'stirring' of these conserved quantities by turbulent eddies

Wind / temperature gradient with turbulent eddies will generate mixing

Any quantity ϕ :

$$\overline{\phi'w'} = -K_{\phi} \frac{\partial \overline{\phi}}{\partial z}$$

Mixing occurs over a certain lengthscale l, related to size of eddies

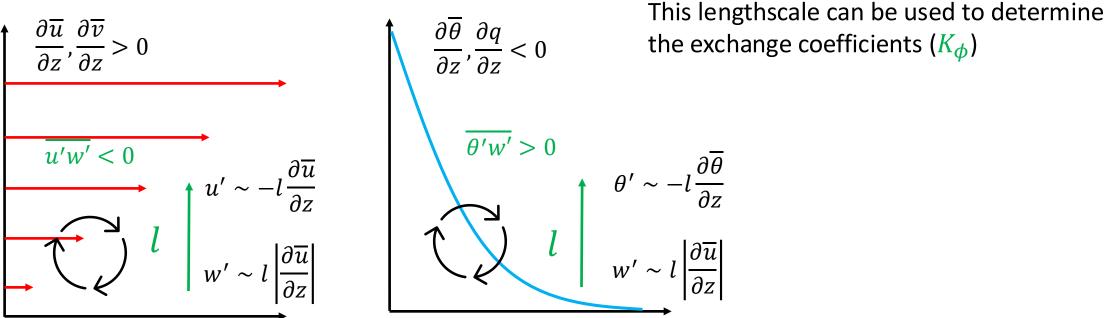


Wind / temperature gradient with turbulent eddies will generate mixing

Any quantity ϕ :

$$\overline{\phi'w'} = -K_{\phi} \frac{\partial \overline{\phi}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\phi}}{\partial z}$$

Mixing occurs over a certain lengthscale l, related to size of eddies



the exchange coefficients (K_{ϕ})

Wind / temperature gradient with turbulent eddies will generate mixing

Momentum

$$\overline{u'w'} = -K_M \frac{\partial \overline{u}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{u}}{\partial z}$$

Thermodynamics

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\theta}}{\partial z}$$

 K_M , K_H and K_q are the exchange coefficients of momentum, heat and moisture

Generally assumed that diffusion of heat == diffusion of moisture

$$K_H = K_q$$

'Local' turbulence closure at the surface

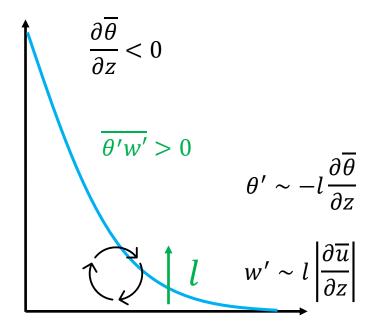
What is *l* at the surface?

Any quantity ϕ :

$$\overline{\phi'w'} = -K_{\phi} \frac{\partial \overline{\phi}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\phi}}{\partial z}$$

Size of eddies are constrained by the surface itself:

$$l \sim \kappa z$$



 $\kappa = \text{von-Karman constant}$

determined from observations

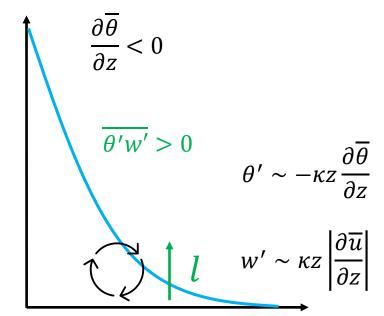
What is *l* at the surface?

Any quantity ϕ :

$$\overline{\phi'w_s'} = -K_\phi \frac{\partial \overline{\phi}}{\partial z} = -\kappa^2 z^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\phi}}{\partial z}$$

Size of eddies are constrained by the surface itself:

$$l \sim \kappa z$$



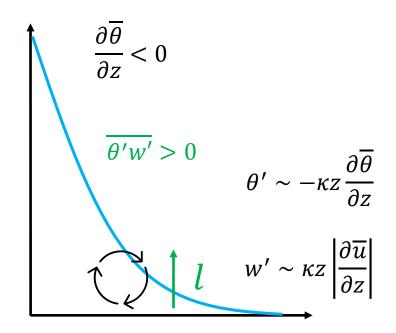
 κ =von-Karman constant

determined from observations

Assume that fluxes are constant with height near the surface

Any quantity ϕ :

$$\left(\overline{\phi'w'}\right)_{z} = \left(\overline{\phi'w'}\right)_{s} = -\kappa^{2}z^{2} \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\phi}}{\partial z}$$



Near surface, fluxes are assumed constant with height:

$$\left(\overline{\phi'w'}\right)_{S} = -\kappa^{2}z^{2} \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\phi}}{\partial z} = u_{*}\phi_{*}$$

$$\left(\overline{u'w'}\right)_{S} = -\kappa^{2}z^{2} \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{u}}{\partial z} = u_{*}^{2}$$

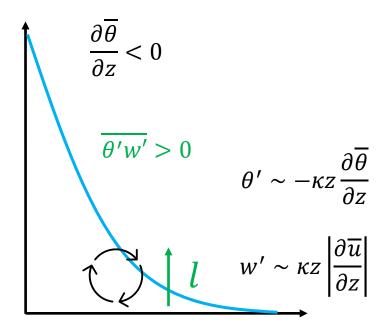
$$\left(\overline{\theta'w'}\right)_{S} = -\kappa^{2}z^{2} \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\theta}}{\partial z} = u_{*}\theta_{*}$$

Where
$$u_* = \sqrt{\left(\overline{u'w'}\right)_s} = \kappa z \left|\frac{\partial \overline{u}}{\partial z}\right|$$
 is the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling

This means we can get profiles of ϕ from flux

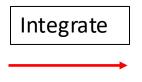
$$(\overline{\phi'w'})_z = -\kappa^2 z^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\phi}}{\partial z} = u_* \phi_*$$



Using
$$u_* = \sqrt{\left(\overline{u'w'}\right)_s} = \kappa z \left|\frac{\partial \overline{u}}{\partial z}\right|$$

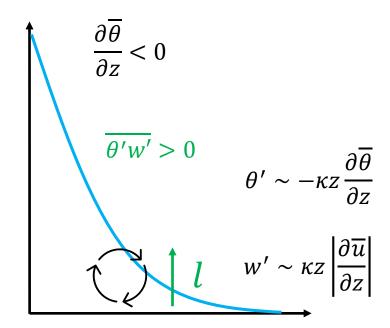
This means we can get profiles of $\overline{\phi}$ from flux

$$\kappa z \frac{\partial \overline{\phi}}{\partial z} = \phi_*$$



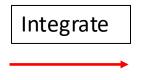
$$\overline{\phi}_{z} - \overline{\phi}_{s} = \frac{\phi_{*}}{\kappa} \int_{z_{0\phi}}^{z+z_{0M}} \frac{1}{z} dz$$

Using
$$u_* = \sqrt{(\overline{u'w'})_S} = \kappa z \left| \frac{\partial \overline{u}}{\partial z} \right|$$



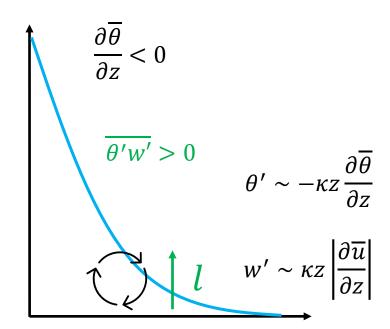
This means we can get profiles of $\overline{\phi}$ from flux

$$\kappa z \frac{\partial \overline{\phi}}{\partial z} = \phi_*$$



$$\overline{\phi}_z - \overline{\phi}_s = \frac{\phi_*}{\kappa} \log \left(\frac{z + z_{0M}}{z_{0\phi}} \right)$$

