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Reconstruction of the past climate using all observations we have:

v"Input: non-gridded observations for a range of quantities (geophysical, radiances,..) + gridded boundary/forcing
v' Output: consistent temporal evolution of 3D atmosphere (or ocean, atm. composition,..)

Methodology:

v" Use a recent NWP data-assimilation system: ‘redo the analysis of old weather’
v" For several decades or longer

v At lower resolution, such that we can afford it

Made available to users in a convenient way
Produced at several centres worldwide: ERA5; MERRA (2); JRA-3Q; CFSR; 20CR-v2,v3
Regional and global, ingest full or selected observing system

AN

Two main categories of applications:
v' Study of specific events or phenomenae:

* need accurate (3D) synoptic situation; i.e., the weather of the day
v' Climate applications:

* low-frequency variability of the mean state

- Statistics, e.g., of extremes




A consistent and complete picture of the past atmesphere Earth system
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Reanalysis uses past observations with today’s NWP DA system

The data from reanalysis are widely used

Global observing system "ECMWF model

v" Complete: combining vast amounts of
observations into (global) fields

v Convenient: “maps without gaps”, always available
in the same way

v" Consistent: use the same physical model
Data assimilation and data assimilation system throughout

l 2001-2010
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o AL WY % Observations are absolutely key!!
Y ¥ s - fewer observations as we go back in time
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* New, modern-day observations added where

P .,,_M possible

-----------------------

1900 1910 15920 1930 iS40 1950 1960 1570 1980 1550 2000 2010

» provide an uncertainty estimate, e.g.,
from an ensemble.




ECMWEF has along experience with reanalysis

Atmosphere/land including ocean waves (opernicus
1) 1979 - 1981 2) 1994 - 1996 3) 2001 - 2003 4) 2006 - 2019 5) 2016 -
FGGE ERA-15 ERA-40 ERA-Interim ERAS
Ocean including sea ice
2006 2010 - 2016 -
ORAS3 ORAS4 ORASS
/Centennial Coupled
2013 - 2015 2016 2017
ERA 20CM/20C CERA-20C CERA-SAT
Enhanced land CpernICus \
2014
~ ~ 2012
ERA-Int/Land ERA-20C/Land

Atmospheric composition (opernicus

2008 - 2009 2010 - 2011 2017 - ...
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Data assimilation: combining the model and the observations

Global observing system ECMWF model
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4D-Var data assimilation: using observations to correct the first guess

background constraint (J,) observational constraint (J,)

Minimise J(@)=(z, —2)"'B,'(z, —2)+ [y — ﬁ(z)]TR_l[y — ﬁ(z)]

T TT 1
2" =|x"B"| h(z)=h(x)+b(x,B)
X Obs O Recipe:
A Jo « Start with a first guess x, , ,, from the previous analysis
analvsis « Compare with observations y
y Jo \ - Calculate the misfit: the cost J
Ob « Change the first guess such that the fit is optimal
S Corrected
J forecast
Xp o Result depends on:
7 Obs « The confidence in your first guess: B matrix
Jb . . . . .
Yy . « The confidence in your observations: R matrix
J Previous ) _
Xa 0 forecast * How you compare the model to observations: h(x)
Obs « The choice of the observation bias model b(x,f)
I | | »
3UTC 6 UTC 9UTC 12 UTC 15UTC  Time Result:
< > * The reanalysis x,, 8,

Assimilation window « used to provide first guess for next analysis




The evolving observing system

Data sources:

* many satellites

» surface observations

« weather balloons, aircraft, etc.

In the ERAS reanalysis we daily use about:
« 53,000 observations in 1950
« and 26 million in 2021

« Amounts are continuing to grow,
» Less observations when going back further
* No satellites
» Before ~1930 no upper-air data
« Coverage much lower, especially over
the southern hemisphere satellites

upper-air

surface

]
1900 1938 1957 1979

Courtesy: Paul Poli




The evolution of ensemble spread; also proxy for synoptic uncertainty
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How does reanalysis differ from NWP?

