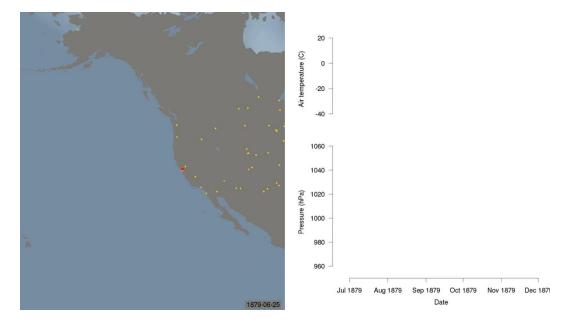
# Biases in observations

#### **Patrick Laloyaux**

Many thanks to Niels Bormann, Hans Hersbach and Dick Dee


To illustrate biases in observations

To construct bias models for specific instruments

To understand the challenges of observation bias correction

## Examples of biases in observations (1/4)

The USS Jeannette (1879, Artic, 33 crew members)



SST measurements from standard buckets have a cold bias (~0.4C)



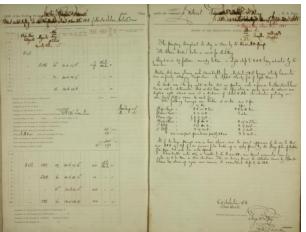


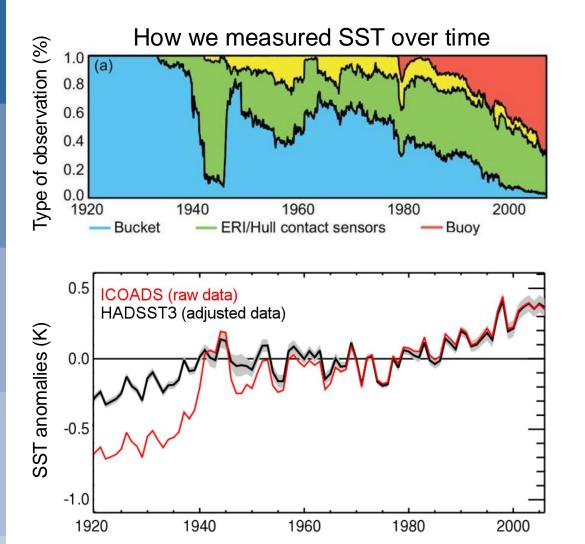

Photo # NH 52000 Steamer Jeannette sinking after being crushed by Arctic ice, June 1881

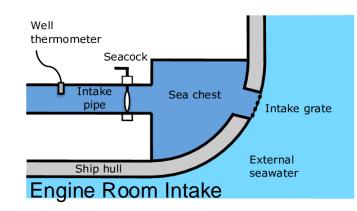


THE SINKING OF THE JEANNET

Photo # NH 52002 Jeannette's crewmen drag their boats over the Arctic ice, June-August 188



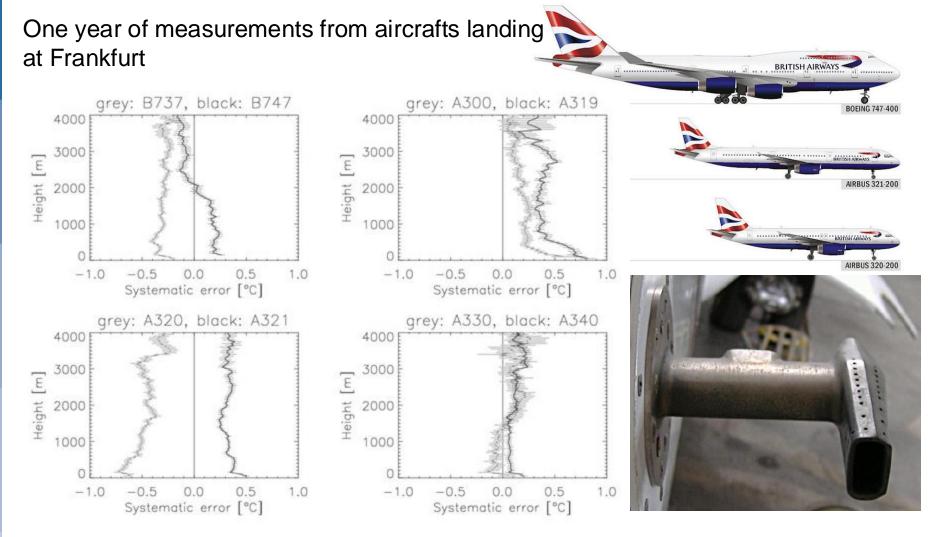

DRAGGING THE BOATS OVER THE ICE


Photo # NH 92142 LCdr. DeLong and his party wading ashore on the Lena Delta, Siberia, 17 Sept. 1881