Using
$$u_* = \sqrt{(\overline{u'w'})_s} = \kappa z \left| \frac{\partial \overline{u}}{\partial z} \right|$$



This means we can get profiles of \overline{u} and $\overline{\theta}$ from flux

Momentum

$$\kappa z \frac{\partial \overline{u}}{\partial z} = u,$$

Thermodynamics

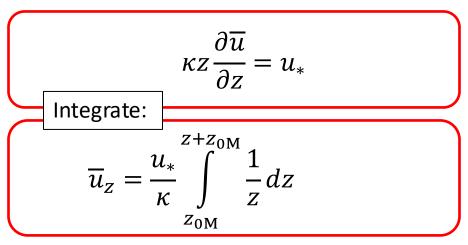
$$\kappa z \frac{\partial \overline{\theta}}{\partial z} = \theta_*$$

Where
$$u_* = \sqrt{\overline{(u'w')}_s} = \kappa z \left| \frac{\partial \overline{u}}{\partial z} \right|$$
 is the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling

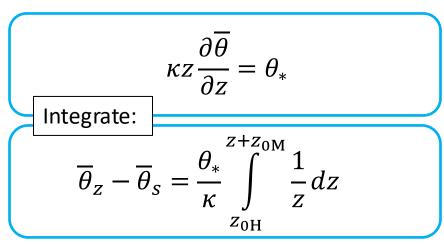
This means we can get profiles of \overline{u} and θ from flux

Momentum



Where
$$u_* = \sqrt{\left(\overline{u'w'}\right)_S} = \kappa z \left|\frac{\partial \overline{u}}{\partial z}\right|$$
 is the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling



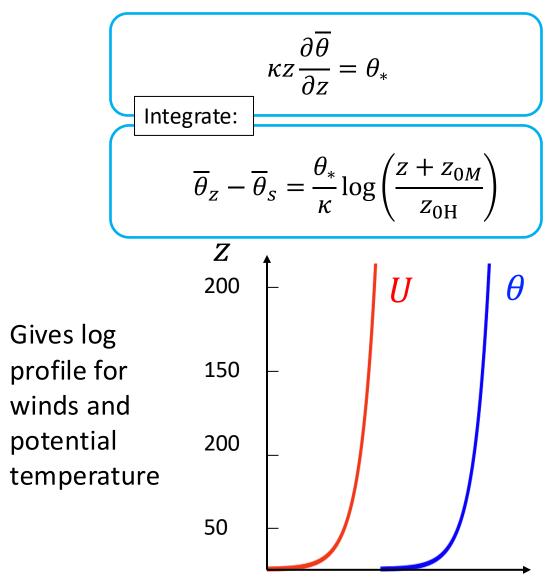
This means we can get profiles of \overline{u} and θ from flux

Momentum

Integrate:
$$\overline{u}_z = \frac{u_*}{\kappa} \log \left(\frac{z + z_{0\rm M}}{z_{0\rm H}} \right)$$

Where
$$u_* = \sqrt{\overline{(u'w')}_s} = \kappa z \left| \frac{\partial \overline{u}}{\partial z} \right|$$
 is the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling



Similarly, can get surface fluxes from profiles of \overline{u} and θ

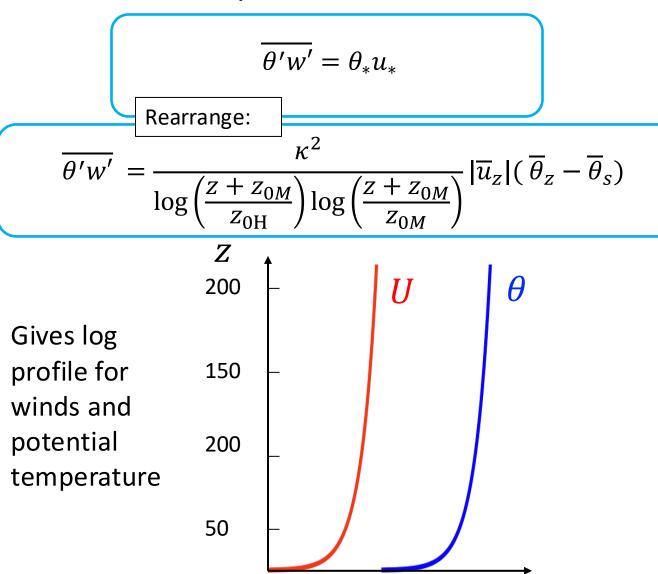
Momentum

Rearrange:
$$\overline{u'w'} = u_*^2$$

$$\overline{u'w'} = \frac{\kappa^2}{\log^2\left(\frac{z+z_0}{z_0}\right)} |\overline{u}_z| \overline{u}_z$$

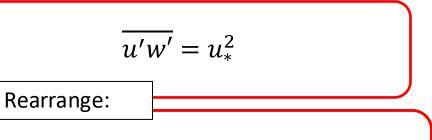
Where
$$u_* = \sqrt{\overline{(u'w')}_s} = \kappa z \left| \frac{\partial \overline{u}}{\partial z} \right|$$
 is the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling



Similarly, can get surface fluxes from profiles of \overline{u} and $\overline{\theta}$

Momentum



$$\rho \overline{u'w'} = \underline{C_M} |\overline{u}_Z| \overline{u}_Z$$

Where $u_* = \sqrt{(\overline{u'w'})_s} = \kappa z \left| \frac{\partial \overline{u}}{\partial z} \right|$ is the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling

Thermodynamics

$$\overline{ heta'w'}= heta_*u_*$$

$$\rho \overline{\theta' w'} = C_H |\overline{u}_z| (\overline{\theta}_z - \overline{\theta}_s)$$

Define surface exchange coefficients:

$$C_M = \frac{\kappa^2}{\log^2\left(\frac{z+z_0}{z_0}\right)}$$

$$C_{H} = \frac{\kappa^{2}}{\log\left(\frac{z + z_{0M}}{z_{0H}}\right)\log\left(\frac{z + z_{0M}}{z_{0M}}\right)}$$

