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e Lecture 2
3. Gaseous absorption and emission
4. Representing cloud structure
5. Some remaining challenges
e Lecture 3 (Mark Fielding)
— The ECMWEF radiation scheme




Part 3: Gaseous absorption and
emission

e Part 2 considered monochromatic radiative transfer only

¢

o What causes complex emission/absorption spectra of
gases?

o [ecture 3 will outline how we represent this efficiently in
models



Planck’s law

e Spectral radiance [W m2 srl Hz!]

emitted by a black body at
temperature T is
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h = Planck's constant 6.626x1034 J s
k = Boltzmann's const 1.381x10-23 J K'!
c = speed of light 299792458 m s-!
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Emission by gases

e Planck function has a continuous spectrum at all temperatures:
maximum possible emission by medium in thermal equilibrium

e Absorption by gases is an interaction between molecules and photons
and obeys quantum mechanics

— Not quantized: kinetic energy ~ kT/2

— Quantized: changes in levels of energy occur by AE=h Av steps
e rotational energy: lines in the far infrared A > 20um
e vibrational energy (+rotational): lines in the 1 - 20 um
e electronic energy (+vibr.+rot.): lines in the visible and UV

e Radiation schemes are benchmarked to spectroscopic databases from
laboratory measurements
— For example, HITRAN database (Rothman et al. JQSRT 2009)



Composition of the Earth’s atmosphere

Gas Parts by volume Interaction
Nitrogen (N2) 780,840 ppmv (78.084%) SW (Rayleigh)
Oxygen (02) 209,460 ppmv (20.946%) SW (Ray+abs)
Water vapour (H20) ~0.40% full atmosphere, surface ~1%-4% LW, SW (abs)
Argon (Ar) 9,340 ppmv (0.9340%)

Carbon dioxide (CO2) 415 ppmv (0.042%) rising LW, SW (abs)
Neon (Ne) 18.18 ppmv (0.001818%)

Helium (He) 5.24 ppmv (0.000524%)

Methane (CHa) 1.88 ppmv (0.000188%) rising LW, SW (abs)
Krypton (Kr) 1.14 ppmv (0.000114%)

Hydrogen (H2) 0.55 ppmv (0.000055%)

Nitrous oxide (N20) 0.319 ppmv (0.00003%) rising LW

Carbon monoxide (CO) 0.1 ppmv (0.00001%)

Xenon (Xe) 0.09 ppmv (9><1O_6%) (0.000009%)

Ozone (03) 0.0 to 0.07 ppmv (0 to 7><1O_6%) LW, SW (abs)

SW “shortwave” solar radiation: Rayleigh scattering (blue sky) or absorption
LW “longwave” terrestrial infrared radiation: absorbing greenhouse gases
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Spectral lines

Spectral lines are of frequency v=AE/h

Absorption cross-section per molecule: ¢, =5 7 (v—v,)
— S = line strength

— vy = centre frequency

— f(v—vy) = line shape (normalized to unit area)
Natural broadening

— Due to Heisenburg'’s principle (negligible)

Pressure broadening

— Molecular collisions disrupt energy levels (troposphere and
stratosphere)

Doppler broadening

— Due to random motion of molecules, absorption/emission
is Doppler-shifted from natural line position (mesosphere)



Pressure broadening

e Theory is rather heuristic; usually described adequately
but not perfectly by the Lorenzline shape:
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Doppler broadening

e Molecular velocity distribution is Gaussian:

P(V) = ( m jO'S ex _mv?
27KT P 2KT

e Doppler shift v'=v (1 —v/c) so line shape is Gaussian
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Continuum absorption

In addition to spectral lines, some absorption does not
exhibit line structure — this is due to:

Photoionization

— High energy photons (X/y-rays) strip electrons from atoms

— Kinetic energy of resulting ion and electron not quantized,
so will be continuum absorption above ionization energy

Photodissociation

— Ultraviolet light can break molecules (e.g. O, Os) into
constituent atoms: protects us from hard UV at surface

Water vapour continuum uncertain: mechanism is either
— Far wings of lines (due to underestimate by Lorenz shape)
— Temporary water vapour clusters (dimers, trimers etc.)



Water vapour continuum

e Shine et al. in CAVIAR project have found that current
water vapour continuum models can significantly
underestimate absorption in windows between bands,
particularly in the near infrared
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Impact of CAVIAR continuum

e Change in free-running IFS coupled to the ocean when
CAVIAR continuum introduced
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TOA albedo

atmospheric absorptance

Clear tropical profile Liquid cloud (plane parallel)
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Part 4: Representing cloud
structure

e Representing cloud fraction, overlap and inhomogeneity

e What is the impact of overlap and inhomogeneity on the
radiation budget?