It is good practice to base an operational reanalysis on a recent NWP system
v E.g., at ECMWF, ERA5 (2016) is based on Cy41r2

Time

Observations Observations Observations

Forecast Forecast Forecast

Analysis

Medium-range forecast

Differences:

v" The focus is on the quality and consistency of the analysis, not the forecast
v" Assimilation system is effectively frozen

v" Need to ensure that you have good and as many as possible historical observations
v' Reprocessing and data rescue

% The NWP system is well-tuned for the recent data-rich era
Ensure that it also works well for the data-sparser past, e.g.:
«  Appropriate forcing fields
« Background errors
« Observation errors
*  Quality control
- Systematic model and observation errors




Why not use simply operational NWP?

ECMWEF Operations T2m at South Pole (average 88S-90S) ERA-Interim T2m at South Pole (average 88S-90S)
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The operational NWP system has evolved dramatically over time:
* Resolution
«  Maturity of its NWP model and data-assimilation system



ERAS forcing appropriate for climate; these are ingested ‘as is’

CMIP5 recommended data sets
Total solar irradiance, greenhouse gases, ozone,
aerosols (including volcanic)
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Long-term evolution of the background error covariance matrix

<+— More weight Length scale
0.01 . :
(a) (c)

v 01] ERA5
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O 100 ¢
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Std. dev. of unbalanced Mean horizontal correlation length scale
temperature / K for unbalanced temperature / km

Lecture on Background error:
* For a single observation at a model grid point the analysis increment is proportional to a

column of B
* The role of B is to spread out information from the observations

Over the course of the century, more observations result in...
=» Smaller background error variances, with sharper structures
=» Analysis increments that are smaller, over smaller areas




Evolution of observation error

The quality of observations has evolved over time in line with changes in instrumentation.
Therefore, the observation error should evolve accordingly

Methods exist that can be used a posteriori to estimate observation error standard deviations*

E.g., ERA-20C assumed time invariant observation errors. This does not seem to be the case...
In CERA-20C these were evolved.

-~ Ship -~ Coastal or island station —Fixed ocean platform or rig
— Buoy -~ CTD, XCTD, MBT, XBT — Land station
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* Desroziers et al. (2005), Diagnosis of observation, background and analysis-error statistics in observation space.
Q.J.R. Meteorol. Soc., 131: 3385-3396. doi: 10.1256/q}.05.108
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Quality control: Impact of a single bad time-series
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The ERAS5 Global Reanalysis

ERAS: A full-observing-system global reanalysis for the
atmosphere, land surface and ocean waves

LAND ATMO

* Produced at ECMWEF, by the Copernicus Climate Change Service WA

%

gt
* Produced in parallel streams to speed up production g
* Daily updates 5 days behind real time from 1940 onwards ;:

* Hourly snapshots at 31km resolution up to about 80km height

* Uncertainty estimate from a 10-member ensemble at half
resolution

* Total dataset about 12 petabyte LAND | ATMO 85T

A WAVE ICE

Observation usage:

* Around 100 billion so far

* Daily: 53,000 (1950), 0.5 million (1979), 26 million (2021) A .
nalysis

Usage of external (gridded) products ‘as is’:

* SST and sea-ice cover

* GHGs, aerosols, Total Solar Irradiance , (diagnostic) ozone
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ERAS5T vs ECMWF NWP operations:

ERAS only: AURA MLS R et
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GBRAD Grounda-Based Radar

latest radiative transfer function, corrections, cgnv
extended variational bias control

Needs to be monitored all during production!
Courtesy: Paul Poli
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ERAS5 uses an Ensemble of Data Assimilations (EDA)

Concept (see presentation from Massimo): Ensemble Data Assimilation Ensemble Forecast

» Perturb observations (including SST and sea ice)
e Perturb model in short forecasts linking analyses
* Do not Perturb VarBC

From this estimate a flow-dependent B matrix:

B(t) = 1—a)By + aBgpa(t)

Observation Observation

ERAS:

10 members, rather than 50 in NWP 097 1éz 157 187 017 ! ! Time

Much reduced resolution Assimilation window Forecast

Smaller mixing &




EDA Ensemble spread as a measure for the synoptic ERAS5 uncertainty

Spread decreases over time when more and more observations become available
Major changes in the observing system are clearly visible