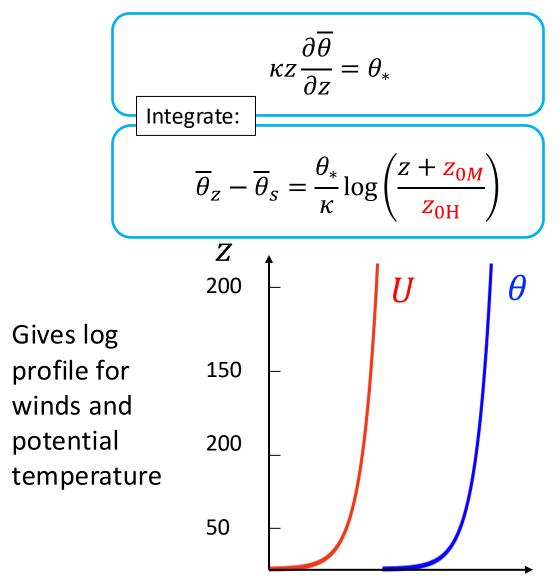
Momentum

Integrate:
$$\overline{u}_{z} = u_{*}$$

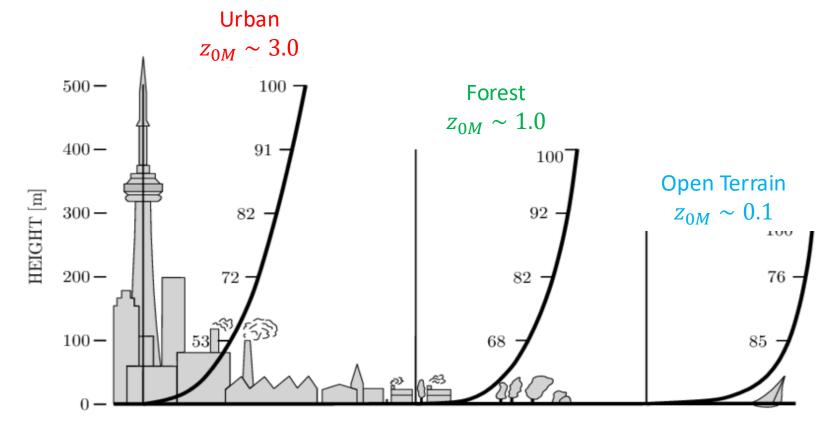
$$\overline{u}_{z} = \frac{u_{*}}{\kappa} \log \left(\frac{z + z_{0M}}{z_{0H}} \right)$$

Where
$$u_* = \sqrt{\overline{(u'w')}_s} = \kappa z \left| \frac{\partial \overline{u}}{\partial z} \right|$$
 is the surface frictional velocity

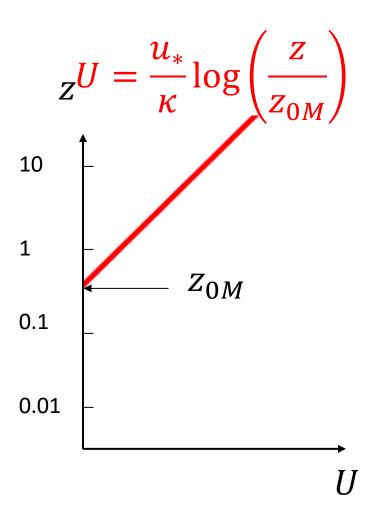
 θ_* is the temperature scaling, similarly, q_* is the moisture scaling



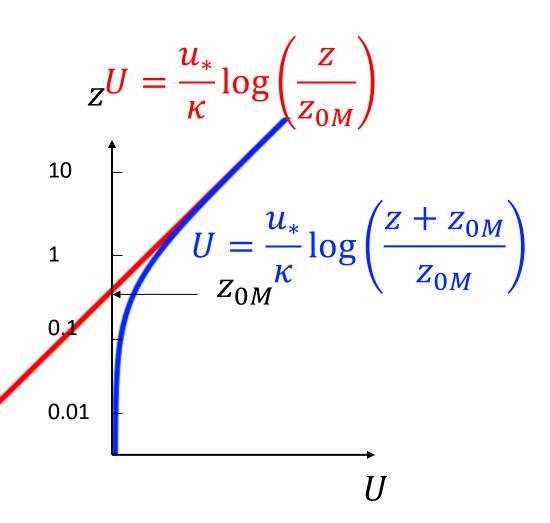
- Roughness length for momentum z_{0M} is not the same as for heat z_{0H}
- z_{0M} and z_{0H} determines the shape of the wind and temperature profiles
- They are a property of the underlying surface and are (assumed) to be a function of the height of the roughness elements



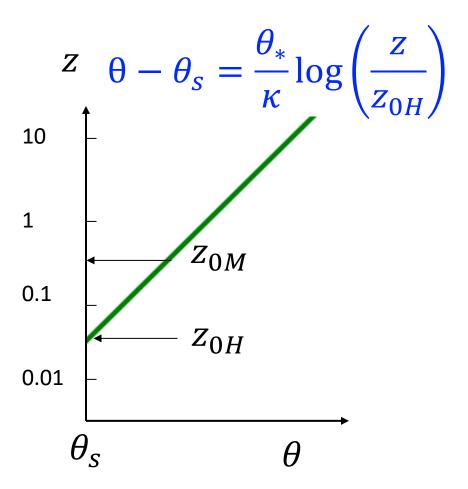
- Surface aerodynamic roughness length is defined from the logarithmic wind profile
- The roughness length is the height at which the winds become zero



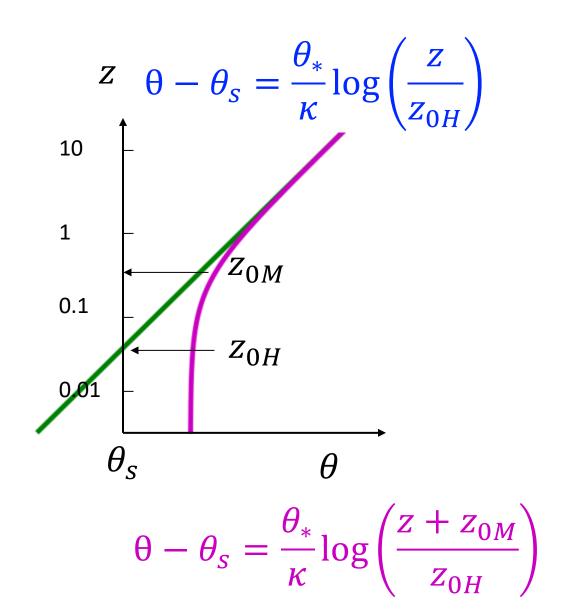
- Surface aerodynamic roughness length is defined from the logarithmic wind profile
- The roughness length is the height at which the winds become zero
- In the model, the displacement height is used to obtain U = 0 at z = 0.



- Surface thermal roughness length is defined from the logarithmic temperature profile
- The thermal roughness length is the height at which the potential temperature becomes the surface temperature

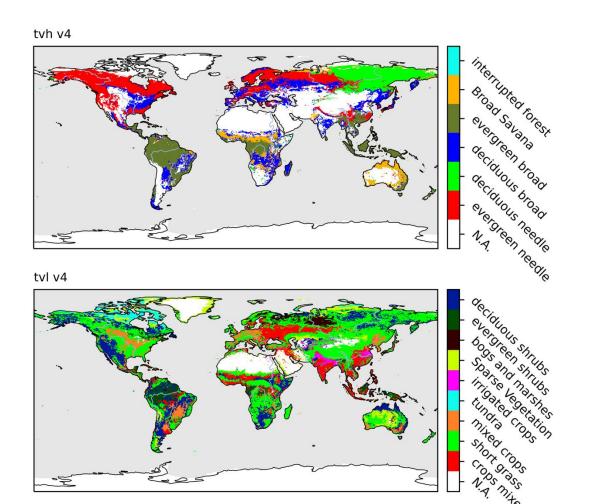


- Surface thermal roughness length is defined from the logarithmic temperature profile
- The thermal roughness length is the height at which the potential temperature becomes the surface temperature
- In the model, the displacement height is used to obtain the temperature above the roughness elements, $\theta=\theta_{\rm s}$ at z=0 only when $z_{0M}=z_{0H}$



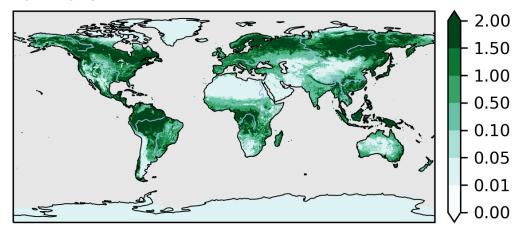
What is the roughness length z_0 over land?