WADING ASHO

#### Examples of biases in observations (2/4)

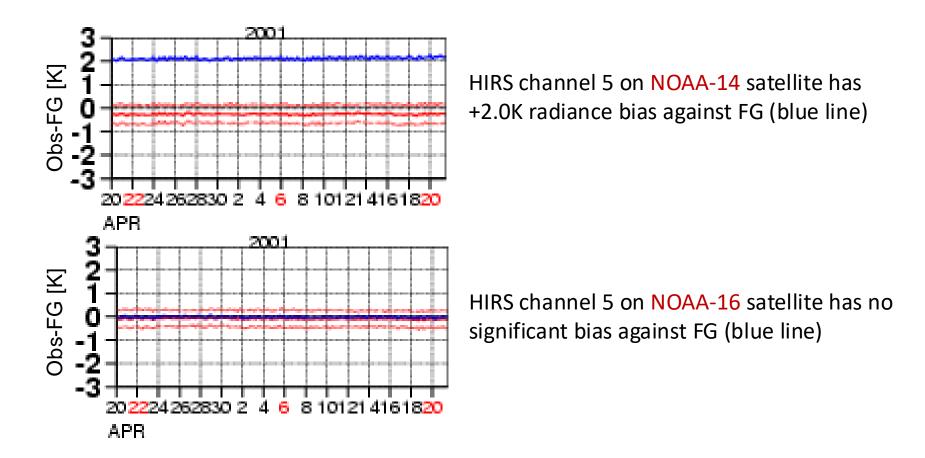





#### Estimation of observation biases done by inter-comparison between instruments

- → Involve experts knowing the instruments
- → Not straightforward as incomplete metadata

## Examples of biases in observations (3/4)

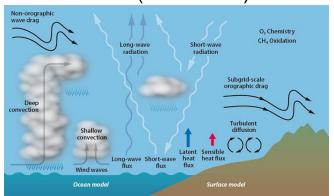



#### Estimation of observation biases done by inter-comparison between instruments

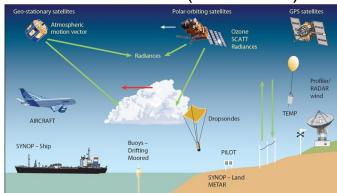
- → Involve experts knowing the instruments
- → observation bias is estimated using the hourly mean of all measured profiles

#### Examples of biases in observations (4/4)

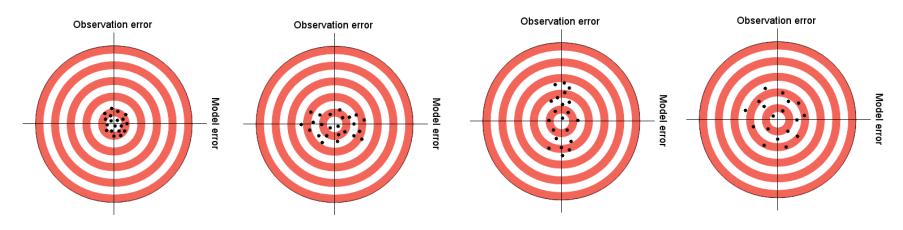
High-Resolution Infrared Radiation Sounder (HIRS) measures temperature profiles, moisture content, cloud height and surface albedo. Channel 5 peaks around 600hPa




#### Estimation of observation biases done by inter-comparison between instruments


- → Involve experts knowing the instruments
- → observation bias is estimated comparing obs with the model (time/space average)

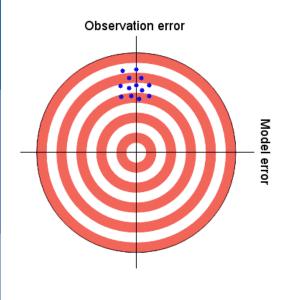
## What you have seen so far on data assimilation


Model (with errors)

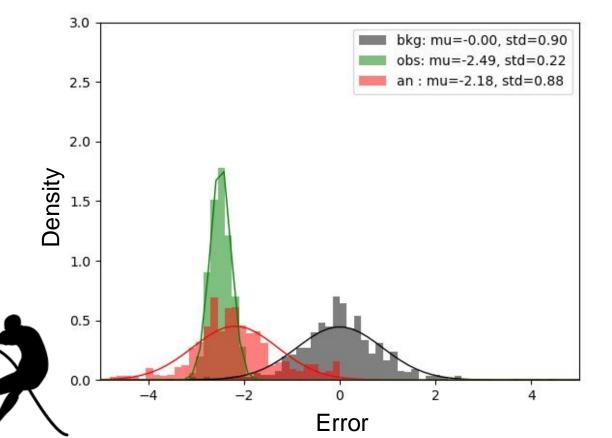


Observations (with errors)