. ERAS5.1 EDA Global mean ensemble spread Temperature (K)
Flow-dependent B matrix:
3
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the quality of re-forecasts issued from reanalysis evolves accordingly

Range (days) when 365-day mean 500hPa height AC (%) falls below threshold
ERAS ERA-Interim  ------- ECMWF operations 1981

ERAS back extension:
NHEM (especially Europe) skill is promising,
but lower prior to 1957-1958

1955 1965 1975 1985 1995 2005 2015

Over SHEM there is a dramatic improvement

1955 1965 1975 1985 1995 2005 2015




Model Error: diagnosed from AMSU-A Mean FG_DEPS in ERAS
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The importance of anchor observations: COSMIC RO from 2006

Global-mean temperature (°C)

(a) 50hPa, relative to ERA-Interim

{b) 50hPa, ERA-Interim
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The North Sea Storm of February 1953

An intense storm in combination with spring tide caused
widespread breaches of sea defenses resulting into about
2,500 deaths.

Subsequently, the UK and the Netherlands fortified their
defences (Thames flood barrier and Delta Works).

(a) 31 January 1953 10 UTC (b) 31 January 1953 18 UTC (c) 01 February 1953 00 UTC
ERAS5 ' | '
I (a) CERA-20C Stornoway (ST)
T T - Li T
(b) Lerwick (LW)
. SOF i : : : =
@ (c) .
=0 South Shields (S5)
o Y ag L -
2E
= a
E 50 T T T T
g7, | @ Viissingen (VL)
@ = = e T
u L]
£, R e
0 0.5 1 2 3 5 T 10 12 15 = 24h Jan 30th Jan 31zt Jan 15t Fab 2nd Fabo 3rd Fab

Significant Wave Height (m)




Stratospheric Sudden Warming, February 1952

0 (a) Berlin Tempelhof

January 1952 February 1952 March 1952

The discovery of the stratospheric sudden warming
phenomenon, was made by Scherhag (1952) by
studying radiosonde ascents from Tempelhof

Airport, Berlin, many of which were assimilated by
ERAS.

In addition, ERA5 shows the full three-dimensional

picture of the related split of the stratospheric polar
vortex.

(a) Analyses

-85 80 75 -70 65 -60 —SSDC—SO -45 -40 -35 -30 -25 -20



Data-driven NWP

TECHNICAL REPORT 1

Pangu-Weather: A 3D High-Resolution System
for Fast and Accurate Global Weather Forecast

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian™, Fellow, IEEE

Abstract—In this paper, we present Pangu-Weather, a deep learning baseg
this purpose, we establish a data-driven environment by downloading 43 ye:
ECMWEF reanalysis (ERAS) data and train a few deep neural networks with
of forecast is 0.25° x 0.25°, comparable to the ECMWEF Integrated Forecasj
Al-based method outperforms state-of-the-art numerical weather prediction
RMSE and ACC) of all factors (e.g., geopotential, specific humidity, wind sp
hour to one week). There are two key strategies to improve the prediction a

(3DEST) architecture that formulates the height (pressure level) information| . . .

aggregation algorithm to alleviate cumulative forecast errors. In deterministi§ Graphcast: Leamlng Sk.lllful medlum-l‘ange
short to medium-range forecast (i.e., forecast time ranges from one hour to .

downstream forecast scenarios, including extreme weather forecast (e.g., tr gIOba_l Weather forecastlng

forecast in real-time. Pangu-Weather not only ends the debate on whether A
but also reveals novel directions for improving deep learning weather forecaj

Remi Lam™!, Alvaro Sanchez-Gonzalez !, Matthew Willson !, Peter Wirnsberger !, Meire Fortunato !,
Alexander Pritzel !, Suman Ravuri!, Timo Ewalds!, Ferran Alet!, Zach Eaton-Rosen!, Weihua Hul,

®: = Alexander Merose?, Stephan Hoyer?, George Holland!, Jacklynn Stott!, Oriol Vinyals!, Shakir Mohamed'
and Peter Battaglial