Note that $z_{0H} = \frac{z_{0M}}{10}$



		011	10	
Index	Vegetation type	$\mathrm{H/L}\ \mathrm{veg}$	z_{0m}	z_{0h}
1	Crops, mixed farming	L	0.25	$0.25 \ 10^{-2}$
2	Short grass	\mathbf{L}	0.1	$0.1 \ 10^{-2}$
3	Evergreen needleleaf trees	${ m H}$	2.0	2.0
4	Deciduous needleleaf trees	$_{ m H}$	2.0	2.0
5	Deciduous broadleaf trees	${ m H}$	2.0	2.0
6	Evergreen broadleaf trees	$_{ m H}$	2.0	2.0
7	Tall grass	\mathbf{L}	0.47	$0.47 \ 10^{-2}$
8	Desert	_	0.013	$0.013 \ 10^{-2}$
9	Tundra	${f L}$	0.034	$0.034 \ 10^{-2}$
10	Irrigated crops	\mathbf{L}	0.5	$0.5 \ 10^{-2}$
11	Semidesert	\mathbf{L}	0.17	$0.17 \ 10^{-2}$
12	Ice caps and glaciers	_	$1.3 \ 10^{-3}$	$1.3 \ 10^{-4}$
13	Bogs and marshes	\mathbf{L}	0.5	$0.5 \ 10^{-2}$
14	Inland water	_	_	_
15	Ocean	_	_	_
16	Evergreen shrubs	${f L}$	0.100	$0.1 \ 10^{-2}$
17	Deciduous shrubs	\mathbf{L}	0.25	$0.25 \ 10^{-2}$
18	Mixed forest/woodland	$_{ m H}$	2.0	2.0
19	Interrupted forest	$_{ m H}$	1.1	1.1
20	Water and land mixtures	${f L}$	_	_

z0m None v4



What is the roughness length z_0 over ocean?

$$z_{0M} = \alpha_M \frac{v}{u_*} + \alpha_{Ch} \frac{u_*^2}{g}$$

$$z_{0H} = \alpha_H \frac{\nu}{u_*}$$

$$z_{0Q} = \alpha_Q \frac{v}{u_*}$$

 $\nu = \text{kinematic viscosity}$

 u_* =surface frictional velocity

 α_M , α_H , α_O = constants

 α_{Ch} = Charnock coefficient, provided by the wave model

What is the roughness length z_0 over ocean?

$$z_{0M} = \alpha_M \frac{v}{u_*} + \alpha_{Ch} \frac{u_*^2}{g}$$

$$z_{0H} = \alpha_H \frac{v}{u_*}$$

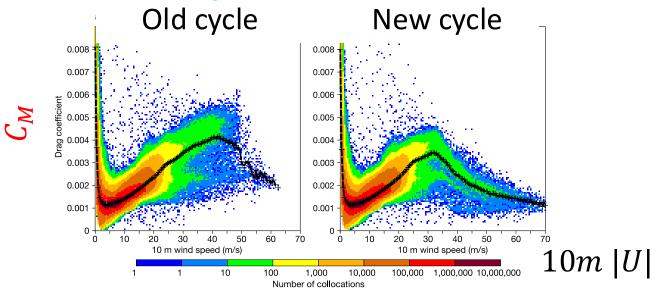
$$z_{0Q} = \alpha_Q \frac{v}{u_*}$$

 $\nu = \text{kinematic viscosity}$

 u_* =surface frictional velocity (function of wind speed)

$$\alpha_M$$
, α_H , α_Q = constants

 α_{Ch} = Charnock coefficient, provided by the wave model



$$C_{M} = \frac{\kappa^{2}}{\left[\log\left(\frac{z + z_{0m}}{z_{0m}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

What is the roughness length z_0 over ocean?

$$z_{0M} = \alpha_M \frac{v}{u_*} + \alpha_{Ch} \frac{u_*^2}{g}$$

$$z_{0H} = \alpha_H \frac{v}{u_*}$$

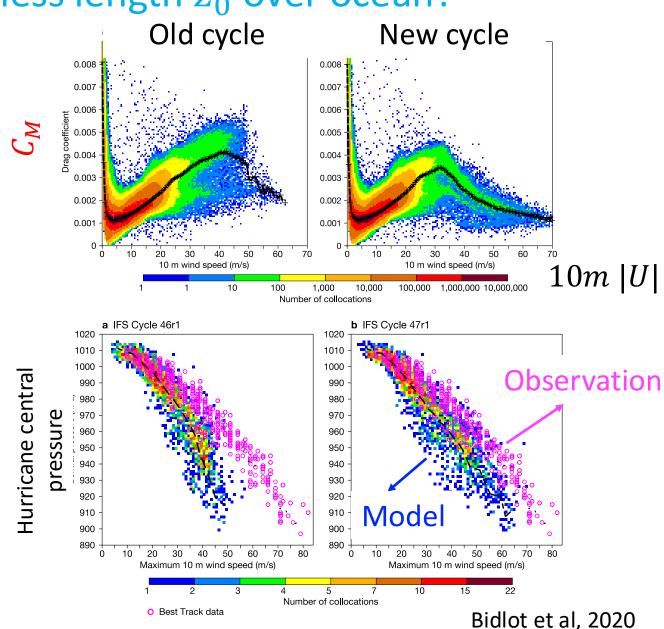
$$z_{0Q} = \alpha_Q \frac{v}{u_*}$$

 $\nu = \text{kinematic viscosity}$

 u_* =surface frictional velocity (function of wind speed)

 α_M , α_H , α_Q = constants

 α_{Ch} = Charnock coefficient, provided by the wave model



What is the roughness length z_0 over sea-ice?

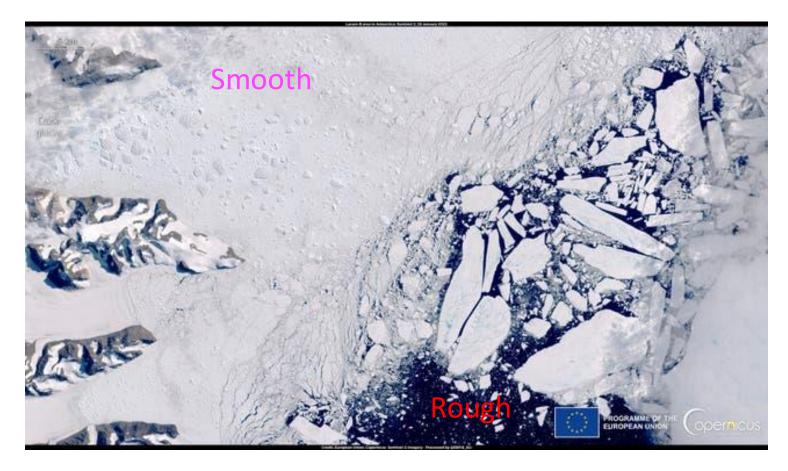
$$z_{0M} = \max(10^{-3}, f(\boldsymbol{c_i}))$$

$$z_{0H} = 10^{-3}$$

$$z_{0Q} = 10^{-3}$$

 c_i = sea ice concentration

 $f(c_i)$: The dependence on sea-ice concentration reflects observation that partial ice-cover leads to more broken up sea ice and therefore increased drag



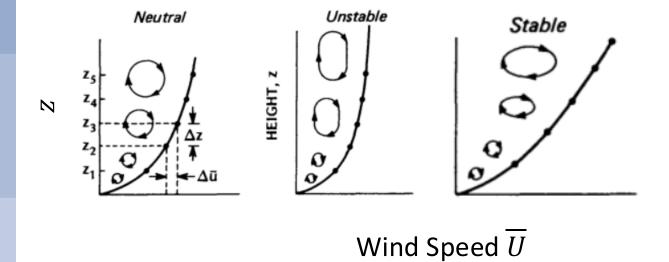
How does stability affect surface exchange?

