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Parametrizations in Data Assimilation 

• Introduction

• Why are physical parametrizations needed in data assimilation?

• Tangent-linear and adjoint coding.

• Issues related to physical parametrizations in data assimilation.

• Physical parametrizations in ECMWF’s current 4D-Var system.

• Examples of applications.

• Summary and prospects.



Observations
with errors

a priori information from model 
= background state with errors

Data assimilation system 
(e.g. 4D-Var)

Analysis

Forecast

NWP model

Data assimilation



Model trajectory from 
first guess xb

time15129

xb

All observations yo between 
ta-9h and ta+3h are valid at 

their actual time
yo

analysis time ta

4D-Var

6

xa

Model trajectory from 
corrected initial state

3

model state

assimilation window

initial time t0

4D-Var produces the analysis (xa) that minimizes the distance to a set of 
available observations (yo) under the constraint of some a priori background 
information from the model (xb) and given the respective errors of observations 
and model background.
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4D-Var

Adjoint of forecast model with simplified linearized physics 
(simplified: to reduce computational cost and to avoid non-linear processes)  
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where:  i = time index (inside 4D-Var window, typ. 12h).
             dx0 = x0 - xb

0 (increment).
             Hi = tangent-linear of observation operator.
             Mi = tangent-linear of forecast model (t0 ® ti).
             di = yo

i - Hi(Mi[xb
0])  (innovation vector).

             B = background error covariance matrix.
             Ri = observation error covariance matrix.

Incremental 4D-Var minimizes the following cost function:



Why do we need physical parametrizations in DA?

Physical parametrizations are needed in data assimilation:

1) To evolve the model state in time during the 4D-Var assimilation,
2) To convert the model state variables to observed equivalents,
à so that obs-model differences can be computed at obs time.

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=¾¾®¾

ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

¾¾®¾

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

3

2

1

0
~

ch

ch

ch

i

ice

liq

s

v

s

v

Rad
Rad
Rad

q
q
P
v
u
q
T

P
v
u
q
T

HM yx

time t0

time ti
observation equivalent

= satellite cloudy radiances
time ti

model 
initial 
state

For example:

M = forecast model with physics
H = radiative transfer model
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Why do we need physical parametrizations in DA?
Tangent-linear operators are applied to perturbations:
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Adjoint operators are applied to cost function gradient:
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from Marécal and
Mahfouf (2002)

Betts-Miller (adjustment 
scheme)

Jacobians of surface rainfall rate w.r.t. T and qv

Tiedtke (ECMWF’s oper 
mass-flux scheme)

The choice of physical parametrizations will affect the results of 4D-Var
M: input = model state (T,qv)  à  output = surface convective rainfall rate
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A glimpse of tangent-linear and adjoint coding

• Simplified nonlinear code:   Z = a / X2 + b Y log(W)

• Tangent-linear code:     dZ = -(2 a / X3) dX + b log(W) dY + (b Y / W) dW

• Adjoint code:                 dX*  = 0                
                                            dY*  = 0
                                            dW* = 0

                                            dX* = dX*   - (2 a / X3) dZ*
                                            dY* = dY*   + b log(W) dZ*
                                            dW* = dW* + (b Y / W) dZ*

                                            dZ* = 0

   The adjoint can be obtained through transposition of the tangent- 
   linear operator, by manual line-by-line coding, or using an automatic 
   adjoint coding software (but latter code will usually not be optimized).



Testing the tangent-linear code

The correctness of the tangent-linear model must be assessed by 
checking that the first-order Taylor approximation is valid: 

Example of output from a successful tangent-linear test:

  

Machine 
precision 
reached

Improvement 
when 

perturbation size 
decreases

Tiny perturbations

Larger perturbations



Testing the adjoint code

The correctness of the adjoint model needs to be assessed by checking
that it satisfies the mathematical relationship: 

The adjoint test should be correct at the level of machine precision 
(e.g. at least 11 identical digits for a 12h global integration of the IFS 
at 50 km resolution). 
Otherwise there must be a bug in the code (or in the test itself)!

Example of output from a successful adjoint test:

      <M dx,        dy> = -0.13765102625164E-01
     <     dx, MT dy> = -0.13765102625168E-01

 The difference is 11.351 times the zero of the machine

where M is the tangent-linear model and MT is the adjoint model.