1 INTRODUCTION “equal contribution, ' DeepMind, 2Google

Index Terms—Numerical Weather Prediction, Deep Learning, Medium-rang

Weather forecast is one of the most important scenarios learn|
of scientific computing. It offers the ability of predicting to ca We introduce a machine-learning (ML)-based weather simulator—called “GraphCast”—which outper-
future weather changes, especially the occurrence of ex- data) i % s . . . .
treme weather events (eg., floods, droughts, hurricanes, cializ forms the most accurate deterministic operational medium-range weather forecasting system in the
2t ) wrhish hac lavan valine bn tha cnsinbe (oo daile ackic. ade world, as well as all previous ML baselines. GraphCast is an autoregressive model, based on graph
neural networks and a novel high-resolution multi-scale mesh representation, which we trained on his-
torical weather data from the European Centre for Medium-Range Weather Forecasts (ECMWF)’s ERAS
reanalysis archive. It can make 10-day forecasts, at 6-hour time intervals, of five surface variables and
six atmospheric variables, each at 37 vertical pressure levels, on a 0.25° latitude-longitude grid, which
corresponds to roughly 25 x 25 kilometer resolution at the equator. Our results show GraphCast is more

accurate than ECMWF’s deterministic o i i tem, HRES, on 90.0% of the 2760 vari-
able and lead time combinations we e utperforms the most accurate previous

[physics.ao-ph] 3 Nov 2022

| 24 Dec 2022
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Climate change: evolution of 2m temperature and comparison with other datasets

12 month running mean surface temperature anomaly (K) relative to 1981-2010

{(a) Global
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Temperature trends:
* The global mean temperature shows little
trend from 1950 to the mid 1970s.
 After that global warming becomes clearly
visible with a global trend of around
* 0.18 K/decade for 1981-2010
* 0.24 K/decade for 1991-2020

Consistency between datasets:
* reanalyses and more direct observation-
based datasets.

* In general, quite good and reassuring,
« especially over Europe,

* However, there are some decrepancies,
« especially over Australia



Regular reporting on state of the climate

i eve M- < L )] @ climate.copernicus.eu = N % A A I'I] + D )
MONTHLY CLIMATE UPDATE | MONTHLY SUMMARIES | EUROPEAN STATE OF THE CLIMATE | CLIMATE INDICATORS | FEATURED STORY ¢ Month Iy Cllmate bu ”etl nS
present the current condition of the
Highlights of the latest monthly summaries View the monthly summary climate USing monthly maps of key
climate change indicators
7 March 2024
February 2024 highlights:

* February 2024 was the warmest February on record globally, with an average
ERAS surface air temperature of 13.54°C.
¢ In February 2024, it was wetter than average in Europe. Wind and heavy

* Yearly ‘European Ttate Of The Climate’

rainfall associated with several storms caused widespread damage and re p 0 rt
disruptions. i
* Arctic sea ice extent was 2% below average, not as low as in most recent H H
years. Antarctic sea ice reached its annual minimum monthly extent, the third lowest in the satellite data record. P rOVI d eS g I O ba I Co nteXt th ro u g h CI I m ate
e Indicators for which data are available
for the majority of the year.

Monthly climate update View previous months
24 NOVEMBER 2023

The Copernicus Climate Change Service confirms that globally it was the warmest
October on record, with temperatures 0.8 degrees Celsius above the 1991-2020
average. 2023 is now clearly on track to become the hottest year on record.

AN

Climate Now by Copernicus - October 2023
\\

Climate change - Climate change. e

>
refers to long-term shifts in,

. he citv of Bologna in Italv is home to the world's olde niversitv and ope' EEEEE—— W N N




Intercomparison with reanalysis products from other major centres
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« The ERAS reanalysis
 Weather applications
* Climate applications
 Coupled reanalysis

e Summary




Coupled processes
The FP7 ERA-CLIMZ2 project

(2014-2017)

Production of a consistent 20t"-century
reanalysis of the coupled Earth-system:
atmosphere, land surface, ocean, sea-
ice, and the carbon cycle

CERA-20C a 20" century reanalysis
using an ocean-atmosphere coupled
model and DA.

CERA-SAT a modern day pilot

a Infcen the Lo Surface;
a

Circulaton, Blogeochemiatry gy, Land e, reanalysis using an ocean-atmosphere
coupled model and DA.