Adding stability dependence

Any quantity ϕ :

$$\kappa z \frac{\partial \overline{\phi}}{\partial z} = \phi_*$$

$$\overline{\phi}_z - \overline{\phi}_s = \frac{\phi_*}{\kappa} \log \left(\frac{z + z_0}{z_0} \right)$$

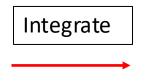


Log profiles are only valid in neutral flow conditions....

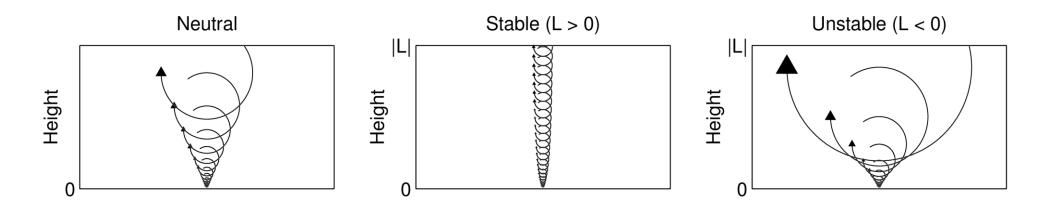
Adding stability dependence

Any quantity ϕ :

$$\kappa z \frac{\partial \overline{\phi}}{\partial z} = \phi_*$$



$$\overline{\phi}_z - \overline{\phi}_s = \frac{\phi_*}{\kappa} \log \left(\frac{z + z_0}{z_0} \right)$$



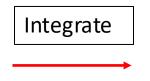
Mixing length modified to account for stability using a function ϕ :

$$l = \frac{\kappa z}{\Phi(stability)}$$

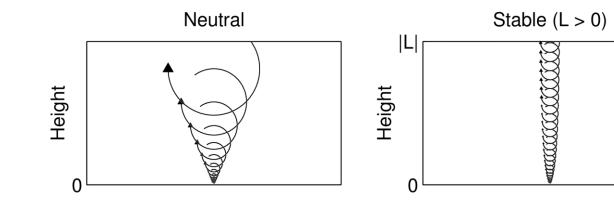
Adding stability dependence

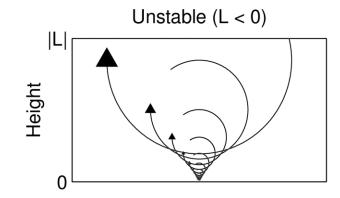
Any quantity ϕ :

$$\frac{\kappa z}{\Phi_{\phi}} \frac{\partial \overline{\phi}}{\partial z} = \phi_*$$



$$\overline{\phi}_z - \overline{\phi}_s = \frac{\phi_*}{\kappa} \int_{z_0}^{z+z_0} \frac{1}{z} \Phi_{\phi} dz$$





Mixing length is modified to account for stability using a function ϕ :

$$l = \frac{\kappa z}{\Phi(\zeta)}, \qquad \zeta = \frac{z}{L}$$

L = Obukhov length (will come back to this)

Getting vertical profiles with stability dependence

Any quantity ϕ :

$$\frac{\kappa z}{\Phi_{\phi}} \frac{\partial \overline{\phi}}{\partial z} = \phi_*$$

Integrate

$$\overline{\phi}_{z} - \overline{\phi}_{s} = \frac{\phi_{*}}{\kappa} \int_{z_{0}}^{z+z_{0}} \frac{1}{z} \Phi_{\phi} dz$$

Mixing length is modified to account for stability using a function ϕ :

$$l = \frac{\kappa z}{\Phi(\zeta)}, \qquad \zeta = \frac{z}{L}$$

L = Obukhov length (will come back to this)

To do this, requires a change of variable:

$$d\zeta = \frac{1}{L}dz$$

Getting vertical profiles with stability dependence

Any quantity ϕ :

$$\frac{\kappa z}{\Phi_{\phi}} \frac{\partial \overline{\phi}}{\partial z} = \phi_*$$

Integrate

$$\overline{\phi}_z - \overline{\phi}_s = \frac{\phi_*}{\kappa} \int_{z_0}^{z+z_0} \frac{1}{\zeta} \Phi_{\phi}(\zeta) d\zeta$$

Mixing length is modified to account for stability using a function ϕ :

$$l = \frac{\kappa z}{\Phi(\zeta)}, \qquad \zeta = \frac{z}{L}$$

L = Obukhov length (will come back to this)

To do this, requires a change of variable:

$$d\zeta = \frac{1}{L}dz$$

Getting vertical profiles with stability dependence

Any quantity ϕ :

$$\frac{\kappa z}{\Phi_{\phi}} \frac{\partial \overline{\phi}}{\partial z} = \phi_*$$

Integrate

$$\overline{\phi}_{z} - \overline{\phi}_{s} = \frac{\phi_{*}}{\kappa} \left[\log \left(\frac{z + z_{0m}}{z_{0\phi}} \right) - \Psi_{\phi} \left(\frac{z + z_{0M}}{L} \right) \right]$$

Mixing length is modified to account for stability using a function ϕ :

$$l = \frac{\kappa z}{\Phi(\zeta)}, \qquad \zeta = \frac{z}{L}$$

L = Obukhov length (will come back to this)

To do this, requires a change of variable:

$$d\zeta = \frac{1}{L}dz$$

 Ψ_{ϕ} is the integral of $\Phi_{\phi}(\zeta)$

What is the Obukhov-length?

 Derived from scaling arguments - Reduces degrees of freedom so that 'universal' relations (they work for all situations) can be derived

$$\zeta > 0$$
 Stable

$$\zeta < 0$$
 Unstable

What is the Obukhov-length?

 Derived from scaling arguments - Reduces degrees of freedom so that 'universal' relations (they work for all situations) can be derived

$$\zeta > 0$$
 Stable

 $\zeta < 0$ Unstable

Height above the surface at which:
 buoyant production > shear production of turbulence

Buoyancy production :
$$\frac{g}{\theta} \overline{\theta' w'} = \frac{g}{\theta} \theta_* u_*$$

Shear production:
$$-\overline{u'w'}\frac{\partial u}{\partial z} = u_*^2 \frac{\partial u}{\partial z}$$

What is the Obukhov-length?

 Derived from scaling arguments - Reduces degrees of freedom so that 'universal' relations (they work for all situations) can be derived

$$\zeta > 0$$
 Stable

 $\zeta < 0$ Unstable

Height above the surface at which:
 buoyant production > shear production of turbulence

Buoyancy production :
$$\frac{g}{\theta} \overline{\theta' w'} = \frac{g}{\theta} \theta_* u_*$$

$$\zeta = \frac{z}{L} = \frac{g}{\theta} \frac{\theta_* u_*}{u_*^2 \frac{\partial u}{\partial z}}$$

Shear production:
$$-\overline{u'w'}\frac{\partial u}{\partial z} = u_*^2 \frac{\partial u}{\partial z}$$

Why the Obukhov-length?