Testing the adjoint code

At ECMWF, the adjoint is tested for multiple dates and configurations 
of the linearized physics à tabulated number of common digits:



Linearity assumption

• Variational assimilation is based on the strong assumption that the analysis is 
  performed in a (quasi-)linear framework.

• However, in the case of physical processes, strong non-linearities can occur in 
  the presence of discontinuous/non-differentiable processes 
  (e.g. switches or thresholds in cloud water and precipitation formation).

à “Regularization” needs to be applied: smoothing of functions, reduction of 
    some perturbations.

Dy (tangent-linear)

original tangent in x0 

Dx (finite size perturbation)

Dy (non-linear)

x0
x

y

0

Precipitation 
formation 

rate

Cloud water amount

New Dy (tangent-linear)



Thursday 15 March 2001 12UTC ECMWF  Forecast t+12 VT: Friday 16 March 2001 00UTC Model Level 44 **u-velocity
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Nonlinear finite difference: 
M(x+dx) – M(x)

Thursday 15 March 2001 12UTC ECMWF  Forecast t+12 VT: Friday 16 March 2001 00UTC Model Level 45 **u-velocity
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Tangent-linear integration: Mdx 

~700 hPa zonal wind increments [m/s] from 12h model integration. 

An example of spurious TL noise caused by a threshold in the 
autoconversion formulation of the large-scale cloud scheme.

Thursday 15 March 2001 12UTC ECMWF  Forecast t+12 VT: Friday 16 March 2001 00UTC Model Level 44 **u-velocity
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with perturbation reduction in 
autoconversionfrom M. Janisková



ECMWF operational LP package (operational 4D-Var)

Currently used in ECMWF operational 4D-Var minimizations (main simplifications with respect 
to the full non-linear versions are highlighted in red):

• Radiation:  TL and AD of longwave and shortwave radiation available [Janisková et al. 2002]
       - shortwave: based on Morcrette (1991), only 2 spectral intervals (instead of 6 in non-
         linear version).
       - longwave: based on Morcrette (1989), called every 2 hours only.

• Large-scale condensation scheme:  [Tompkins and Janisková 2004]
        - based on a uniform PDF to describe subgrid-scale fluctuations of total water.
        - melting of snow included.
        - precipitation evaporation included.
        - reduction of cloud fraction perturbation and in autoconversion of cloud into rain.

• Convection scheme:  [Lopez and Moreau 2005] 
        - mass-flux approach [Tiedtke 1989].
        - deep convection (CAPE closure) and shallow convection (q-convergence) are treated.
        - perturbations of all convective quantities are included.
        - coupling with cloud scheme through detrainment of liquid water from updraught.
        - some perturbations (buoyancy, initial updraught vertical velocity) are reduced.



ECMWF operational LP package (operational 4D-Var)

• RTTOV is employed to simulate radiances at individual frequencies (infrared, longwave 
and microwave, with cloud and precipitation effects included) to compute model–satellite 
departures in observation space. 

• Orographic gravity wave drag:  [Mahfouf 1999]
           - subgrid-scale orographic effects [Lott and Miller 1997],
         - only low-level blocking part is used.

• Vertical diffusion: 
          - mixing in the surface and planetary boundary layers,
         - based on K-theory and Blackadar mixing length,
         - exchange coefficients based on Louis et al. [1982], near surface,
         - Monin-Obukhov higher up,
         - mixed layer parametrization and PBL top entrainment recently added.
         - Perturbations of exchange coefficients are smoothed (esp. near the surface).

• Non-orographic gravity wave drag:  [Oor et al. 2010]  
            -  isotropic spectrum of non-orographic gravity waves [Scinocca 2003],
          - Perturbations of output wind tendencies below 200 hPa reset to zero.