ERA-CLIMZ2: towards coupling with the ocean and sea ice
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Analysis Analysis

The ERA-CLIM2 project pioneered the development of an outer-loop coupled data-assimilation in climate reanalysis
. CERA-20C: centennial reanalysis using surface observations only

CERA-SAT: proof of concept for a recent 9-year period using the full observing system at the ERA5 EDA resolution
. Land data assimilation (LDAS) remains weakly-coupled




Coupled processes: Tropical instability waves %2

Tropical instability waves (TIW)
high-pass filtered SST (colour) and wind stress (contour)

westward-propagating waves near the equator ERA-20C

IBITR BT T e T T
s 7 T h

Sea surface tem perature | . ¢
. L S 1 i
e 28 I L o 'I. ,\_'l__!__. a1t
s — H'] - LA T [

redn g |

@ > POEEY] B EL LR — | k) rx,"-:l b Il. 't
° i 4 ] - PR
20 amorrehh b Y e e e e
= . nni2 J I I’ ! - niiz
S5 P ITTI OENT IR .ﬂ_J___ .'___l __I ;. EuEee - e Rl
: : : R Ve ol p Rl Y o I A T I
470 -160 -150 -140 -130 -120 110 -100  -90 TN SO TR ' R
- LRSS, St e S T — TN S 1
longitude by 5 b S (DR e -li"“"‘w | . A AT (TR
DILRTPSY S S canvex I - 4 _.'-_ A [P = ! ..'-u-' e
; -

ranarsl . R

[TRTR 1

gzsom.'-s B
ERA20C (Forced reanalysis) cenam s i SRR
« no TIWs or wind stress signals et [, 2o o2p
(forced by ‘monthly’ SST) i RRSRANNG

10T
J

-
F- Sl | |
(] i e Pl s |
; L [ ! i R i
e | ey e ["’ o | e o
\ | -

STTIPAT B

L o] |

]
]
==

.
7 L Mg i ] I T T
Rl SIS 2 i -
—yy () A L
A IFTE (=
K

"

)

v

.

—
1 %
1

|

-

-
—

warrz ||| s oy k._...,tg., =)

. 2076781 N5 © o DTTE 1i|r'ﬂTI'|- i Ll ] IR il —i .
CERA-20C (Coupled reanalysis) avzem| 1L AT .,,-L}-'_.--:—,- e gl ] W ‘|' Ry —
- represents TIWs thanks to the ocean dynamics resz) i~ % wosrsl Yy _.-lij JERS IH'TR -
« atmosphere responds accordingly (surface 2zeTafs NN s T r'i' Vi -5 '|:“} i
m-‘u-.*"]. [el s T - N R - e e 1:1::. i LY i

wind stress is sensitive to the ocean TIW)

1 croiude ) ' Lergiuds




Overview

Introduction to reanalysis
 How does reanalysis differ from NWP?
« The ERAS reanalysis
 Weather applications
* Climate applications
* Coupled reanalysis

e Summary




Reanalyses are extremely popular datasets:

e convenient: transform non-gridded historical observations into

e consistent and accurate ‘maps without gaps’

* Many types of users (academic, commercial, policy makers) and applications (weather, climate)
e produced at several centres around the globe

Reanalysis is typically based on a recent NWP data-assimilation system
» for several decades or longer and at lower resolution to keep affordable
* focus is on the analysis, not the forecast (although of course better analyses produce better forecasts)

The long time dimension needs attention:
* Appropriate forcing fields for e.g., radiative forcing, SST, sea ice
* Reprocessing and data rescue of historical observations are important

The data assimilation system is more challenged in the data-sparser past:
* Need to evolve background (and observation) errors accordingly
* Systematic model error has more chance to grow
* Can affect the mean state and changes as the observing system evolves
* The method of weak constraint 4D-Var could alleviate this situation

An uncertainty estimate is important to reflect the increasing confidence when more observations become available
* Ensemble spread provides a proxy for the synoptic uncertainty, not the uncertainty of the mean state

In line with the developments in NWP, reanalysis is progressing towards the Earth system approach
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