- Richardson number is also a measure of stability, but is locally defined and therefore can be noisy and can be highly variable with height
- Whereas, Obukhov length uses area averaged surface fluxes and so provide a more robust measure of surface layer stability
- L is directly related to surface fluxes, which allows for relation of fluxes to profiles from observations

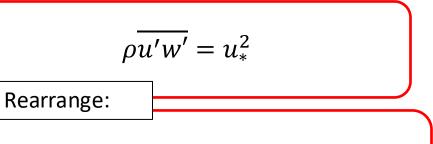
Buoyancy production :
$$\frac{g}{\theta} \overline{\theta' w'} = \frac{g}{\theta} \theta_* u_*$$

$$\zeta = \frac{z}{L} = \frac{g}{\theta} \frac{\theta_* u_*}{u_*^2 \frac{\partial u}{\partial z}}$$

Shear production:
$$-\overline{u'w'}\frac{\partial u}{\partial z} = u_*^2\frac{\partial u}{\partial z}$$

Getting surface fluxes from vertical profiles, with stability dependence

Momentum



 $\rho u'w' = C_M |\overline{u}_z| \overline{u}_z$

Thermodynamics

$$\overline{\theta'w'} = \theta_* u_*$$

Rearrange:

$$\rho \overline{\theta' w'} = C_H |\overline{u}_z| (\overline{\theta}_z - \overline{\theta}_s)$$

Surface exchange coefficient for heat:

$$C_{H} = \frac{\kappa^{2}}{\left[\log\left(\frac{z+z_{0m}}{z_{0m}}\right) - \Psi_{M}\left(\frac{z+z_{0m}}{L}\right)\right]\left[\log\left(\frac{z+z_{0m}}{z_{0H}}\right) - \Psi_{H}\left(\frac{z+z_{0m}}{L}\right)\right]}$$

Surface exchange coefficient for momentum:

$$C_{M} = \frac{\kappa^{2}}{\left[\log\left(\frac{z+z_{0m}}{z_{0m}}\right) - \Psi_{M}\left(\frac{z+z_{0m}}{L}\right)\right]^{2}}$$

Getting surface fluxes from vertical profiles, with stability dependence

Momentum

Rear

Thermodynamics

$$\rho \overline{u'w'} = u_*^2$$

$$\overline{\theta'w'} = \theta_* u_*$$

BUT... Exchange coefficients depend on

$$\zeta = \frac{z + z_{0m}}{L}$$
, which depends on surface fluxes

$$\log \left(\frac{z + z_{0m}}{z_{0m}} \right) - \Psi_{M} \left(\frac{z + z_{0m}}{L} \right) \log \left(\frac{z + z_{0m}}{z_{0H}} \right) - \Psi_{H} \left(\frac{z + z_{0m}}{L} \right)$$

Surface exchange coefficient for momentum:

$$C_{M} = \frac{\kappa^{2}}{\left[\log\left(\frac{z+z_{0m}}{z_{0m}}\right) - \Psi_{M}\left(\frac{z+z_{0m}}{L}\right)\right]^{2}}$$

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{(\overline{\theta_{z}} - \overline{\theta_{s}})z}{|\overline{u_{z}}|^{2}}$$

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{(\overline{\theta_{z}} - \overline{\theta_{s}})z}{|\overline{u_{z}}|^{2}} = \frac{z}{L} \frac{C_{M}^{\frac{3}{2}}}{C_{H}}$$

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{(\overline{\theta_{z}} - \overline{\theta_{s}})z}{|\overline{u_{z}}|^{2}} = \frac{z}{L} \frac{C_{M}^{\frac{3}{2}}}{C_{H}} = \frac{z}{L} \frac{\left[\log\left(\frac{z + z_{0M}}{z_{0H}}\right) - \Psi_{H}\left(\frac{z + z_{0m}}{L}\right)\right]}{\left[\log\left(\frac{z + z_{0m}}{z_{0M}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{(\overline{\theta_{z}} - \overline{\theta_{s}})z}{|\overline{u_{z}}|^{2}} = \frac{z}{L} \frac{C_{M}^{\frac{3}{2}}}{C_{H}} = \frac{z}{L} \frac{\left[\log\left(\frac{z + z_{0M}}{z_{0H}}\right) - \Psi_{H}\left(\frac{z + z_{0m}}{L}\right)\right]}{\left[\log\left(\frac{z + z_{0m}}{z_{0M}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

- 2. Compute Ri_b from model fields and solve for $\frac{Z}{L}$ by either:
 - Iteration
 - Using empirically fitted functional relationship between $\frac{z}{L}$ and Ri_b
 - Look-up table

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{(\overline{\theta_{z}} - \overline{\theta_{s}})z}{|\overline{u_{z}}|^{2}} = \frac{z}{L} \frac{C_{M}^{\frac{3}{2}}}{C_{H}} = \frac{z}{L} \frac{\left[\log\left(\frac{z + z_{0M}}{z_{0H}}\right) - \Psi_{H}\left(\frac{z + z_{0m}}{L}\right)\right]}{\left[\log\left(\frac{z + z_{0m}}{z_{0M}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

- 2. Compute Ri_b from model fields and solve for $\frac{Z}{L}$ by either:
 - Iteration
 - Using empirically fitted functional relationship between $\frac{z}{L}$ and Ri_b
 - Look-up table
- 3. Compute the surface exchange coefficients \mathcal{C}_H and \mathcal{C}_M

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{(\overline{\theta_{z}} - \overline{\theta_{s}})z}{|\overline{u_{z}}|^{2}} = \frac{z}{L} \frac{C_{M}^{\frac{3}{2}}}{C_{H}} = \frac{z}{L} \frac{\left[\log\left(\frac{z + z_{0M}}{z_{0H}}\right) - \Psi_{H}\left(\frac{z + z_{0m}}{L}\right)\right]}{\left[\log\left(\frac{z + z_{0m}}{z_{0M}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

- 2. Compute Ri_b from model fields and solve for $\frac{Z}{L}$ by either:
 - Iteration
 - Using empirically fitted functional relationship between $\frac{z}{L}$ and Ri_b
 - Look-up table
- 3. Compute the surface exchange coefficients C_H and C_M
- 4. Now you have a boundary condition for your atmospheric turbulent exchange! Yay!

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{(\overline{\theta_{z}} - \overline{\theta_{s}})z}{|\overline{u_{z}}|^{2}} = \frac{z}{L} \frac{C_{M}^{\frac{3}{2}}}{C_{H}} = \frac{z}{L} \frac{\left[\log\left(\frac{z + z_{0M}}{z_{0H}}\right) - \Psi_{H}\left(\frac{z + z_{0m}}{L}\right)\right]}{\left[\log\left(\frac{z + z_{0m}}{z_{0M}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

- 2. Compute Ri_b from model fields and solve for $\frac{Z}{L}$ by either:
 - Iteration
 - Using empirically fitted functional relationship between $\frac{z}{L}$ and Ri_b
 - Look-up table
- 3. Compute the surface exchange coefficients C_H and C_M
- 4. Now you have a boundary condition for your atmospheric turbulent exchange! Yay!
- 5. AND we can determine profiles of winds, temperature and humidity near the surface

Summary of Monin-Obukhov surface layer similarity theory

- The Obukhov-length is a measure of surface layer stability and can be thought of as the ratio of buoyancy / shear production of turbulence
- It is assumed that turbulent fluxes do not vary across the surface layer
- Functions that relate the Obukhov length (stability) to the vertical profiles of conserved quantities (e.g. wind and temperature) $\Phi_{\phi}(\zeta)$ in the surface layer can be derived from observations
- This is useful because we can relate Richardson number to z/L and get profiles and surface fluxes

