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Outline

• A variational implementation of the EnKF: the EDA

• Hybrid Data Assimilation: What it is and why we do it

• Hybrid Data Assimilation systems in global NWP
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The Ensemble of Data Assimilations (EDA)

• In the lecture on Ensemble Kalman Filters we have seen that EnKF are 
commonly used in hybrid DA systems for estimating and cycling error 
covariance information used by the variational analysis and initialise 
ensemble prediction systems

• Ensemble sizes of O(100-200) are commonly used. To save on 
computational cost the EnKF ensemble is run at a reduced spatial resolution 
(typically double grid point spacing) with respect to the deterministic 
variational analysis cycle 

• The EnKF mean estimate is usually discarded: the EnKF members are re-
centred on the high-res variational analysis at each analysis update



4

EnKF
member update

member 2 
analysis

high res
forecast

high res
analysis

member 1 
analysis

member 2 
forecast

member 1 
forecast

recenter analysis ensem
ble

Dual-Res Coupled Hybrid
Var/EnKF Cycling

member N 
forecast

member N 
analysis

T5
74

L6
4

T1
53

4L
64

Generate new ensemble 
perturbations given the 

latest set of observations 
and first-guess ensemble

Ensemble contribution to 
background error 

covariance

Replace the EnKF 
ensemble mean analysis

and inflate

Previous Cycle Current Update Cycle

GSI Hybrid EnVar

from Daryl Kleist, NCEP



Ensemble Data Assimilation

• Can we replicate the error cycling job done by the EnKF using only 
4D-Var?

• The answer is yes, by applying the same error simulation concepts 
used for the stochastic (perturbed observations) EnKF

• Ensemble of Data Assimilations (EDA; Isaksen et al., 2010)



Ensemble Data Assimilation
• For a linear system (linear model M, linear observation operator H) the data 

assimilation update can be written as:

(1)

• Assuming background (Pb), observation (R) and model errors (Q) to be statistically 
independent, the evolution of the system error covariances is given by:

(2)

• Consider now the evolution of this system if we perturb the observations and the 
forecast model with random, zero mean noise drawn from the respective error 
covariances, i.e. ζ~N(0,R), η~N(0,Q):

!𝐱!" = !𝐱!# + 𝐊 𝒚! + 𝜻 − 𝐇!𝐱!# (3)

!𝐱!# = 𝐌!𝐱!" + 𝜼

where *𝐱!
"/$represent the perturbed system analyses/backgrounds
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Ensemble Data Assimilation
• Consider the differences between perturbed states and the unperturbed one:   

𝛆!
"/# = !𝐱!
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"/#

their evolution in a Kalman Filter-type of DA system is obtained by subtracting the 
unperturbed state evolution equations from the perturbed ones, i.e. (3)-(1):

(4)

• We see that the perturbations evolve with same update equations as the system
• What about their covariances?
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Ensemble of Data Assimilation
• We see that the error statistics from a DA system run with perturbed observations

and model error perturbations evolve with the same update equations as the error 
statistics of the unperturbed DA cycle, in the limit of a large ensemble:

• For this recipe to work, however, we also require to draw perturbations from the 
correct error covariance matrices R (observation errors) and Q (model errors)

• The practical implementation of an Ensemble Data Assimilation system presents us 
with two challenges: 

a) Computational cost as large ensemble required to control sampling errors; 

b) Scientific challenge of estimation of realistic observation and model errors
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Ensemble Data Assimilation
• What does all this mean in practice?

1. We can use an ensemble of perturbed data assimilation cycles to simulate 
the errors of our reference DA cycle;

2. The ensemble of perturbed DAs should be as similar as possible to the 
reference DA (i.e., same or similar K matrix, M, H, and resolution)

3. The applied perturbations ζ ,η should be drawn from the correct error 
covariances (R, Q);

4. There is no need to explicitly perturb the background forecast xb, if the 
perturbations are drawn from the correct error covariances (R, Q);

5. This is a Monte Carlo method: the expectation operators used in (5) imply 
that results strictly hold for large ensemble sizes. In practice non-negligible 
sampling errors are to be expected



The Ensemble of Data Assimilations (EDA)

• How do we currently (March 2024) do it?

1. 50 independent perturbed ensemble members using 4D-Var assimilations 
at reduced resolution

2. TCo639 outer loop, TL191/TL191 inner loops. (HRES DA: TCo1279 outer 
loop, TL255/TL319/TL399/T399 inner loops). 

3. Observations randomly perturbed according to their estimated error 
covariances (R), currently diagonal is physical space

4. SST perturbed with climatological error structures (not yet coupled to the 
Ocean DA)

5. Model error (Q) represented by stochastic perturbations during the 
background forecast integration (SPPT, Leutbecher, 2009)



The Ensemble of Data Assimilations (EDA) 
March 2024
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The Ensemble of Data Assimilations (EDA)

• How will we do it from Q3 2024 (IFS Cycle 49r1)?