If you are lucky, model and observations are accurate (no biases, mean error is zero)



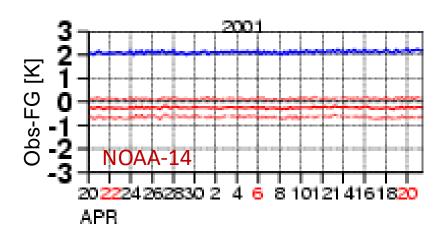

$$J(x_0) = \frac{1}{2} (x_0 - x_b)^T \mathbf{B}^{-1} (x_0 - x_b)$$
$$+ \frac{1}{2} \sum_{k=0}^{K} [y_k - \mathcal{H}(x_k)]^T \mathbf{R}_k^{-1} [y_k - \mathcal{H}(x_k)]$$

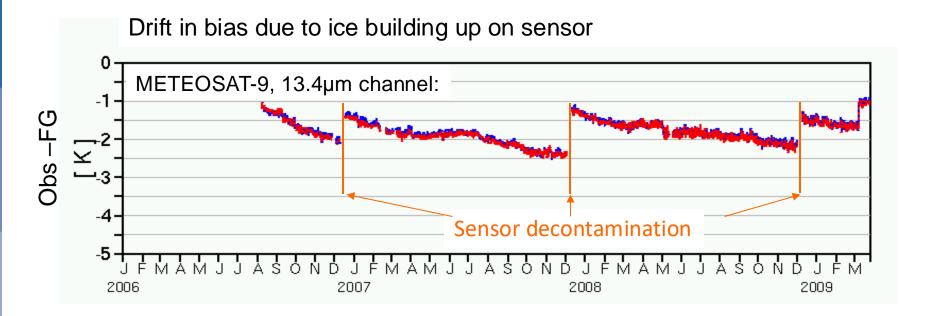
Most of the time, we are unlucky!

#### Observation biases matter



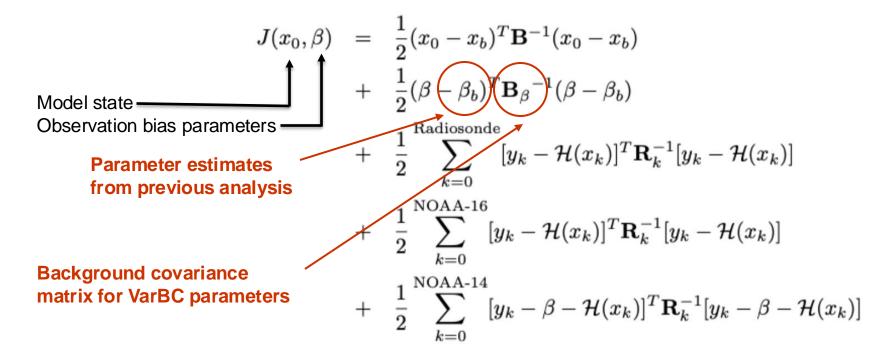
- If standard 4D-Var is used to assimilate biased observations (systematic errors), the resulting analysis will be biased.
- In this case the background is more accurate than the analysis!





$$J(x_0,\beta) = \frac{1}{2}(x_0 - x_b)^T \mathbf{B}^{-1}(x_0 - x_b)$$

$$+ \frac{1}{2}(\beta - \beta_b)^T \mathbf{B}_{\beta}^{-1}(\beta - \beta_b)$$
Observation bias parameters
$$+ \frac{1}{2} \sum_{k=0}^{\mathrm{Radiosonde}} [y_k + \mathcal{H}(x_k)]^T \mathbf{R}_k^{-1}[y_k - \mathcal{H}(x_k)]$$
Unbiased observations (anchor)
$$+ \frac{1}{2} \sum_{k=0}^{\mathrm{NOAA-16}} [y_k + \mathcal{H}(x_k)]^T \mathbf{R}_k^{-1}[y_k - \mathcal{H}(x_k)]$$
Biased observations
$$+ \frac{1}{2} \sum_{k=0}^{\mathrm{NOAA-14}} [y_k + \beta + \mathcal{H}(x_k)]^T \mathbf{R}_k^{-1}[y_k - \beta - \mathcal{H}(x_k)]$$
Biase model