Empirical surface layer stability functions

This means we can get profiles of \overline{u} and $\overline{\theta}$ from flux

Momentum

$$\frac{\kappa z}{\Phi_{M}} \frac{\partial \overline{u}}{\partial z} = u_{*}$$

Integrate:

$$\overline{u}_{z} = \frac{u_{*}}{\kappa} \left[\log \left(\frac{z + z_{0m}}{z_{0m}} \right) - \Psi_{M} \left(\frac{z + z_{0m}}{L} \right) \right]$$

Thermodynamics

$$\frac{\kappa z}{\Phi_H}\frac{\partial\overline{\theta}}{\partial z}=\theta_*$$
 Integrate:

 $\overline{\theta}_{z} - \overline{\theta}_{s} = \frac{\theta_{*}}{\kappa} \left[\log \left(\frac{z + z_{0m}}{z_{0H}} \right) - \Psi_{H} \left(\frac{z + z_{0M}}{L} \right) \right]$

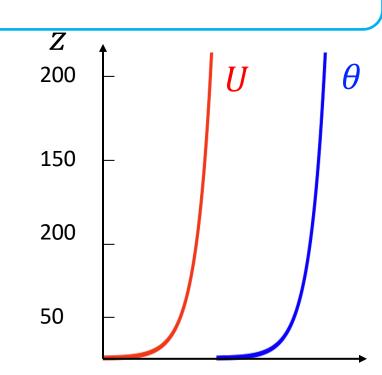
Recall that:

$$\overline{u'w'} = u_*^2$$

$$\overline{\theta'w'} = \theta_*u_*$$

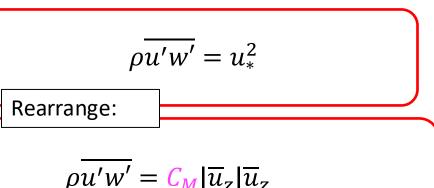
Relationship between $\Phi_{M}(\zeta)$, $\Phi_{H}(\zeta)$ and ζ measured empirically and then integrated vertically

 $\Psi_{\rm H}$, $\Psi_{\rm M}$ are integrals of $\Phi_{M}(\zeta)$



Getting surface fluxes from vertical profiles, with stability dependence

Momentum



Thermodynamics

$$\overline{\theta'w'}= heta_*u_*$$
Rearrange:

$$\rho \overline{\theta' w'} = C_H |\overline{u}_z| (\overline{\theta}_z - \overline{\theta}_s)$$

Surface exchange coefficient for heat:

$$C_{H} = \frac{\kappa^{2}}{\left[\log\left(\frac{z+z_{0m}}{z_{0m}}\right) - \Psi_{M}\left(\frac{z+z_{0m}}{L}\right)\right]\left[\log\left(\frac{z+z_{0m}}{z_{0H}}\right) - \Psi_{H}\left(\frac{z+z_{0m}}{L}\right)\right]}$$

Surface exchange coefficient for momentum:

$$C_{M} = \frac{\kappa^{2}}{\left[\log\left(\frac{z + z_{0m}}{z_{0m}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

Empirical stability functions Cookbook

Ingredients:

- Accurate surface layer fluxes $(\overline{u'w'}, \overline{\theta'w'})$
- Wind and temperature profiles at several heights
- Wide range of sampled stability

Mix well to form:

Richardson number:

$$Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\frac{\partial U}{\partial z}}$$

Dimensionless wind shear:

$$\Phi_M = \frac{\kappa z}{u_*} \frac{\partial U}{\partial z}$$

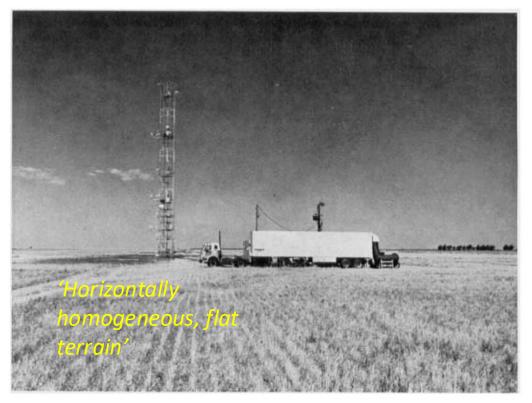
Dimensionless temperature gradient:

$$\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \theta}{\partial z}$$

$$T = \frac{z}{L} = z \frac{\kappa g \theta' w'}{\theta u_*^3}$$

Empirical stability functions – Businger et al (1970)

Haugen et al 1971



Richardson number:

$$Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\frac{\partial U}{\partial z}}$$

Dimensionless wind shear:

$$\Phi_M = \frac{\kappa z}{u_*} \frac{\partial U}{\partial z}$$

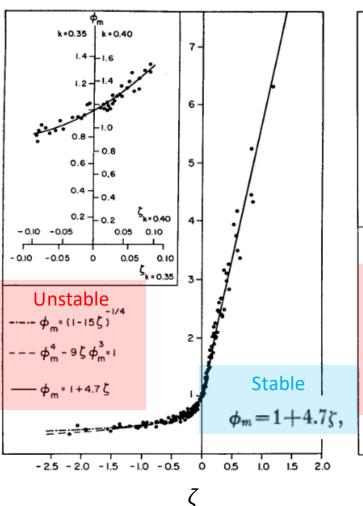
Dimensionless temperature gradient:

$$\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \theta}{\partial z}$$

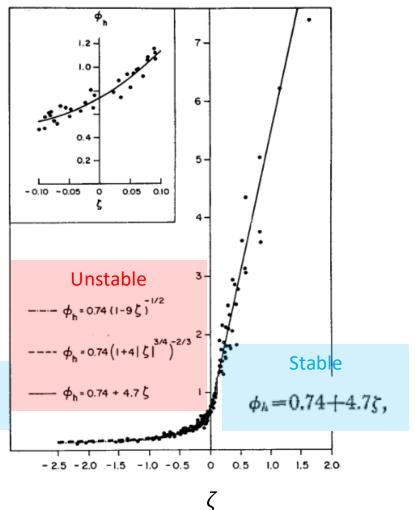
$$\zeta = \frac{z}{L} = z \frac{\kappa g \theta' w'}{\theta u_*^3}$$

Empirical stability functions – Businger et al (1970)

Momentum: Φ_M



Heat: Φ_H



Richardson number:

$$Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\frac{\partial U}{\partial z}}$$

Dimensionless wind shear:

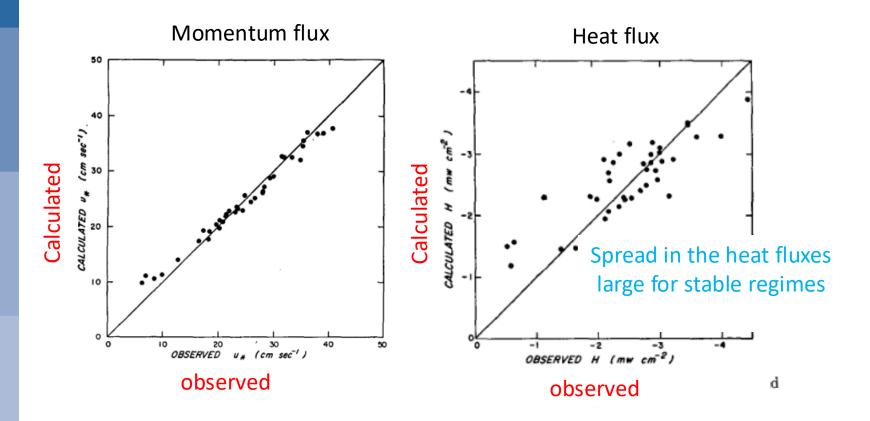
$$\Phi_M = \frac{\kappa z}{u_*} \frac{\partial U}{\partial z}$$