Diagnostics:

• mean absolute errors:
 

• relative error change:                                            (improvement if < 0)

• here:  REF = adiabatic run (i.e. no physical parametrizations in tangent-linear)
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Finite difference of two NL integrations  «  TL evolution of initial perturbations 

Examination of the accuracy of the linearization for typical analysis increments:
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Zonal mean cross-section of change in TL error when TL includes:

      VDIF + orog. GWD + SURF
Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Temperature

Impact of linearized physics on tangent-linear approximation

Blue = TL error 

reduction =☺



Zonal mean cross-section of change in TL error when TL includes:

      VDIF + orog. GWD + SURF +  RAD
Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Temperature

Impact of linearized physics on tangent-linear approximation

Blue = TL error 

reduction =☺



Zonal mean cross-section of change in TL error when TL includes:

      VDIF + orog. GWD + SURF +  RAD + non-orog GWD + moist physics
Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Temperature

Impact of linearized physics on tangent-linear approximation

Blue = TL error 

reduction =☺



Applications



1D-Var with radar reflectivity profiles

Background 
xb=(Tb,qb,…)
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Impact of linearized physics on analyses and forecasts

> 0 =☺

T 1000hPa

Z 500hPa

T 1000hPa T 1000hPa

Wind 850hPa Z 500hPa

Janisková and Lopez (2023)

Black line: impact of physics-related obs + linearized physics.
Red line: impact of physics-related obs. 

Relative change in forecast RMS error due to the inclusion of linearized
physics (and physics-related observations) in 4D-Var assimilation.

(from 18-km L137 4D-Var cycled over 3 months)



Physics parameter optimization

Idea: It might be feasible to optimize the values of parameters used in the 
physical schemes with the variational data assimilation approach.

This would require to include the parameter(s) in the control vector of the 
4D-Var data assimilation system:
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Limitations: Only parameters that are present in both the forecast model 
and the linearized simplified physics (TL & AD) can be treated in this way.

Discrepancies between the full non-linear physics and the TL & AD physics 
(used in the minimization of J ) might lead to sub-optimal results.

Parameters to be optimized need to be well-constrained by observations.



Physics parameter optimization: an example.

Application: Solar constant (1366 W/m2) taken as the parameter to be 
optimized in 4D-Var (starting from either 1500 or 1200 W/m2).

Observations used in 4D-Var manage to constraint the solar constant 
back to its correct value after 2 weeks or so.



àThe validity of the linear assumption for precipitation quickly drops in 
    the first hours of the forecast, especially at higher resolution.
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Influence of time and resolution on linearity assumption in physics

Results from ensemble runs with the MC2 model (3 km resolution) 
over the Alps, from Walser et al. (2004).

Comparison of a pair of “opposite twin” experiments.
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• Linearized physical parameterizations have become essential components 
of variational data assimilation systems:

à Better representation of the evolution of the atmospheric state during the 
     minimization of the cost function (via the adjoint model integration).
à Extraction of information from observations that are strongly affected by 
     physical processes (e.g., by clouds or precipitation).

• However, there are some limitations to the LP approach:
     1) Theoretical:
         The validity of the linear hypothesis degrades with increasing resolution 
         and integration length.

      2) Technical:
          Linearized models require sustained & time-consuming attention:
      à Testing tangent-linear approximation and adjoint code.
      à Regularizations / simplifications to eliminate any source of instability.
      à Revisions to ensure good match with reference non-linear forecast model. 

Summary and prospects (1)



Summary and prospects (2)

• In practice, it all comes down to achieving the best compromise between:

Realism

Cost Linearity

• Alternative data assimilation methods exist that do not require the 
development of linearized code, but so far none of them has been able to 
outperform 4D-Var, especially in global models:

    à Ensemble Kalman Filter (EnKF; still relies on the linearity assumption),
    à Particle filters (difficult to implement for high-dimensional problems).

• So what is the future of LP?



Working on linearized physics can be tedious…



…but it is for the greater good.



Summary and prospects (3)

• Eventually, it might become impractical or even impossible to make LP work 
efficiently at resolutions of a few kilometres, even if the linearity constraint 
can be relaxed (e.g., by using shorter 4D-Var window or weak-constraint 4D-
Var).

• If the current 4D-Var becomes too expensive at very-high resolution, Artificial 
Intelligence might offer a solution by replacing some of the physical 
parametrizations with much cheaper equivalents (e.g., based on neural 
networks). But this is still ongoing research…     

Thank you!
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Example of observation operator H (radiative transfer model): 

𝐱 =

𝑇(
⋮
𝑇)
𝑞(
⋮
𝑞)

→
*
𝐲 =

𝑅𝑎𝑑&+(
𝑅𝑎𝑑&+,
𝑅𝑎𝑑&+-

Tangent-linear operator H: 

𝐇 =
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𝜕𝑇(

…
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Adjoint operator HT: 

𝐇. =

𝜕𝑅𝑎𝑑&+(
𝜕𝑇(
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