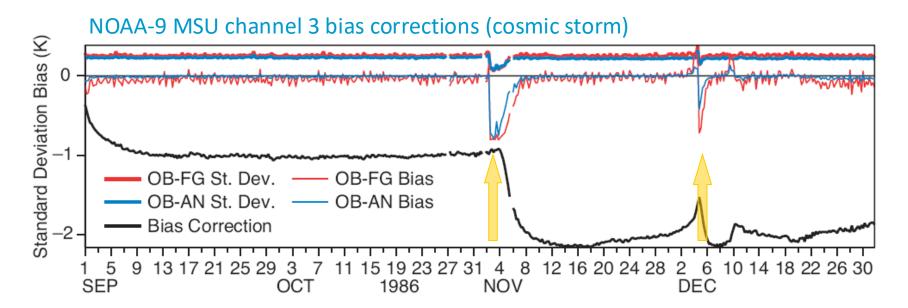
Variational Bias Correction (VarBC)


- We choose which observations we want to correct and which observations we trust
- We choose the bias model  $b(\beta) = \beta$
- 4D-Var minimization estimates the value of the VarBC parameters





VarBC needs to correct for observation bias changing over time


- Bias model = b(β) = β
- β is evolving over time depending how much ice is building up



#### Variational Bias Correction (VarBC)

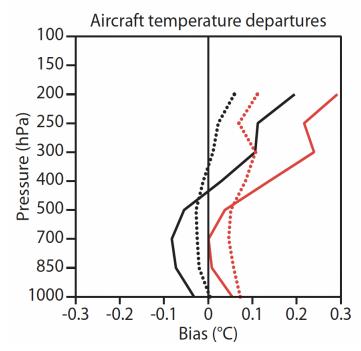
- A cycling scheme for updating the bias parameter estimates
- Specification of the background covariance matrix  $\mathbf{B}_{\beta}$  (large value  $\rightarrow$  fast adaptation, small value  $\rightarrow$  slow adaptation)

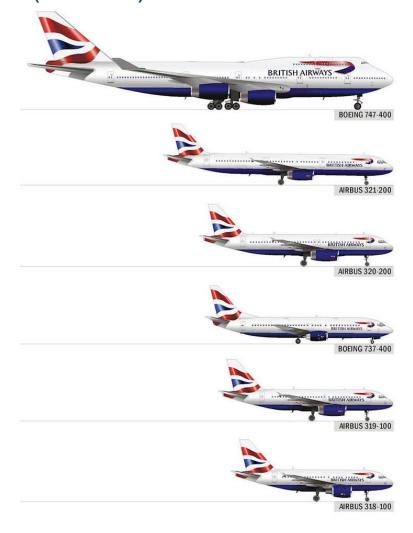
$$\mathbf{B}_{\boldsymbol{\beta}} = \begin{bmatrix} \mathbf{B}_{\boldsymbol{\beta}}^{(1)} & 0 \\ & \ddots & \\ 0 & \mathbf{B}_{\boldsymbol{\beta}}^{(J)} \end{bmatrix}$$



Two cosmic storms trigger large observation biases, but the whole 4D-Var system handles this automatically (thanks to VarBC and its online learning)

- 1. Initially QC rejects most data from this channel
- 2. VarBC adjusts the bias estimates
- 3. Bias-corrected data are gradually assimilated again


No shocks to the system!


#### Building models of observation biases (aircraft)

#### **Background departures**

Without aircraft bias correction

With aircraft bias correction





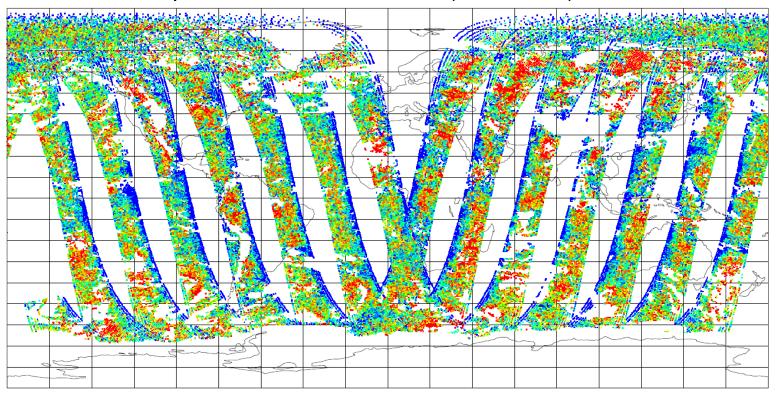
For each aircraft separately (~5000 distinct aircraft)

