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Numerical Weather Prediction 

Parametrization of diabatic processes

Convection I: General circulation and 

concepts

Peter Bechtold 

https://www.ecmwf.int/en/learning/education-material/lecture-notes

(Atmospheric moist convection, Atmospheric Thermodynamics)
https://www.ecmwf.int/en/learning/education-material/elearning-online-resources

https://www.ecmwf.int/en/learning/education-material/lecture-notes
https://www.ecmwf.int/en/learning/education-material/elearning-online-resources


NWP Training Course Convection I: General circulation and concepts Slide 2

Convection Parametrisation and Dynamics -

Text Books

• Yano&Plant (Editors), 2015: Parameterization of atmospheric convection.
World scientific, Imperial College Press

• Lin, J., T. Qian, P. Bechtold et al. : Atmospheric Convection 
https://doi.org/10.1080/07055900.2022.2082915

• Emanuel, 1994: Atmospheric convection, OUP

• Houze R., 1993: Cloud dynamics, AP

• Holton, 2004: An introduction to Dynamic Meteorology, AP

• Bluestein, 1993: Synoptic-Dynamic meteorology in midlatitudes, Vol II. OUP

• Peixoto and Ort, 1992: The physics of climate. American Institute of Physics

• Emanuel and Raymond, 1993: The representation of cumulus convection in 
numerical models. AMS Meteor. Monogr.

• Smith, 1997: The physics and parametrization of moist atmospheric 
convection. Kluwer

• Dufour et v. Mieghem: Thermodynamique de l’Atmosphère, 1975: Institut
Royal météorologique de Belgique

• Anbaum, 2010: Thermal Physics of the atmosphere. J Wiley Publishers

AP=Academic Press;  OUP=Oxford University Press
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Convection=heat the 

bottom&cool the top

Pre-frontal deep convection July 2010 near Baden-
Baden Germany

Rayleigh-Benard cellular 
convection

Classic plume experiment
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Outline

General:

• Convection and tropical circulations

• Useful concepts and tools:

• Buoyancy 

• Convective Available Potential Energy

• Soundings and thermodynamic diagrams

• Convective quasi-equilibrium

• Apparent heating from large-scale observational budget

• Tropical waves and convective organisation:

• Tropical waves

• Middle latitude Convection
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It’s raining again… 2000-2003 annual mean daily precipitation 

from IFS Cy48r1 (2023) coupled and GPCP2.2 dataset

about 2.7-2.8 mm/day is 

falling globally, but most 

i.e. 5-7 mm/day in the 

Tropics
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Model Tendencies – Tropical Equilibria

Above the boundary layer, for Temperature  there is on average radiative-convective 

equilibrium; and convective-dynamic equilibrium over the large-scale disturbance, whereas  

for moisture there is roughly an equilibrium between dynamical transport (moistening) and 

convective drying.      - Global Budgets are very similar

The driving force for atmospheric convection is the radiation
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Convection and tropical circulations (1)

The ITCZ and Hadley meridional circulation

zonal mean omega (Pa/s) 
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Convection and tropical circulations (2)

The Walker zonal Circulation and SST coupling

From Salby (1996)Nota: the Hadley and Walker cells are coupled
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Vertical distribution of convective clouds

Johnson et al., 1999, JCL

Tri-modal distribution: Shallow cumulus, Congestus attaining the melting level, 
Deep penetrating convection
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Frequency distribution of shallow and deep in IFS
Cy46r1 (2019)

Shallow 
convection

Deep 
convection 
including 
congestus
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Summary: the weather and thermal equilibria   

~0.5 K/100 m

w ~ -0.5 cm/s
subsidence

100 mm/day precipitation heats the atmospheric column by 2893 W/m2 or by 
30 K/day on average. This heating must be compensated by uplifting of 
w ~ 10 cm/s  ➔ heavy precip/convection requires large-scale perturbations.
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• Suppose we have a series of nice clear sky anticyclonic days, then above the boundary-layer

• But what happens if we have a thunderstorm day with  Pr=100 mm/day 
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Buoyancy (1)- Archimedes said ‘Heureka!’ 

Body in a fluid Assume fluid to be in 

hydrostatic equlibrium
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Buoyancy (2)

Vertical momentum equation:
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Buoyancy (3)
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Buoyancy (4) T and P contributions
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Buoyancy (5) moist atmosphere

0.608 l

T
B g g q q

T





  
= −  − + − 

 

effects of humidity and condensate need to be taken into account 

via virtual temperature

In general all 3 terms are important. 1 K perturbation in T is equivalent to 5 

g/kg perturbation in water vapor or  3 g/kg in condensate
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Non-hydrostat. Pressure gradient effects

g
z

p

dt

dw








−




−=

1

CRM analysis of the terms 

by F. Guichard and D. Gregory

Physics:

Vector field of the buoyancy 

pressure-gradient force for a 

uniformly buoyant parcel of finite 

dimensions in the x-z-plane. 