Dimensionless temperature gradient:

$$\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \theta}{\partial z}$$

$$\zeta = \frac{z}{L} = z \frac{\kappa g \overline{\theta' w'}}{\theta u_*^3}$$

Empirical stability functions - Businger et al (1970)



Plots show observed vs calculated heat and momentum fluxes in stable situations

Mix well to form:

Richardson number:

$$Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\frac{\partial U}{\partial z}}$$

Dimensionless wind shear:

$$\Phi_M = \frac{\kappa z}{u_*} \frac{\partial U}{\partial z}$$

Dimensionless temperature gradient:

$$\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \theta}{\partial z}$$

$$Z = \frac{z}{L} = z \frac{\kappa g \theta' w'}{\theta u_*^3}$$

Empirical stability functions – Other locations

New South Wales (Dyer and Hicks 1974, Dyer and Bradley 1982) Also 'Horizontally homogeneous, flat terrain', ...and mostly unstable conditions

Mix well to form:

Richardson number:

$$Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\frac{\partial U}{\partial z}}$$

Dimensionless wind shear:

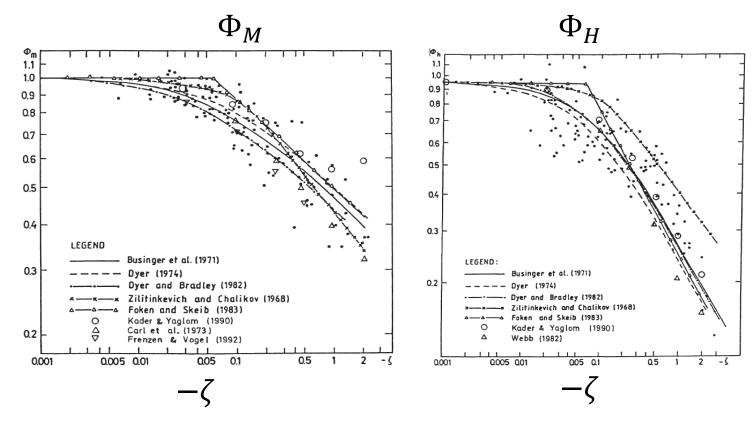
$$\Phi_M = \frac{\kappa z}{u_*} \frac{\partial U}{\partial z}$$

Dimensionless temperature gradient:

$$\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \theta}{\partial z}$$

$$Z = \frac{z}{L} = z \frac{\kappa g \theta' w'}{\theta u_*^3}$$

Empirical stability functions – Other locations



There is some disagreement in the functions, depending on where the measurements were taken

Mix well to form:

Richardson number:

$$Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\frac{\partial U}{\partial z}}$$

Dimensionless wind shear:

$$\Phi_M = \frac{\kappa z}{u_*} \frac{\partial U}{\partial z}$$

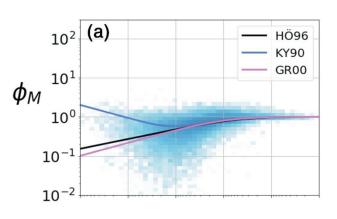
Dimensionless temperature gradient:

$$\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \theta}{\partial z}$$

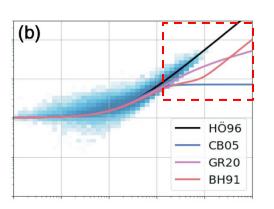
$$Z = \frac{z}{L} = z \frac{\kappa g \theta' w'}{\theta u_*^3}$$

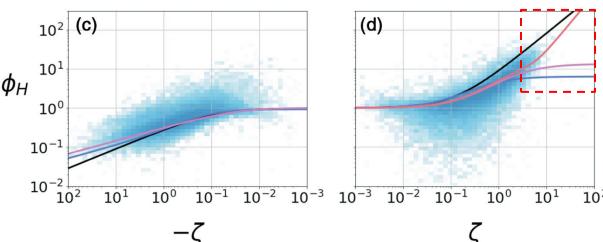
Empirical stability functions – Other locations

Unstable cases



Stable cases





Mosso et al, 2023

There is large divergence in the commonly used functions in stable cases – fluxes are small and difficult to measure

Mix well to form:

Richardson number:

$$Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\frac{\partial U}{\partial z}}$$

Dimensionless wind shear:

$$\Phi_M = \frac{\kappa z}{u_*} \frac{\partial U}{\partial z}$$

Dimensionless temperature gradient:

$$\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \theta}{\partial z}$$

$$\zeta = \frac{z}{L} = z \frac{\kappa g \overline{\theta' w'}}{\theta u_*^3}$$

Empirical stability functions – SHEBA (very stable)

Mix well to form:

Richardson number:

$$Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\frac{\partial U}{\partial z}}$$

Dimensionless wind shear:

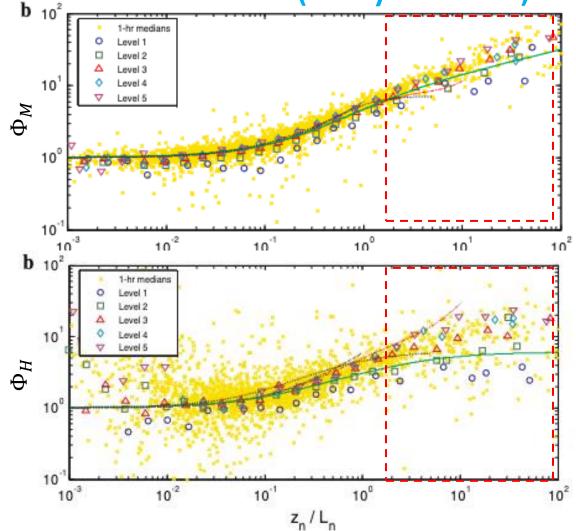
$$\Phi_M = \frac{\kappa z}{u_*} \frac{\partial U}{\partial z}$$

Dimensionless temperature gradient:

$$\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \theta}{\partial z}$$

$$Z = \frac{Z}{L} = Z \frac{\kappa g \theta' w'}{\theta u_*^3}$$

Empirical stability functions – SHEBA (very stable)



Mix well to form:

Richardson number:

$$Ri = \frac{g}{\theta} \frac{\frac{\partial \theta}{\partial z}}{\frac{\partial U}{\partial z}}$$

Dimensionless wind shear:

$$\Phi_M = \frac{\kappa z}{u_*} \frac{\partial U}{\partial z}$$

Dimensionless temperature gradient:

$$\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \theta}{\partial z}$$

$$\zeta = \frac{z}{L} = z \frac{\kappa g \theta' w'}{\theta u_*^3}$$

Summary of fundamental concepts

Local turbulence closure:

- Assumes local turbulent fluxes can be determined by a K-profile and the background gradients
- Concept of an eddy lengthscale is used to determine the turbulent mixing
- Lengthscale depends on height above the surface and the stability

MO surface layer similarity theory:

- Possible to relate the surface fluxes and near-surface gradients through universal functions
- Functions depend on the Obukhov length (measure of surface stability)

Roughness length:

Assumed to be a property of the surface roughness elements (e.g. vegetation / wave height)

• Empirical stability functions:

- Most widely used stability functions are from flat terrain and relatively dated analysis
- Recent campaigns over different regions and in stable conditions show disagreement from region to region – could be due to missing processes