Bias model =  $b(\beta) = b(\beta_0, \beta_1, \beta_2) = \beta_0 + \beta_1 *$  ascent rate +  $\beta_2 *$  descent rate

the parameters

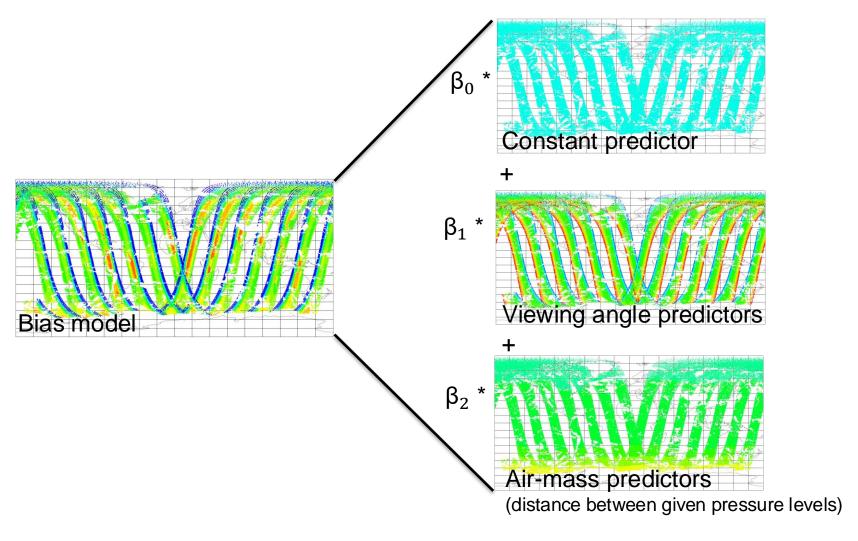
the predictors

#### Building models of observation biases (a more complex case)

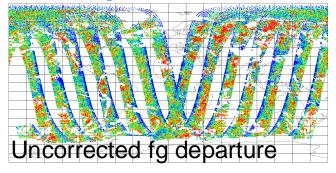


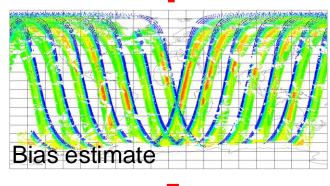

ECMWF is assimilating polar-orbiting Metop-C satellite (launched on 7 November 2018)

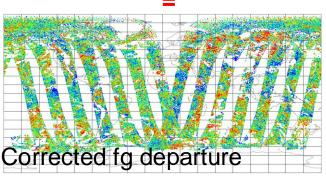
Observation bias is estimated inside 4D-Var


- comparing measurements with model
- → specifying the structure of the model bias

Metop-C AMSUA-A Channel 5 (obs-model)





## Building models of observation biases (a more complex case)


Bias model =  $b(\beta) = b(\beta_0, \beta_1, \beta_2) = \beta_0 + \beta_1 * viewing angle + \beta_2 * air-mass$ 



## Building models of observation biases (a more complex case)





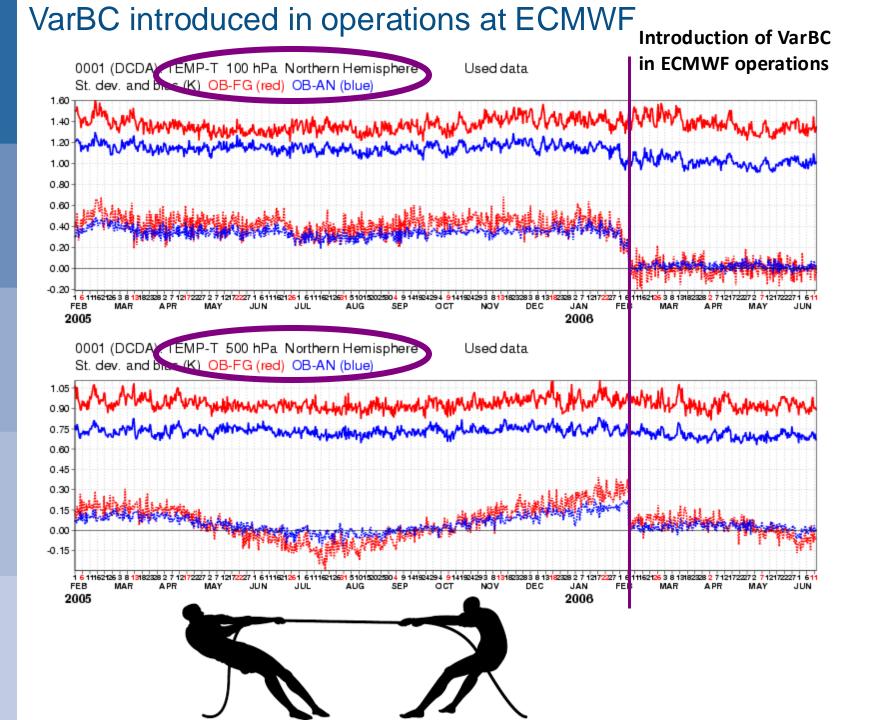


$$J(x_{0}, \beta) = \frac{1}{2}(x_{0} - x_{b})^{T} \mathbf{B}^{-1}(x_{0} - x_{b})$$

$$+ \frac{1}{2}(\beta - \beta_{b})^{T} \mathbf{B}_{\beta}^{-1}(\beta - \beta_{b})$$