1. 50 perturbed ensemble members using 4D-Var assimilations at same outer 
loop resolution as the high-res 4D-Var control (TCo1279, ~9 km grid spacing)

2. Perturbed members soft-recentred on high-res control background (plus a few 
other things, see Holm et al., 

3. TCo1279 outer loop, TL399 inner loop min. 

4. Observations randomly perturbed according to their estimated error 
covariances (R), currently diagonal is physical space

5. SST perturbed with climatological error structures (not yet coupled to the 
Ocean DA)

6. Model error (Q) represented by stochastic perturbations during the 
background forecast integration (SPP, Stochastically Perturbed 
Parametrisations. Lang et al., 2021)



The Ensemble of Data Assimilations (EDA) 
Cy49r1
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Soft-centred EDA

• A new, computationally cheaper and more effective version of the ECMWF EDA is 
scheduled to go into operations in Q3 2024 (IFS Cycle 49r1): Soft-centred EDA (Hólm, 
Bonavita and Lang, 2022)

• Current EDA: All members are independent including the control (unperturbed member). 
The control member is only different from the perturbed members because no observation 
and model stochastic perts are applied

• Soft-centred EDA: 1) Control member run with more and higher resol. inner loops than 
perturbed members 2) Control member provides bg and fg for perturbed members    
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Soft-centred EDA
• In standard ”hard-centred” hybrid 

DA the ensemble mean analysis is 
discarded and the ensemble 
analysis is centred on the control 
(unperturbed, higher res) analysis

• In Soft-centred EDA the ensemble 
mean background is discarded in 
favour of the control background -> 
each member perform an 
independent analysis -> vastly 
reduces imbalances in IC, helps 
maintain spread

• Computational costs reduced 
~30%; impact on ensemble 
prediction performance largely 
positive
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The Ensemble of Data Assimilations (EDA)

• The EDA simulates the error evolution of the 4DVar analysis cycle. As such it has 
two main applications:

1. Provide an ensemble of initial conditions to initialize the ensemble 
prediction system (EPS)

2. Provide a flow-dependent estimate of background error covariances for 
use in the 4D-Var assimilation (both for the HRES DA system and the EDA 
members themselves)



The Ensemble of Data Assimilations (EDA)



The Ensemble of Data Assimilations (EDA)

• The EDA is the system used at ECMWF to simulate the error evolution of the 4DVar 
analysis cycle.

• It is conceptually similar and it is based on the same assumptions of the Perturbed 
Observations (Stochastic) EnKF.

• There are advantages for ECMWF to using an ensemble of 4DVars to simulate the 
error of a reference high resolution 4DVar:

1. The two systems are more similar to one another in terms of Kalman Gain 
than an EnKF and a 4DVar; error estimates should thus be more accurate

2. There are obvious technical and maintenance synergies 

• There are also disadvantages. In particular running an ensemble of 4DVar is 
computationally more expensive than running an EnKF. Current efforts are aimed at 
reducing the computational costs of the EDA



Hybrid Data Assimilation
•



Hybrid Data Assimilation: Motivation
If we neglect model error (perfect model assumption) the problem of finding the 
model trajectory that best fits the observations over an assimilation interval 
(t=0,1,…,T) given a background state xb and its error covariance Pb can be solved by 
finding the minimum of the 4D-Var cost function: 

The 4D-Var solution is equivalent, for the same xb,	Pb, and linear H,M, to the Kalman 
Filter solution at the end of the assimilation window (t=T) (Fisher et al, 2005).
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Hybrid Data Assimilation: Motivation
The 4D-Var solution implicitly evolves the initial background error covariances over
the length of the assimilation window (Thepaut et al.,1996) with the tangent linear
dynamics:

Pb(t)	≈	MPb(t=0)MT

This effect can be seen most easily looking at the evolution of the analysis increment 
for a single observation during an assimilation window:

𝐱" 𝑡 − 𝐱$ 𝑡 ≅ 𝐌𝐏$ 𝑡 = 0 𝐌7𝐇7 𝑦 − 𝐻 𝐱$ / 𝜎$8 + 𝜎98



MSLP (solid lines)
500 hPa Z (shaded) 
background forecast 

Temperature analysis increments for a single temperature observation at the 
start of the assimilation window

t=0h t=3h t=9h



Hybrid Data Assimilation: Motivation
The 4D-Var solution implicitly evolves the initial background error covariances over
the length of the assimilation window (Thepaut et al.,1996) with the tangent linear
dynamics:

Pb(t)	≈	MPb(t=0)MT

but it does not propagate error information from one assimilation cycle to the next.         
Pb is not evolved according to Kalman Filter equations ( i.e., Pb=	MPaMT+Q) but is 
reset to a climatological, stationary estimate at the beginning of each assimilation 
window.