Cloud fraction parametrization

e If cloud is diagnosed only when gridbox-mean g, > g,
then resulting cloud fraction can only be 0 or 1

qS(T) \~_j”‘;j W ::7:-:;7'""/ — N
q.=q+q > |
1
Cloud fraction Cloud can form when
0 N gridbox RH < 100%

e Cloud fraction can be diagnosed from prognostic or
diagnostic sub-grid distribution of humidity and cloud

e ECMWEF uses a prognostic equation for cloud fraction



Multi-region two stream

e E.g. Met Office Edwards-Slingo scheme

Layer 1 .
e Solve for two fluxes in clear and cloudy
regions
Layer 2 — Matrix is now denser (pentadiagonal

rather than tridiagonal)
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Are we using computer time wisely?

e Radiation is an integral:
F™(z) = 'At j LX L | (z,Q, X, v,t)dQdxd vt

Dimension | Typical number | How well is this | Consequence of poor
of quadrature dimension resolution
points known?
Time 1/3 (every 3 h) | At the timestep of | Changed climate sensitivity
the model (Morcrette 2000); diurnal
cycle (Yang & Slingo 2001)
Angle 2 (sometimes 4) | Well (some +6 W m-2 (Stephens et al.
ungectaimty ice | 2001)
Nphase Yunctiofis
Space 2 (cIear+cIoudyKTl500rIy (clouds! Up to a 20 W m-2 long-term
< bias (Shonk and Hogan
LA~ 2009)
Spectrum 100-250 Very well (HITRAN | Incorrect climate response

database)

to trace gases?




Three further issues for clouds

= e C(Clouds in older GCMs used a simple cloud
fraction scheme with clouds in adjacent
layers being maximally overlapped

‘ 1. Observations show that vertical overlap of clouds in two
layers tends towards random as their separation
increases

2. Real clouds are horizontally inhomogeneous, leading to
% albedo and emissivity biases in GCMs (Cahalan et al
1994, Pomroy and Illingworth 2000)

3. Radiation can pass through cloud sides, but these 3D
% effects are negelcted in all current GCMs




10

Height (km)

Cloud overlap parametrization

e Even if can predict cloud fraction versus height, cloud
cover (and hence radiation) depends on cloud over/ap

Random overlap Exponential-random overlap (o=0.6) Maximum-random overlap

. . . — 0 . . . ~ 0 . . N 0
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Maximum overlap

Height (km)

Cloud cover

e Observations (Hogan and Illingworth 2000) support
“exponential-random overlap”:

— Non-adjacent clouds are randomly overlapped
— Adjacent clouds correlated with decorrelation length ~2km
— Many models still use *maximum-random overlap”




example

Cloud overlap from radar

observe the
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e Radar can
clouds

<t
o
[ap]
o
od
o
—
o
| o
(&N}
| o
—
5)
T
| 0=
T o
E
T
~
r w
1 ~—
o
(4]
Kol
)
IHGM.. wl
-
g 1
=
[
-
ko) Q
=
g =)
1 N o | ©
I — .m
S 3
o [&]
o
—
o o

(wnf) ybreH

(wny) ybioH

I
13 14 15 16 17 18 19 20 21 22 23 24
Time (UTC)

12



Level separation Az (km)

Cloud overlap:

Vertically non-continuous cloud
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e Vertically isolated clouds are randomly overlapped

e QOverlap of vertically continuous clouds becomes rapidly

more random with increasing thickness, characterized
by an overilap decorrelation length z, ~ 2 km

Hogan and Illingworth (QJ 2000)



Cloud overlap globally

e Latitudinal dependence of decorrelation length from Chilbolton and
the worldwide ARM sites

- More convection and less shear in the tropics so more maximally overlapped
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structure
important?