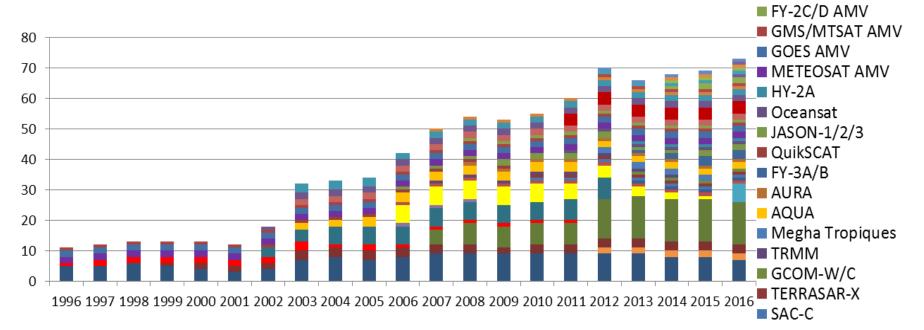
$$+ \frac{1}{2} \sum_{k=0}^{\text{Radiosonde}} [y_{k} - \mathcal{H}(x_{k})]^{T} \mathbf{R}_{k}^{-1} [y_{k} - \mathcal{H}(x_{k})]$$

$$+ \frac{1}{2} \sum_{k=0}^{\text{Metop-C}} [y_{k} - b(\beta, x_{k}) - \mathcal{H}(x_{k})]^{T} \mathbf{R}_{k}^{-1} [y_{k} - b(\beta, x_{k}) - \mathcal{H}(x_{k})]$$


Do not include too many predictors in the bias correction models

- → to avoid correcting for other sources of errors (background errors/model error)
- $\rightarrow$  corrected fg departure should still contain some information to constrain  $x_0$

Generic VarBC formulation


$$b(\beta, x_k) = \beta_0 + \sum_{i=0}^{N} \beta_i p_i(x_k)$$





#### The power of VarBC

- The global observing system is increasingly complex and constantly changing.
- It is dominated by satellite radiance observations (biases are flow-dependent, and may change with time, different for different sensors, different for different channels)
- ~1,500 channels (~40 sensors on ~25 different satellites)
- ~11,400 parameters in total
- Anchored by GPS-RO, and radiosondes observations



■ Cryosat ■ Sentinel 5p ■ Sentinel 3

Sentinel 1

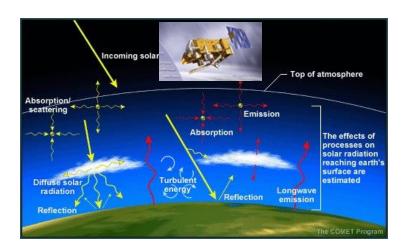
GOES Rad

■ ADM Aeolus ■ EarthCARE ■ SMOS

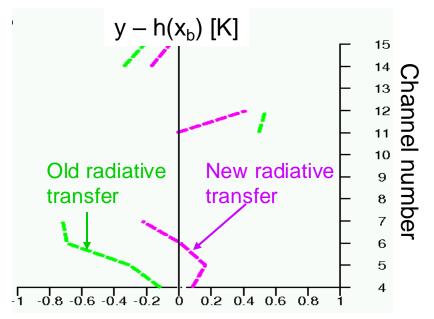
GMS/MTSAT Rad

■ METEOSAT Rad ■ AVHRR AMV

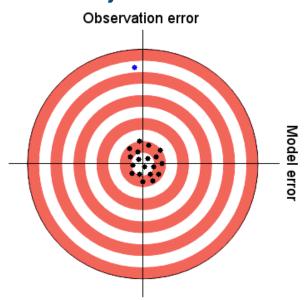
■ TERRA/AQUA AMV

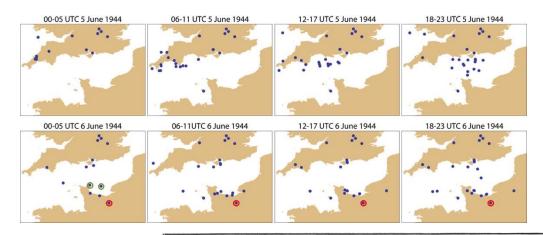

GOSAT

#### Biases in the observation operators


Examples of causes for biases in radiative transfer  $y - h(x_b)$ :