In standard 4D-Var only information about the state (xb) is propagated from one cycle 
to the next. 



Hybrid Data Assimilation: Motivation
Hybrid Data Assimilation: Use an EnKF/EDA system to produce flow-dependent error 
covariance information to be used in the high resolution Variational analysis

The hybrid approach would have the benefit of:

1) Integrate flow-dependent state error covariance information into the variational 
analysis

2) Keep the full rank representation of Pb and its implicit evolution inside the 
assimilation window

3) More robust than pure EnKF/EnVar for limited ensemble sizes and large model 
errors

4) Allow for flow-dependent quality control of observations



Hybrid Data Assimilation: Applications
The next question to address is: how do we integrate the flow-dependent error 
covariance information from the EnKF/EDA systems into the variational analysis?

1. Augmented control variable method (Met Office)

2. 4D-Ensemble-Var (NCEP, CMC, DWD)

3. Hybrid EDA 4D-Var (ECMWF, Météo France)

4. Other forms of hybrid systems: Hybrid-Gain



Hybrid Data Assimilation: Applications
Augmented (alpha) control variable (Lorenc, 2003)

Conceptually it adds a flow-dependent term to the background error model:

Pbclim is the static, climatological background error covariance

Pens ○ Cloc is the localised ensemble sample covariance

In practice this hybrid covariance model is done through augmentation of the control variable (more on this in 
the B modelling lecture):

𝛿𝒙 = 𝜷0𝑷0123
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Hybrid Data Assimilation: Applications
Augmented (alpha) control variable

𝛿𝒙 = 𝜷0𝑷0123
𝒃 ⁄6 7𝝌 + 𝜷8𝐗9 ∘ 𝜶

1
. .
1

= 𝜹𝒙0123 + 𝜹𝒙8:;

• The analysis increment is now a weighted sum of  a component from the static, 
climatological Pbclim and a component from the flow-dependent, ensemble based 
Pbens

• The flow-dependent increment is a linear combination of the ensemble background 
perturbations X’, spatially modulated by the α fields of coefficients

• If the α fields were homogeneous δxens could only span Nens-1 degrees of freedom; 
instead α are spatially varying fields, which effectively increases the available 
degrees of freedom since at different grid points the increment will be a different 
linear combination of ensemble perturbations

• Cloc is a covariance (localization) model for the flow-dependent increments: it 
controls the spatial variation of α



Hybrid Data Assimilation: Applications
Extended (alpha) control variable

Pure ensemble 3D-Var  

50/50 hybrid 3D-Var  from A.Clayton (MO) 



Hybrid Data Assimilation: Applications
4D-Ensemble-Var (Liu et al., 2008)

• In the alpha control variable method one uses the ensemble perturbations to 
estimate Pb only at the start of the 4D-Var assimilation window: the evolution of Pb	
inside the window is done by the tangent linear dynamics (Pb(t)	≈	MPbMT) 

• In 4D-En-Var Pb is sampled from ensemble trajectories throughout the assimilation 
window: 

from D. Barker 



Hybrid Data Assimilation: Applications
4D-Ensemble-Var (Liu et al., 2008)

• The 4D-Ens-Var analysis increment is a localised linear combination of ensemble 
trajectories’ perturbations: 

• This is fundamentally the same state update procedure of the LETKF version of 
EnKF (Hunt et al., 2007)

• While traditional 4D-Var  requires repeated, sequential runs of M, MT, ensemble 
trajectories from the previous assimilation time can be pre-computed in parallel

• However these ensemble trajectories need to be stored and read-in: we are 
trading computational cost for I/O and memory cost

• As in the EnKF, 4D-Ens-Var does not require developing and maintaining the TL 
and Adjoint models, which makes it popular! 
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Hybrid Data Assimilation: Applications
Hybrid EDA 4D-Var (Bonavita et al., 2012, 2015)

• In Hybrid 4D-Var we use the perturbations from the EDA background forecasts to 
update the background error covariance model used in 4D-Var

• The ensemble perturbations are not used directly to construct the analysis 
increments, but to update the modelled Pb(t=0) used in 4D-Var