(Houze, 1993, Textbook)

0

15

10

5

-0.02 0.02 0.04-0.04

P

Z
 (

k
m

)

(ms-2)

B



NWP Training Course Convection I: General circulation and concepts Slide 18

Convective available potential energy (CAPE)
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Convection in thermodynamic diagrams (1)
using Tephigram/Emagram

Idealised Profile

LCL

LFC

LNB

CIN
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Convection in thermodynamic diagrams (2)
using equivalent Potential Temperatures

θ

Θesat(T)

Θe is conserved during 

moist adiabatic ascent
CAPE

Note that  no CAPE is available for parcels ascending above 900 hPa and that the 

tropical atmosphere is stable above 600 hPa (θe increases) – downdrafts often 

originate at the minimum level of θe in the mid-troposphere.

GATE Sounding
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Mixing and 3D flow
subcloud and cloud-layer Circulations

From high-resolution LES simulation (dx=dy=50 m) 

Vaillancourt, You, Grabowski, JAS 1997
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Mixing models

undiluted

after Raymond,1993

entraining plume cloud top entrainment stochastic mixing
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Effect of mixing on parcel ascent

No dilution

Heavy dilution

Moderate dilution

Mixing affects both cloud top height and virtual temperature excess (CAPE) 
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Large-scale effects of convection (1) 

Q1 and Q2 

In convective 

regions these 

terms will be 

dominated by 

convection

Thermodynamic equation (dry static energy) :
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“large-scale observable” terms “sub-grid” terms

Why use s or θ,  not T ? 

s =cpT+gz

ds/dz= CpdT/dz+g

If dT/dz=-g/cp (dry adiabatic 

lapse rate), then ds=dθ=0
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Large-scale effects of convection Q1, Q2 and Q3

This quantity can be derived from observations of the “large-scale” terms on the 

l.h.s. of the area-averaged equations and describe the influence of the “sub-grid” 

processes on the atmosphere.
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Large-scale effects of convection (2)

vertical integrals of Q1 and Q2
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Large-scale effects of convection (3)

Budgets from Obs: Tropical Pacific

Yanai et al., 1973, JAS

Note the typical tropical maximum of Q1 at 500 hPa, Q2 
maximum is lower and typically around 700 -800 hPa

Budgets from Obs and IFS : Indian Ocean

J.-E Kim et al. 2017, JAS

K/day K/day
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Effects of mesoscale organization 
convective and stratiform  heating modes
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Zonal mean convective tendencies (deep & 

shallow) July 2013 and mass flux in  IFS

Heating                                 moistening 

cloud layer                           drying subcloud layer

0 0 0

0 0 0
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Convective quasi-equilibrium 

Arakawa and Schubert (1974) postulated that the level of activity of convection is 

such that their stabilizing effect balances the destabilization by large-scale processes.

Observational evidence: v (700 hPa)

− (700 hPa)

Precipitation

GARP Atlantic Tropical 

Experiment (1974)

Thompson et al., JAS, 1979
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Summary 
• Convection affects the atmosphere through condensation / evaporation 

and eddy transports

• To first order convection stabilizes the environment and on large 

horizontal scales convection is in quasi-equilibrium with the large-scale 

forcing

• Q1, Q2 and Q3 are quantities that reflect the time and space average 

effect of convection (“unresolved scale”) and stratiform heating/drying 

(“resolved scale”)

• An important parameter for the strength of convection is CAPE

• Shallow convection is present over very large (oceanic) areas, it 

determines the non-local heat and momentum fluxes into the cloud 

layer-> the horizontal transport of vapor and momentum from the 

subtropics to the ITCZ

• The effect of convection (local heat source) is fundamentally different in the 

middle latitudes and the Tropics. In the Tropics the Rossby radius of 

deformation R=N H/f (N=Brunt Väisäla Freq, f=Coriolis parameter, 

H=tropopause height) is infinite, and therefore the effects are not locally 

bounded, but spread globally via gravity waves – “throwing a stone in a lake”
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Convectively coupled waves:

Rossby, Kelvin, MJO and  African easterly Waves
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Analytical: solve DRY shallow water equations (see Lecture Note)
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The Kelvin wave                The n=1 Rossby wave

V=0, eastward moving ~18 m/s

sym. around equator

OLR anomaly shaded, winds max at equator

westward moving ~5 m/s

sym. around equator



NWP Training Course Convection I: General circulation and concepts Slide 34

Wavenumber frequency Diagrams of OLR

NOAA Satellite

Cy46r1 6y (2019)

software courtesy 
Michael Herman (New 
Mexico Institute)

(all spectra have been 
divided by their own= 
smoothed background)
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Rossby & MJO 5.3.2015-18.3 2015
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Rossby & Kelvin 5.3.2015-16.3 2015
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Normal mode projection and filtering 

All

=Analysis

Žagar et al. (Geosc. Mod. Dev. 2015)

Kelvin

Rot 1-5
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U850

U200

27 November 2011: Meteosat 7 + ECMWF Analysis

The MJO over Indian Ocean
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African Easterly waves

Hovmoeller diagrams as 

an easy way to plot 

waves (propagation + 

amplitude)
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Kelvin waves: vertical T-anomalies

see also M. Herman et al. (2016, JAS) M. 
Steinheimer et al. (2008 Tellus) G. 
Shutts ( 2006, Dyn. Atmos. Oc.)

At z~10 km, warm anomaly 

and convective heating  are in 

phase, leading to :

o the conversion of potential 

in kinetic energy, given by 

specific density times 

omega= αω

o The generation of potential 

energy, given by 

thermodynamic efficiency 

times heating =   N Q
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