- Bias in assumed concentrations of atmospheric gases (e.g., CO<sub>2</sub>, aerosols)
- Neglected effects (e.g., clouds)


VarBC needs to handle these biases in its model




Change in bias for HIRS resulting from an update of the Radiative Transfer model:



#### Not the job of VarBC







 Pressure
 1010.5hPa (mb)

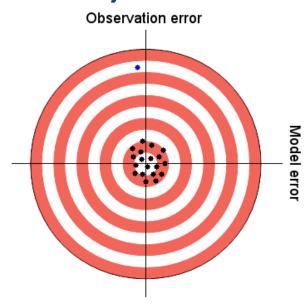
 Temperature
 285.95K (55°F)

 Dew point (wet bulb)
 284.95K (54°F)

 Wind direction
 225° (SW)

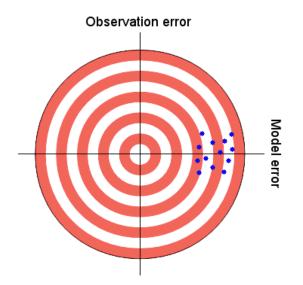
 Wind speed
 6.7ms⁻¹ (Force 4)

 (Weather/) Visibility
 Code 97 (c/7)


 Sea temperature
 285.35K (54°F)



Pressure 1014.8hPa (mb)
Temperature 285.35K (54°F)
Dew point (wet bulb) 283.35K (52°F)
Wind direction 270° (W)
Wind speed 6.7ms<sup>-1</sup> (Force 4)
(Weather/) Visibility Code 96 (c/6)
Sea temperature 284.25K (52°F)


| H.M.S. " From         | 233             |        | ENOC    |                                    |                          |                    |          | ,           | To O      | ES                | DI<br>ST         | RI   | THE 6 THY OF JUNE , 19 49.                                                     |  |
|-----------------------|-----------------|--------|---------|------------------------------------|--------------------------|--------------------|----------|-------------|-----------|-------------------|------------------|------|--------------------------------------------------------------------------------|--|
|                       | Distance<br>Run |        |         | 10.00                              | Wind 5                   |                    |          | H-m         | Corrected | Tengenture<br>(F) |                  | ture | LEAVE GRANTED TO SHIPS COMPANY                                                 |  |
| Log<br>(Storing type) | the V           | Vater  | True    | Mean<br>Revolutions<br>per missate | Direc-                   | 180                | albert a | S Too       | Pressure  | E I               | il i             | Г    |                                                                                |  |
| (Staning type)        | Miles           | Testin | Course  | ¥ 1                                | Direc-<br>tion<br>(true) | Fore               | N.       | Sea         | Millibars | Dey 1             | Wet              | \$   | REJIARKS                                                                       |  |
|                       |                 |        |         |                                    |                          |                    |          |             |           |                   |                  |      |                                                                                |  |
| m 963.46              | 12              | 3      | uen     | 157.9                              | _                        | 1                  |          |             |           | 1                 |                  |      | 0100 ( = al god wry for outering tweft chan                                    |  |
| 00 975.83             | 12              | 6      | 115     | 161.5                              |                          | -                  | -        | -           |           | -                 | -                | -    |                                                                                |  |
| cc 988-79             | 13              |        | 170     | 167.5                              |                          | -                  | -        | -           |           | 1-                | -                | -    |                                                                                |  |
|                       | _               |        |         | 112.5                              |                          | -                  | ,        | -           | -         | 1                 | Ę                | -    |                                                                                |  |
| 00/001-49             |                 |        |         | -                                  |                          | 1-                 | -        | ٠.          | 1010-2    | 1-                | 34               | 39   | 0515 stopped in Combardmenty pres.                                             |  |
| ∞ /0/3-31             |                 |        | var     | 152.6                              |                          | -                  | -        |             |           | -                 | -                |      | 0547 spend fire 6 solverson there batters                                      |  |
| 00 1016.43            | 8               | 7      | Cor     | 1019                               |                          |                    |          |             |           | 1                 | -                | Ĺ    | fortaget 0545 gend from tisel 07062 sol                                        |  |
| 00 19 20 84           | 7               | 1      | COL     | 90-1                               |                          | -                  | -        | -           |           | -                 | -                | -    | that that . 0711 c = and spire as by his make                                  |  |
| 00 10 26 43           | _               | 2      |         | 97.5                               | w                        | 1.                 | 6        | 22          | 10.11     | SI                | 2                | 2    |                                                                                |  |
|                       |                 |        |         | -                                  |                          | -                  | -        | ا ا         | 10.11_    | -                 |                  | Ι.   | 0921 Seemy sevel direct liter LC 1 in 100 de                                   |  |
| 00 103147             |                 | 6      | ver     | 82-5                               |                          | -                  |          | -           |           | +                 |                  | -    | Post tow ex and specdes regles avoiding not                                    |  |
| ∞/035-3¢              | 6               | 0      | vor     | 75.0                               |                          |                    |          | -           |           | 1                 | _                |      | to and the head all the love                                                   |  |
| € 1036 os             | 7 1             | 0      | var.    | 29-/                               |                          | -                  | -        | -           | *****     | -                 | -                | -    | 1010 tol offwounded frame LCICS ) 500. 1040 11-12<br>164 toloff working party. |  |
| 0/637.77              | 2.              | 0      | ner.    | 28-7                               | w                        | 3                  | ć        | 23          | 1511-6    | 55,               | 4                | 56   | 1207 air kaid uteringted                                                       |  |
| the Water             | 1200<br>5000    |        | Latin   | Latitude<br><br>49 20 d            |                          | 1 registe<br>0 ISW |          | Deposing on |           |                   |                  |      | an experienced ANCHOR DEARINGS                                                 |  |
| 252.7                 |                 |        | 49      |                                    |                          |                    |          |             |           |                   |                  |      | 2242. [ Companie Ch. 15] 1                                                     |  |
| fore Time kept        |                 |        | 49 254  |                                    | 0 1314                   |                    | i        | ۱.          | - 1-      | i                 |                  | 73   | d durantes the 195%                                                            |  |
| rist                  |                 |        | A9 11.4 |                                    | 0 154                    |                    |          | lank fin    |           |                   | Number<br>Sick L |      | 2 1 · // ·                                                                     |  |
|                       |                 |        |         |                                    |                          |                    |          |             |           |                   |                  |      | 50                                                                             |  |
| 100 1037-77           | 4               | 0      | vas     | 51.2                               |                          | -                  | -        | -           |           | -                 |                  | -    |                                                                                |  |
| 100 1042-32           | 5               | -      | vor     | 642                                | -                        | -                  |          | -           |           | -                 | -                | -    | 1430k C1(5)516 ab-jidearth six asually take                                    |  |
| 00 104232             |                 |        |         | UER 279                            |                          |                    |          |             |           | -                 |                  |      | 1500 1 Habing casualty died & was buried                                       |  |
| 00 1042-52            |                 | _      | var     | _                                  |                          | -                  | 1.       | -           | 1612      | 1                 | -                |      |                                                                                |  |