Hybrid Data Assimilation: Applications

EDA background forecasts 

i=1,2,…,25

EDA

HRES 4DVar

xa4D-Var Forecastxb xb

Updated Pb

xia4D-Var Forecast
SST+εiSST
y+εio
xib xib 4D-Var



Hybrid Data Assimilation: Applications
How does the background error model update works?
• In variational DA, the background error covariance matrix B is usually defined 

implicitly in terms of a transformation from an increment defined in terms of 
model variables (x-xb) to one defined in terms of a control variable χ:

(x-xb)	=	Lχ

so that the implied B=LLT.
• In the current ECMWF wavelet formulation (Fisher, 2003), the variable transform 

can be written as:

1. K is the balance operator, i.e. the operator that links the control variables to the 
model variables 

2. Σb is the grid point variance of background errors

3. Cj(λ,φ) is the vertical correlation matrix for wavelet index j

4. The wavelet transform is defined by the set of basis functions ψj
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Hybrid Data Assimilation: Applications
How does the background error model update works?

• In standard 4D-Var the background error variances (Σb) and the background error 
correlations (Cj(λ,φ)) are computed offline from a climatology of EDA background 
perturbations.

• In Hybrid EDA 4D-Var these quantities (variances and correlations) are updated 
online using the latest set of EDA background perturbations

• In this way the B model is continuously updated and is able to represent the 
“errors of the day” 



Hybrid Data Assimilation: Applications
How does the background error model update works? 500 hPa Vorticity errors

estimated from climat. B

500 hPa Vorticity errors
estimated from online B



Hybrid Data Assimilation: Applications
• Inside 4D-Var EDA derived background error estimates change the shape and size 

of analysis increments

Tropical Cyclone Aere, Philippines 8-9 May 2011.



Hybrid Data Assimilation: Applications
• Inside 4D-Var EDA derived background error estimates change the shape and size 

of analysis increments

Significant operational analysis error, corrected by 4DVar with EDA variances 

4DVar with Static errors                                   4DVar with EDA errors     



Hybrid Data Assimilation: Applications
Static errors           EDA errors         

Static SP ana incr.          EDA SP ana incr.         



Hybrid Data Assimilation: Applications
• The online update of B involves not only the background error variances (Σb) but 

also the background error correlations (Cj(λ,φ)) 

EDA derived background error 
variance for Surface pressure

Hurricane Fanele, 20 January 2009

hPa



Hybrid Data Assimilation: Applications
• The online update of B involves not only the background error variances (Σb) but 

also the background error correlations (Cj(λ,φ)) 

EDA derived background error 
correlation length scale for surface 
pressure

Hurricane Fanele, 20 January 2009

km



Wavelet B Computation



Vertical bg error correlation for Vorticity,
 ~850hPa August 2012

Jan 2012

Feb 2012



Hybrid Data Assimilation: Hybrid Gain
• Another possible way of hybridizing an EnKF with a variational DA system is to 

simply perform a linear combination of their respective analyses (Penny, 2014):

𝐱;<#𝒂 = 𝛼𝐱2>?@A𝒂 + 1 − 𝛼 𝐱BCD"E𝒂

• In a linear framework this is equivalent to doing a linear combination of the 
Kalman gains of the two analyses (hence the name):

𝐱;<#𝒂 = 𝐱2;<#𝒃 + 𝜶𝐊>?@A + 1 − 𝛼 𝐊BCD"E 𝒚 − 𝐱2;<#𝒃

• How does it work? Pretty well, actually, both in a deterministic sense (Bonavita et 
al., 2015) and in terms of ensemble performance (Houtekamer et al., 2019).

• Open question: How to optimally combine the two systems? See Barbieri De 
Azevedo et al., 2020 (EnKF posterior error cov.); Chang et al., 2020, (subspace 
orthogonal to ensemble) for provisional answers



• The EDA is a variational implementation of the Perturbed Observations (Stochastic) 
EnKF. 

• It is used at ECMWF to estimate the state error covariances in order to a) initialise the 
ensemble prediction system and b) to provide estimates of the background error 
covariances for 4D-Var analysis

• Advantages: closer to reference 4D-Var, simpler to maintain and update. Disadvantages: 
computational cost

• Hybrid DA: 3/4D-Var in combination with EnKF/EDA for error estimation and cycling

• Better results than stand-alone 4D-Var or EnKF

• Various flavours of Hybrid DA possible: a) with direct use of ensemble perturbations 
(extended control variable, 4D-Ens-Var); b) updating a B model (hybrid EDA 4D-Var)

• Common issue: limited affordable ensemble size introduces sampling problems. 
Different techniques to tackle them (localisations, spatial averaging, time averaging, 
etc.).

• Estimates of Pa/b only as good as our knowledge of R, Q => improvements in error 
modelling improve forecasts!

Summary
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