An example of non-linear
averaging
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Inhomogeneous cloud
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Example from MODIS
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e By scaling the optical depth it appears we can get an
unbiased fit to the true top-of-atmosphere albedo
— Until McRad (2007), ECMWF used a constant factor of 0.7

— Now a more sophisticated scheme is used



Representing cloud structure: Tripleclouds

e Ice water content from
Chilbolton radar, log,,(kg m=3)

Height (km)

e Plane-parallel approx:

- 2 regions in each layer, one clear
and one cloudy

—

Height (km)

e “Tripleclouds”:
- 3 regions in each layer
-5 - Alternative to McICA

- Uses Edwards-Slingo capability
for stratiform/convective regions
for another purpose

1 2 3 4 5 6 7 8

Time (hours) Shonk and Hogan (JClim 2008)



latitude

latitude

Global impact of cloud structure

Shonk and Hogan (2010)

Cloud radiative forcing (CRF) is change to top-of-atmosphere net flux due to clouds
Clouds cool the earth in the shortwave and warm it in the longwave:

(a) (b) LW CRF/W m=: CERES data
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SWCRF /W m™

Horizontal versus vertical structure
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e Correcting cloud structure changes cloud radiative effect by
around 10%

e Impact of adding horizontal structure about twice that of
improving vertical overlap

e Note that uncertainties in the horizontal structure effect are
much larger than in the vertical overlap effect



Part 5: Remaining challenges

e Improve efficiency

— Radiation schemes often the slowest part of the model, so
may be called infrequently and not in every model column

e Improve accuracy
— Better spectroscopic data, particularly the continuum

— Better treatment of upper stratosphere/mesosphere to
enable satellite observations here to be assimilated

— Evaluate against new observations

e Add new processes
— Radiative properties of prognostic aerosols
— Non-local-thermodynamic equilibrium for high-top models
— Cloud inhomogeneity information from cloud scheme
— Consistent radiative treatment in forests and urban areas
— Three dimensional radiative transfer in presence of clouds



Errors due to neglectingD e#‘ !cts

® Shortwave side illumination

— Strongest when sun near horizon ® Shortwave entrapment

— Horizontal transport beneath
clouds makes reflection to space
less likely

nce of sunlight intercepting cloud

® Longwave effect
— Radiation can now be emitted from the
side of a cloud

™
\ — 3D effects can increase surface cloud
forcing by a factor of 3 (for an isolated,
optically thick, cubic cloud in vacuum!)




3D cloud benchmark

e Large spread in 1D models, whether used in ICA mode or
with cloud-fraction scheme Barker et al. (JClim 2003)

40¢ ICA exact overlap
U B ragadaaa g la ey a1l g gl g4y U B raaada o s ala g e gl e a ol g 2y
30¢ ] i ] I
q —¥— 3D benchmark - T o pmeinam: s i
: ——— |CA benchmark T r
075 e 1D models = 0.7 ereseceee Tl =
R i T R LR L e .
k=
g o
T 0.6 -
ﬂ: -
o
0571 —3— 30 benchmark I
4 exact overlap benchmark L
ok T T 1D models -
- F - -
0-4 LU R LA O Y L B I | 0.4 LN B I Y N N N LN N BN RN N N LR
0 02 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Ho Ho

How can we represent this effect in GCM radiation schemes?



Direct shortwave calculation

—— ICA

.

Cloudy region Clear region a8 —
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Normalized optical depth into layer
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Direct downwelling shortwave irradiance (W m_z)
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First part of a shortwave calculation
is to determine how far direct
(unscattered) beam penetrates

- Solve this equation independently in the
clear and cloudy regions (5 is optical

Ho

- The solution is Beer's law:

F = Fyexp(—9/ o)



Normalized optical depth into layer

Direct shortwave calculation

3D radiation
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- Solution more complicated!

- Result: much less radiation gets
through to next atmospheric layer!



Evaluation of fast 3D scheme

e New solver implementing these ideas: SPARTACUS (Speedy
algorithm for radiative transfer through cloud sides)
e Compare to full 3D Monte Carlo calculation in cumulus

- Mean of 4 solar azimuths, error bar indicates standard deviation due
to sun orientation
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e Good match!
e 3D effect up to 20 W m~2, similar to inhomogeneity effect

Hogan et al. (JGR 2016)



Estimate of global impact of 3D radiation

® Compare 20-year COUp'Gd IFS (a) 2-%6emperature(K), mean=0.875, Iandmean=1.13

4
n

(constant 2000 gas & aerosol)
with and without 3D effects

e Surface shortwave and
longwave changes both act to
warm the surface

e Land warms by over 1 K %0
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Summary so far

e Complex absorption spectra arise due to quantum
mechanics

- Discrepancies remain between models, especially in representing the
water vapour continuum and stratosphere/mesosphere infrared
cooling rates

- The correlated-k-distribution is the state-of-the-art for
representing gaseous absorption spectra in models
e Observations of clouds from cloud radar have had a
significant impact on the way they are represented in
radiation schemes
- Significant errors still remain, e.g. representation of 3D effects

- Challenge to know whether we are allocating our computational
resources wisely

e Next lecture: what we currently implement in the ECMWF
radiation scheme
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