#### Not the job of VarBC



Gross (obvious) errors

- → Preliminary analysis (blacklist,...)
- → Variational Quality Control (VarQC)



Bias in the model

→ Tomorrow's lecture

Take-away messages (1/3)

To illustrate biases in observations

To construct bias models for specific instruments

To understand the challenges of observation bias correction

#### Take-away messages (2/3)

#### To illustrate biases in observations

To construct bias models for specific instruments

To understand the challenges of observation bias correction

#### From bias-blind to bias-aware data assimilation

$$J(x_{0}) = \frac{1}{2}(x_{0} - x_{b})^{T}\mathbf{B}^{-1}(x_{0} - x_{b})$$

$$+ \frac{1}{2}\sum_{k=0}^{K}[y_{k} - \mathcal{H}(x_{k})]^{T}\mathbf{R}_{k}^{-1}[y_{k} - \mathcal{H}(x_{k})]$$

$$+ \frac{1}{2}\sum_{k=0}^{Radiosonde}[y_{k} - \mathcal{H}(x_{k})]^{T}\mathbf{R}_{k}^{-1}[y_{k} - \mathcal{H}(x_{k})]$$

$$+ \frac{1}{2}\sum_{k=0}^{GPSRO}[y_{k} - \mathcal{H}(x_{k})]^{T}\mathbf{R}_{k}^{-1}[y_{k} - \mathcal{H}(x_{k})]$$

$$+ \frac{1}{2}\sum_{k=0}^{GPSRO}[y_{k} - \mathcal{H}(x_{k})]^{T}\mathbf{R}_{k}^{-1}[y_{k} - \mathcal{H}(x_{k})]$$

$$+ \frac{1}{2}\sum_{k=0}^{GPSRO}[y_{k} - \mathcal{H}(x_{k})]^{T}\mathbf{R}_{k}^{-1}[y_{k} - \mathcal{H}(x_{k})]$$

## Take-away messages (3/3)

To illustrate biases in observations

To construct bias models for specific instruments

To understand the challenges of observation bias correction

- $\rightarrow$  we only have information about differences  $y h(x_b)$
- → there is no true reference in the real world!
- → the success of VarBC relies on *anchoring* and *redundancy*

Any questions? Feel free to contact me patrick.laloyaux@ecmwf.int